A Simple Recursive Algorithm for Diagnosis of Abrupt Changes in Random Signals

Igor V. Nikiforov

Abstract—We address the problem of detecting and isolating abrupt changes in random signals. An asymptotic optimal solution to this problem, which has been proposed in previous works, involves the number of computations at time t which grows to infinity with t. In this correspondence, we propose another more realistic criterion, establish a new simple recursive change detection/isolation algorithm, and investigate its statistical properties.

Index Terms—Kullback–Leibler information, minimax detection, sequential detection and isolation, sequential decision procedures, signal detection.

I. INTRODUCTION

This correspondence treats the problem of abrupt change diagnosis (detection and isolation) in random signals. An optimal solution to this problem was obtained in [5]–[7]. The novelty of this work with respect to the previous papers is some practical aspects of the proposed theory: a more realistic criterion of optimality and a simple recursive solution. First, we minimize now the supremum of the mean delay for detection/isolation over the change time t_0 instead of minimizing this supremum over the past “trajectory” X_1, \ldots, X_{t_0-1} of stochastic process and t_0 together. Second, in the previous papers we fixed a priori the change time $t_0 = 1$ in the definition of the probability of false isolation to simplify theoretical difficulties. In practice, it is difficult to justify this assumption, for this reason we examine now the supremum of the error probability over $t_0 \geq 1$. Next, the algorithms developed in [5]–[7] involve the number of the likelihood ratio (LR) computations at time t which grows to infinity with t. Now we design a simple recursive algorithm which involves one LR computation at every stage. The correspondence is organized as follows. First, we state the problem in Section II. Next, we discuss the design of the recursive change diagnosis algorithm and its statistical properties in Section III. The main results are established in Theorems 1 and 2. Finally, we compare in this section the theoretical formulas and the results of Monte Carlo simulations.

II. PROBLEM STATEMENT

A. Model with Abrupt Changes

We consider a finite family of distributions

$$\mathcal{P} = \{ P_l : l = 0, \ldots, K - 1 \}$$

with densities $p_l, l = 0, \ldots, K - 1$. Let $(X_t)_{t \geq 1}$ be an independent random sequence observed sequentially

$$\mathcal{L}(X_t) = \begin{cases} P_0, & \text{if } t < t_0 \\ P_l, & \text{if } t \geq t_0 \end{cases}$$

(1)

where $l = 1, \ldots, K - 1$, and $\mathcal{L}(\cdot)$ is the probability law. The change time t_0 and number l are unknown (but non random). Let

$$Z_t(l, j) = \log(p_{o_l}(X_t)/p_{o_j}(X_t))$$

be the log LR between hypotheses $\mathcal{H}_l : P = P_l$ and $\mathcal{H}_j : P = P_j$.

B. Criterion of Optimality

The change detection/isolation algorithm has to compute a pair (N, ν) based on the observations X_1, X_2, \ldots where N is the alarm time at which a ν-type change is detected/isolated and $\nu, \nu = 1, \ldots, K - 1$ is the final decision. Let P_{l0} be the distribution of the observations $X_1, X_2, \ldots, X_{t_0}, X_{t_0+1}, \ldots$ when $t_0 = 1, 2, \ldots$ and X_{t_0} is the first observation with distribution P_l. In previous papers [5]–[7] we minimized the “worst case” mean delay for detection/isolation

$$\tau^* = \sup_{t_0 \geq 1} \text{esssup } E_{t_0}(N - t_0 + 1 \mid N \geq t_0, X_1, \ldots, X_{t_0-1}).$$

Now we propose to measure the speed of detection/isolation with the aid of the maximum mean delay for detection/isolation

$$\bar{\tau} = \max_{1 \leq N} \bar{\tau}_N, \quad \bar{\tau}_N = \sup_{t_0 \geq 1} E_{t_0}(N - t_0 + 1 \mid N \geq t_0).$$

(2)

In the case of change detection this performance index is discussed in [8], [4]. We measure the levels of false alarms and false isolations by using the following equation:

$$\min_{1 \leq N \leq K-1} E_0 \left(\inf_{k \geq 1} \{ N(k) : \nu(k) = j \} \right) = \gamma$$

$$\max_{1 \leq N \leq K-1} \max_{1 \leq \nu \neq j \leq K-1} \sup_{t_0 \geq 1} \beta_{l_0}(j, l) = \beta$$

(3)

where $\beta_{l_0}(j, l) = P_{l_0}(\nu = j \neq l \mid N \geq t_0)$ is the error probability, γ is the minimum of the mean times before a false alarm, and β is the maximum of the probability of a false isolation. In the above criterion we suppose that there exists a sequence $N(1), N(2), \ldots$ of false alarms. The first false alarm of a j-type is defined by $\inf_{k \geq 1} \{ N(k) : \nu(k) = j \}$. In brief, we require that the maximum mean detection/isolation delay given by (2) should be as small as possible subject to the constraints given by (3). In this correspondence, we will discuss the asymptotic case when $\gamma \rightarrow \infty$, $\beta \rightarrow 0$, such that $\log \gamma \approx \log \beta^{-1}$.

III. RECURSIVE ALGORITHM AND ITS STATISTICAL PROPERTIES

A. Recursive Algorithm

We denote a pair alarm time–final decision for the recursive algorithm by (N_r, ν_r), where

$$N_r = \min \{ N_r^1, \ldots, N_r^{K-1} \}$$

$$\nu_r = \arg \min \{ N_r^1, \ldots, N_r^{K-1} \}. \quad (4)$$

We define the stopping time N_r^1 in the following recursive manner

$$N_r^1 = \inf \left\{ t \geq 1 : \min_{0 \leq \nu \neq l \leq K-1} \left[g_t(l, 0) - g_t(j, 0) - k_{l,j} \right] \geq 0 \right\} \quad (5)$$

Naturally, we assume that after a false alarm the observation process restarts immediately from scratch.
where the recursive decision functions $g_t(l,0)$ are defined by
\[g_t(l,0) = (g_{t-1}(l,0) + Z_t(l,0))^+, \quad x^+ = \max(0, x), \]
\[g_0(l,0) = 0, \quad l = 1, 2, \ldots, K - 1 \]
(6)
and $g_t(0,0) \equiv 0$. The thresholds $h_{l,j}$ are chosen by the following formula:
\[h_{l,j} = \begin{cases} h_d, & \text{if } l = 1, \ldots, K - 1 \text{ and } j = 0 \\ h_i, & \text{if } j, l = 1, \ldots, K - 1 \text{ and } j \neq l \end{cases} \]
(7)
where h_d is the detection threshold and h_i is the isolation threshold.

B. Discussion

Let us compare the design of the recursive rule (4)–(6) with the nonrecursive one. We start with the nonrecursive rule (N_r, ν_r) [5], [6]. If for some $k \leq t$ the observations X_k, \ldots, X_t are such that all the LR between H_1 and H_j, $0 \leq j \neq l \leq K - 1$ are greater than or equal to the thresholds $h_{l,j}$

\[S_t^1(l,0) = \sum_{i=k}^{t} Z_i(l,0) \geq h_{l,0} \]
\[S_t^1(l,1) = \sum_{i=k}^{t} Z_i(l,1) \geq h_{l,1}, \ldots \]
\[S_t^1(l, K - 1) = \sum_{i=k}^{t} Z_i(l, K - 1) \geq h_{l,K-1} \]

(i.e., the observations are significant for accepting the hypothesis H_1 with respect to this set of alternatives) then the nonrecursive rule stops the observation process at time t ($N_r = t$) and the final decision is $\nu_r = l$. In practice, this nonrecursive algorithm has two disadvantages. First, sometimes (it depends on the mutual “geometry” of the hypotheses) the probability of false isolation seriously increases when $t_0 \to \infty$. It occurs due to an uncontrolled growth of some cumulative sums $S_t^1(m,j)$ when $X_1, \ldots, X_t \sim P_0$.\(^2\) Second, the nonrecursive algorithm cannot be rewritten directly in a recursive manner and the number of the LR computations at time t grows to infinity with t.

Unlike this nonrecursive algorithm, the rule N_r^a (5) is based on the recursive decision functions $g_t(l,0)$. It is easy to see that the recursive algorithm (4)–(6) is nothing but $K - 1$ parallel CUSUM tests (see the decision functions $g_1(l,0), \ldots, g(l,0)$) plus a simple logical rule which compares $g_t(l,0) - g_t(j,0)$ with the thresholds $h_{l,j}$. Before the change time t_0, the nonnegative functions $g_t(l,0)$ are stochastically small (because $E_0(Z_t(l,0)) < 0$) and, hence, only an insignificant growth of the probability of false isolation takes place when $t_0 > 1$. Let us note also that $S^1_{t_0}(l,j) \approx g_t(l,0) - g_t(j,0)$ when $t \gg t_0$ and $E_t(g_t(l,0)) \geq 0$. Therefore, both algorithms extract approximately the same information from the observations X_{t_0}, \ldots, X_t. Nevertheless, if $E_t(g_t(j,0)) < 0$ then the recursive algorithm partly loses the information from these observations. In order to fix this gap we solve the detection/isolation problem under the constraint $h_d \geq h_i$ (see details in Theorems 1 and 2 and Appendix I).

C. Statistical Properties

Let us consider now the recursive detection/isolation algorithm (N_r, ν_r) (4)–(6). We start with the mean detection/isolation delay $\bar{\tau}$:

\[\bar{\tau} \leq \max_{1 \leq l \leq K - 1, 1 \leq \rho \leq K - 1} \min_{\beta_{l,\rho}} \sup_{n \geq 1} \beta_{n}(j,l) \]
(8)

Theorem 1: Let (N_r, ν_r) be the test (4)–(6). Suppose that $0 < \rho_{l,j} = E_t(Z_t(l,j)) < \infty$ for all $l \neq j \neq l \leq K - 1$ and the following regularity condition is fulfilled: the moment-generating function (m.g.f.) \(\varphi(\zeta) = E_t(e^{\zeta Z_{t}(l,j)}) < \infty \exists \text{all } \zeta \in \mathbb{R} \) where \(\varphi > 0 \), and for all $1 \leq l \leq K - 1$ and $0 \leq j \neq l \leq K - 1$. Let \(h_{l,j} \) be given by (7) and $h_i \geq h_d$.

Proof of Theorem 1: See Appendix I.

Let us discuss now the probability of false isolation. From Theorem 1 it follows that the delay for detection $\bar{\tau}$ is mainly defined by the stopping time N^a_l when the hypothesis H_1 is true. The false isolation probability $\nu_r = j$ means that due to the noise $N^a_j < N^a_l = \min_{\nu = l} \{ N^a_{\nu} \}$ given $N^a_l \geq t_0$. Naturally, this is a rare event. Roughly speaking, to estimate $\beta_{n}(j,l)$ we have to compute the conditional probability to stop the observation process by the “false” stopping time N^a_j before then it will be stopped by the “true” stopping time N^a_l given $N^a_l \geq t_0$. Therefore, we prove now an asymptotic upper bound for $\sup_{n \geq 1} \beta_{n}(j,l)$. The result is stated in the following theorem.

Theorem 2: Let (N_r, ν_r) be the test (4)–(6) and let the conditions of Theorem 1 be satisfied. Then

\[\beta = \max_{1 \leq l \leq K - 1, 1 \leq \rho \leq K - 1} \min_{\beta_{l,\rho}} \sup_{n \geq 1} \beta_{n}(j,l) \]
(9)

Proof of Theorem 2: See Appendix II.

From Theorem 2 it results that if $t_0 = 1$, then the probability of false isolation is

\[\beta_1 = \max_{1 \leq l \leq K - 1, 1 \leq \rho \leq K - 1} \min_{\beta_{l,\rho}} \beta_{1}(j,l) \leq e^{-h_i} \max \left\{ \frac{h_d}{\rho_d}, \frac{h_i}{\rho_i} \right\}, \quad \text{as } h_d \geq h_i \text{ and } h_i \to \infty. \]

The analysis of Theorem 2 [5] and Theorem 4 [6] shows that the asymptotic equation

\[n(\gamma, \beta) \sim \max \left\{ \frac{\log \gamma}{\rho_d}, \frac{\log \beta^{-1}}{\rho_i} \right\} \]

for the infimum $n(\gamma, \beta)$ of $\bar{\tau}^*$ still hold with the mean delay $\bar{\tau}$ instead of $\bar{\tau}^*$ and the new definition of the class of tests (3).
Corollary 1: The recursive detection/isolation algorithm \((N_r, \nu_r)\) (4)–(6) is asymptotically equivalent to the optimal (nonrecursive) test [5, 6] when \(t_0 = 1\)

\[
\mathcal{F} \sim n(\gamma, \beta) \sim \max \left\{ \frac{\log \gamma}{\rho^*_d}, \frac{\log \beta^{-1}}{\rho^*_i} \right\},
\]

as \(\gamma \to \infty\), \(\beta \to 0\), \(\log \gamma \approx \log \beta^{-1}\). \(\text{(10)}\)

The above theoretical results have been obtained by ignoring the “excess” of the decision function \(g_t(l, j) = g_t(l, 0) - g_t(j, 0)\) over the boundary \(h_{1,i}\), namely, the quantity

\[
\epsilon = (g_t(l, j) - h_{1,i}) | g_t(l, j) \geq h_{1,i}.
\]

It is well known that this Wald’s approximation is not very accurate (see details in [1, 3, 9]). For this reason, we suggest to use the corrected terms proposed by Siegmund [9, Ch. X] for a possibly improved approximation of the mean time before a false alarm and the probability of false isolation. The idea of this approximation is to replace the threshold \(h_t\) by \(h_t + \epsilon g_d\) and \(h_i\) by \(h_i + \epsilon g_i\), where \(\epsilon g_d\) and \(\epsilon g_i\) are positive constants. Hence, we get the following corrected asymptotic equations:

\[
E_0 \left(\inf_{k \geq 1} \{ N_r(k) : \nu_r(k) = j \} \right) \geq e^{h_d + \epsilon g_d} \sup_{t_0 \geq 1} \beta_{t_0}(j, i) \geq e^{-h_i - \epsilon g_i} \left\{ \max \left(\frac{h_d}{\rho_{1,0} \min_{\rho_{0,0} \rho_{1,1}}}, \frac{h_i}{\rho_{1,1}} \right) + h_i \right\}. \text{(11)}
\]

D. Example

The goal of this example is to compare the statistical properties of the recursive (4)–(6) and nonrecursive [5, 6] rules using Monte Carlo simulation and to compare the results of the simulation with (8) and (9), (11). Let \(X \in \mathbf{R}^2\) be a Gaussian vector, \(\mathcal{L}(X) = \mathcal{N}(\theta, I)\). We consider the following hypotheses:

\[
\mathcal{H}_1 : \{ \theta_0 = (0, 0)^T \}
\]

\[
\mathcal{H}_2 : \{ \theta_1 = (1, 0)^T \}
\]

\[
\mathcal{H}_2(i) : \{ \theta_2(i) = (\theta_{21}(i), \theta_{22}(i))^T \}
\]

where \(i = 1, 2\). The values of \(\theta_2(i)\) are given in Table I. The goal of the first simulation is to detect/isolate the change from \(\theta_0\) to \(\theta_1\) when \(\mathcal{H}_2(i)\) varies between \(\mathcal{H}_2(1)\) and \(\mathcal{H}_2(5)\). The second simulation experiment is devoted to the detection/isolation of the change from \(\mathcal{H}_0\) to \(\mathcal{H}_2(1)\) when \(\mathcal{H}_2(1)\) varies between \(\mathcal{H}_2(1)\) and \(\mathcal{H}_2(5)\). In this manner we consider different combinations of the hypotheses \(\mathcal{H}_0, \mathcal{H}_1, \text{and} \mathcal{H}_2(i)\) mutual geometry. The thresholds are \(h_{d} = h_{i} = 5\). The results are given in Tables II and III. Each point in these tables is based on \(10^7\) simulations. The detection of the change from \(\mathcal{H}_0\) to \(\mathcal{H}_1\) (see Table II) shows that the statistical characteristics of both tests (recursive and nonrecursive) are comparable. Nevertheless, in the case of the changes from \(\mathcal{H}_0\) to \(\mathcal{H}_2(1)\) and from \(\mathcal{H}_0\) to \(\mathcal{H}_2(2)\) (see the fifth and sixth rows in Tables III), the nonrecursive algorithm makes many false isolations when \(t_0 = 10\), due to an uncontrolled growth of the cumulative sum \(S_t(1, 2)\).

The first simulation (see Table II) shows a relatively good accuracy of the asymptotic mean detection/isolation delay \(\mathcal{F}\) (8). In the second case (see Table III) accuracy is lower because the true values of the mean detection/isolation delay are small, and, hence, the approximation cannot be considered as asymptotic. It follows from the

\[\text{proof of Theorem 2 that the proposed asymptotic upper bound (9) for the probability of false isolation } \beta_{t_0} \text{ cannot be fairly tight. The simulation shows that the corrected term } \epsilon g_d = \frac{\partial g}{\partial \gamma} + \frac{\partial g}{\partial \beta} \text{, where } \epsilon g_d \approx 0.583 \text{ [9, Ch. X], suggested in (11), really improves this approximation of } \beta_{t_0} \text{ in this case. The simulation confirms the results of Theorem 2 for } \sup_{t \geq 1} \beta_t(j, i). \text{ Let us analyze the growth of the probability of false isolation } \beta_{t_0} \text{ when } t_0 \to \infty \text{ for the recursive test. It follows from Theorem 2 that this growth should be more significant when } \max(h_d / \rho_{1,0}, h_i / \min_{\rho_{0,0} \rho_{1,1}}) \text{ is small in comparison with } h_i. \text{ It happens in the case of the change from } \mathcal{H}_0 \text{ to } \mathcal{H}_2(i) \text{ (see the fifth, sixth, and seventh rows in Table III).}

IV. Conclusion

A simple recursive algorithm for diagnosis of abrupt changes in random signals was proposed and its statistical performance was investigated. An important feature of this algorithm is its ability to warrant an acceptable level of false isolation when \(t_0 > 1\). Another attractive feature of this algorithm is the fact that it is based on \(K = 1\) parallel CUSUM rules. The CUSUM rules are well known in signal processing, automatic control (fault detection), and industrial quality control. Hence, this fact simplifies the implementation of the proposed algorithm.

APPENDIX I

PROOF OF THEOREM 1

We suppose that the thresholds \(h_{d, i}\) are given by (7), where \(h_{d} \geq h_{i}\). Let \(0 < \delta < 1\) and let \(n_{d}\) be the smallest integer

\[
\geq \max \left(\frac{h_d}{\rho_{1,0}}, h_i \frac{\min_{\rho_{0,0} \rho_{1,1}}} \right) (1 - \delta)^{-1}.
\]

We assume that \(h_d\) and \(h_i\) are so chosen that \(n_{h} > 0\). Let \(l = 1\) (without any loss of generality) and we consider the probability

\[
P_{t_0}^{(1)}(N_r^t - t_0 + 1 > M | N_r \geq t_0)
\]

where \(M = mn_{h}\) and \(m\) is a positive integer number. Taking into account that

\[
g_t(j, 0) = \max_{0 \leq k \leq t} \sum_{i=k+1}^{t} Z_i(j, 0)
\]

and \(\sum_{i=k}^{\infty} = 0\) when \(n < k\), we get from (5)

\[
P_{t_0}^{(1)}(N_r^t - t_0 + 1 > M | N_r \geq t_0)
\]

\[
\leq \max \left(\min_{0 \leq t \leq t_0 + M} \sum_{i=k+1}^{t_0} Z_i(j, 0), \right) < 0 | N_r \geq t_0
\]

(12)

Since the functions \(g_t(j, 0) (1 \leq j \leq K - 1)\) are Markov sequences, it then follows that the behavior of the function \(g_t(j, 0)\) when \(t \geq t_0\) depends on \(g_{t_0 - 1}(j, 0)\) and the observations \(X_{t_0}, X_{t_0 + 1}, \ldots\). To simplify

\[
\text{TABLE I}
\]

<table>
<thead>
<tr>
<th>(i)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{H}_2(1))</td>
<td>(2.121)</td>
<td>(0)</td>
<td>(-2.121)</td>
<td>(-3)</td>
<td></td>
</tr>
<tr>
<td>(\mathcal{H}_2(2))</td>
<td>(2.121)</td>
<td>(3)</td>
<td>(2.121)</td>
<td>(0)</td>
<td></td>
</tr>
<tr>
<td>$\mathcal{H}_2(i)$</td>
<td>mean delay \mathcal{T}_1</td>
<td>probability of false isolation $\beta(2,1)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(N_r,ν_r)</td>
<td>t_0</td>
<td>(N_n,ν_n)</td>
<td>t_0</td>
<td>Eq.</td>
<td>t_0</td>
</tr>
<tr>
<td>i</td>
<td>1</td>
<td>10</td>
<td>50</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>12.9</td>
<td>12.1</td>
<td>12</td>
<td>10.9</td>
<td>9.9</td>
</tr>
<tr>
<td>2</td>
<td>11.4</td>
<td>10.3</td>
<td>10.6</td>
<td>10.5</td>
<td>9.7</td>
</tr>
<tr>
<td>3</td>
<td>10.5</td>
<td>9.8</td>
<td>9.7</td>
<td>10.4</td>
<td>9.7</td>
</tr>
<tr>
<td>4</td>
<td>10.4</td>
<td>9.7</td>
<td>9.6</td>
<td>10.4</td>
<td>9.7</td>
</tr>
<tr>
<td>5</td>
<td>10.4</td>
<td>9.7</td>
<td>9.6</td>
<td>10.4</td>
<td>9.7</td>
</tr>
</tbody>
</table>

The change from $\mathcal{H}_2(i)$ to \mathcal{H}_1 when the third hypothesis is $\mathcal{H}_2(i)$, $i = 1, \ldots, N$

<table>
<thead>
<tr>
<th>$\mathcal{H}_2(i)$</th>
<th>mean delay \mathcal{T}_2</th>
<th>probability of false isolation $\beta(1,2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_r,ν_r)</td>
<td>t_0</td>
<td>(N_n,ν_n)</td>
</tr>
<tr>
<td>i</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>3.3</td>
<td>3.5</td>
</tr>
<tr>
<td>2</td>
<td>2.5</td>
<td>2.6</td>
</tr>
<tr>
<td>3</td>
<td>1.8</td>
<td>1.9</td>
</tr>
<tr>
<td>4</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>5</td>
<td>1.8</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Putting together the inequalities

$$n_h \rho_{1,j} (1 - \delta - m) \leq - (\rho_{1,j} M \delta / 2) - (\rho_{1,j} M \delta / 2)$$

and

$$P_1 \bigl(x + y < a \bigr) \leq P_1 \bigl(x < a/2 \bigr) + P_1 \bigl(y < a/2 \bigr)$$

with (15), we get

$$p_j (m) \leq P_1 \left(\sum_{i=1}^{M} Z_i (j,0) < - \frac{\rho_{1,j} M \delta}{2} \right) + P_1 \left(\xi_M < - \frac{\rho_{1,j} M \delta}{2} \right).$$

The right side of (16) should be bounded above. Taking into account the regularity conditions of Theorem 1, we get by Chernoff’s bound (see details in [10, Ch. IV] and (3, Ch. 4))

$$P_1 \left(\sum_{i=1}^{M} Z_i (j,0) < - \frac{\rho_{1,j} M \delta}{2} \right) \leq e^{-M H Z_i(0,\theta) \left(- \frac{\rho_{1,j} M \delta}{2} \right)}$$

where $H_Z(y) = \sup_{\omega < 0} [y \omega - \log E(e^{\omega y})]$ is the Cramér transform of the distribution function of the random value x and $H_{Z_i(1,j)}(\frac{-\rho_{1,j} M \delta}{2})$ is positive. On the other hand, it is easy to see that

$$P_1 \left(\xi_M < - \frac{\rho_{1,j} M \delta}{2} \right) \leq P_1 \left[\pi - \left(- \frac{\rho_{1,j} M \delta}{2} \right) < \infty \right]$$

where

$$\pi_\omega(x) = \inf \{ k \geq 1: \sum_{i=1}^{k} Z_i (j,0) \leq x \}$$

is an unknown number and $\inf \emptyset = \infty$. This last is the probability that the barrier $- \rho_{1,j} M \delta / 2$ is crossed by the cumulative sum $\sum_{i=1}^{k} Z_i (j,0)$ started at the origin when $E_i (Z_i (j,0)) > 0$. Let Q be the distribution function of $Z_i (j,0)$ when $\mathcal{L}(X_i) = P_1$. Two situations are possible. First, the random value $Z_i (j,0)$ is one-sided, i.e., it takes only nonnegative values with positive probability. In this case, the answer is trivial, $P_1 \left[\pi_\omega(- \rho_{1,j} M \delta / 2) < \infty \right] = 0$. In the other case, $Z_i (j,0)$ is two-sided, i.e., it takes both positive and negative values with positive probability. In this case, the answer is more subtle and requires a detailed analysis.
Second, $Z_i(j, 0)$ is two-sided, i.e., it takes both positive and negative values with positive probability. To compute an upper bound for $P_i^f[\pi_{\{-\rho_{1, 0}, M\delta \}}] < \infty$, the function Q_j should be imbedded in an exponential family [9, Ch. VIII]. For this reason we assume that the m.g.f. $\varphi(\zeta) = E_i(e^{\zeta Z_i(j, 0)}) < \infty \Rightarrow \int e^{\zeta x}dQ(x)$ converges in some neighborhood of 0, $\zeta \in \mathbb{R}$, where $\eta > 0$ (the regularity condition of the theorem). It follows from the properties of m.g.f. that $\zeta \mapsto \varphi(\zeta)$ is twice differentiable in this open interval $] - \eta, \eta[$. Because the distribution of $Z_i(j, 0)$ is not concentrated at zero, the second derivative $\varphi''(\zeta) = \int x^2e^{\zeta x}dQ(x)$ is strictly positive in $] - \eta, \eta[$ and hence the function $\zeta \mapsto \varphi(\zeta)$ is strictly convex (from below) in its interval of definition $] - \eta, \eta[$.

We next apply the “generalized” Wald’s inequality [2], [3], [9]:

$$P_i^f[\pi_{\{-\rho_{1, 0}, M\delta \}}] < \infty \Rightarrow \int e^{\zeta x}dQ(x)$$

is warranted because the random value $Z_i(j, 0)$ is two-sided, $\varphi(\zeta)$ is convex, and $\varphi'(\zeta) = E_i(Z_i(j, 0)) > 0$. In our context this leads to

$$P_i^f[\pi_{\{-\rho_{1, 0}, M\delta \}}] < \infty \Rightarrow e^{-\varepsilon \zeta^2} = \int e^{\zeta x}dQ(x)$$

where $\varepsilon = |\zeta|/2$. If $h_{i,j} \rightarrow \infty$, then $\pi_{\{-h_{i,j}, 0\}}(\zeta)$. This means that for any chosen $0 < \delta < 1$, $\exists h_0 = h_0(\delta) : \forall h_0 \geq h_0$

$$p_j(m) \leq e^{-\varepsilon \pi_j m + \varepsilon \pi_j m} < e^{-\varepsilon \pi_j m}$$

for any $m > 0$, where $\varepsilon = H_{Z_i(0)}(\pi_{\{-\rho_{1, 0}, \delta/2\}})$ and the positive constant δ is conveniently chosen.

Let us assume now that $E_i(Z_i(j, 0)) < 0$ and $j \geq 2$. It follows from (14) that

$$p_j(m) = P_i^f\left(\sum_{i=1}^{M} Z_i(1, 0) + \xi_M < h_{i,j} \right)$$

where

$$\xi_M = \min_{0 \leq k \leq M} \sum_{i=k+1}^{M} Z_i(0, j).$$

Taking into account that $h_{i,j} \leq h_{i,j} \leq n_i \rho_{1, 0}(1 - \delta)$ and $\tilde{Z}(j, 0) = Z_i(1, 0) - \rho_{1, 0}$, we get the analog of (16), namely,

$$p_j(m) \leq P_i^f\left(\sum_{i=1}^{M} \tilde{Z}(1, 0) < -\rho_{1, 0} M \delta \right) + P_i^f\left(\xi_M < -\rho_{1, 0} M \delta \right).$$

As a result of [9, Appendix 2], ξ_M has the same distribution as

$$\min_{0 \leq k \leq M} \sum_{i=k+1}^{M} Z_i(0, j).$$

Since $E_i(Z_i(j, 0)) > 0$, the results of the previous case (when $E_i(Z_i(j, 0)) > 0$) can be applied to the right-hand side of (18), replacing $Z_i(1, 0)$, $\rho_{1, 0}$, and ξ_M by $Z_i(1, 0)$, $\rho_{1, 0}$, and ξ_M, respectively. Let $E_i(Z_i(0, j)) = 0$, $j \geq 2$, and let $\delta > 0$ be a positive constant, then

$$p_j(m) \leq P_i^f\left(\sum_{i=1}^{M} \tilde{Z}(1, 0) - \max_{0 \leq k \leq M} \sum_{i=k+1}^{M} Z_i(0, j) \right) \leq \sum_{i=1}^{M} \tilde{Z}(1, 0) < h_{i,j}.$$
Note here that \(N_r = \min_{1 \leq i \leq k-1} \{ N_r^i \} \). It follows from this fact, (2) and (23) that
\[
\eta \leq \max \left\{ \frac{E_0(\omega_{0-1})}{\rho \eta_{0-1} N_0 + E_0(\omega_{0-1})}, \frac{E_0(\omega_{0-1})}{\rho \eta_{0-1} N_0} \right\}
\]
(24)
From [9, Appendix 2] it follows that
\[
G_t(x) = P_0(\omega_{t-1} x \geq x) = P_0(\omega_{t-1} x < \alpha)
\]
where \(\omega_{t-1} x = \inf \{ k \geq 1 : \sum_{j=1}^{k+1} Z_j(x_j) \geq x \} \), \(x > 0 \), and
\[
G_{\infty}(x) = \lim_{t \to \infty} P_0(\omega_{t-1} x \geq x) = P_0(\omega_{t-1} x < \alpha).
\]
By applying Wald’s inequality to the LR \(\sum_{j=1}^{k} Z_j(x_j) \) between hypotheses \(H_j \) and \(H_0 \) [2, 3, 9], we get \(G_{\infty}(x) < e^{-C_k} \). It is easy to see that
\[
\sup_{t \geq 1} E_0(\omega_{t-1} x \geq x) = \sup_{t \geq 1} \sum_{j=1}^{\infty} G_{t-1}(x) dx \leq 1.
\]
Hence
\[
\sup_{t \geq 1} E_0(\omega_{t-1} x \geq x) \leq K - 2.
\]
Combining this with (24) and taking into account that \(\delta \) is arbitrary, \(\alpha > 0 \) and \(n_\alpha \to \infty \) as \(h_\alpha \to \infty \), we get (8).

APPENDIX II

PROOF OF THEOREM 2

Let \(X_1, \ldots, X_n \) and \(Y_1, \ldots, Y_n \) be two sets of real numbers. Since
\[
\max(0, X_1 - Y_1, \ldots, X_n - Y_n) \geq \max(0, X_1, \ldots, X_n) - \max(0, Y_1, \ldots, Y_n)
\]
it then follows that for any \(t \geq 0 \)
\[
g_t(j, l) = \max_{t \geq 1 \leq \leq k} \sum_{i=1}^{t} Z_i(j, l) \geq \max_{t \geq 1 \leq \leq k} \sum_{i=1}^{t} Z_i(j, l)
\]
(25)
where \(Z_i(j, l) = Z_i(x_j) \) when \(i \geq 0 \) and \(Z_i(h_j, l) = \bar{Z}_i(h_j, l) + \frac{\bar{Z}_i(h_j, l)}{\bar{Z}_i(m, l)} \) when \(i > 0 \) and \(Z_i(m, l) = Z_i(m, l) \) with \(m = l \) or \(m = j \). Let us consider the “artificial” stopping time \(N_{t_0} \) which is activated at time \(t_0 \)
\[
N_{t_0} = \inf \{ t \geq 0 : g_t(j, l) \geq h_\alpha \}
\]
(26)
where \(g_t(j, l) \) is obtained for any \(t \geq 0 \). Taking into account this fact, (25), and (26), we obtain
\[
\beta_{t_0}(j, l) = P_{t_0}(|N_{t_0} - t_0| \geq h_\alpha)
\]
(27)
where \(N_{t_0} = \min_{m \neq j} \{ N_{t_0}^m \} \). It is obvious that \(N_{t_0}^m = M + I_{\{N_{t_0}^m \geq M\}} \). By computing the conditional expectation of \(N_{t_0}^m = M \) under \(P_{t_0} \)
given \(N \geq t_0 \), we get
\[
E_{t_0}(N_{t_0}^m - M | N \geq t_0)
\]
(28)
Combining (27) with (28) and
\[
P_{t_0}(N_{t_0}^m < N_{t_0}^m | N \geq t_0) \leq 1 - P_{t_0}(N_{t_0}^m > M | N \geq t_0)
\]
we obtain
\[
\beta_{t_0}(j, l) = \frac{e^{\delta^2(t_0)}}{\delta^2(t_0) - 1}.
\]
Since the function \(g_t(j, l) \) is a Markov sequence, it then follows that the random variable \(N_{t_0}^m \) is n given \(N_{t_0}^m > n \) \(t_0 \) depends on \(g_t(j, l) \) and \(X_0, X_1, X_2, \ldots \). Let us denote \(E_t(N_{t_0}^m | g_t(j, l) = x) \) as a function of \(x \) by \(L(x) \) on \([0, h_\alpha] \). It follows from [1] that the average run length \(L(x) \) of the stopping time \(N_{t_0}^m \), when the decision function \(g_t(j, l) \)
starts from \(x > 0 \), is a decreasing function of \(x \). The maximum is obtained for \(x = 0 \) and is given by \(L(0) \). Hence
\[
E_{t_0}(N_{t_0}^m - M | \{N_{t_0}^m > M\} \cap \{N \geq t_0\}) \leq L(0).
\]
After substitution of the last inequality into (29) and taking into account that for all large \(h_\alpha, \delta, E_t(N_{t_0}^m - M | N \geq t_0) > 0 \), we obtain
\[
\sup_{t_0 \geq 1} \beta_{t_0}(j, l) \leq \frac{e^{\delta^2(t_0)}}{\delta^2(t_0) - 1}.
\]
(30)
Let \(F_t(x) = P_0(\omega_{t-1} x < x) \) for \(x \geq 0 \). In view of the Markov property of \(g_t(j, l) \), and denoting the density of the distribution \(F_t(x) \) by \(f_t(x) \), we get
\[
E_{t_0}(N_{t_0}^m - t_0 + 1 | N \geq t_0)
\]
(31)
It follows from (9) that
\[
P_0(\omega_{t_0} x < x) = P_0 \left(\max_{0 \leq t \leq k} \sum_{i=1}^{t} Z_i(x) < x \right)
\]
(32)
From [1] it follows that
\[
L(x) = E[T(x)] + P(S_t \leq x) L(0) \geq L(x)
\]
(33)
where \(\omega = \sup_{x > 0} E(T(x) - |Z_i(j) \leq x | Z_i(j) \geq x) > 0 \) is an upper bound for the average “excess” over the boundary \(h_\alpha \). (see details in...
The proof of Theorem 2 is finished.

Equation (9) follows immediately from (35).

To make the definitions of ϵ explicit, let h_{ϵ} be the average sample size of the sequential test $T(x)$, and $L(h)$ be the probability that the cumulative sum S_h of the test $T(x)$ reaches the lower threshold $-x$ before 0 is reached. Using the lower bound $l(x)$ from (33) instead of $L(x)$ in (32) and taking account (31) we get

$$
\inf_{t_0 \geq 1} E_{10} \left[N_{t_0} - t_0 + 1 \mid N_r \geq t_0 \right]
\geq -\frac{1}{\rho^{1,1}} \left(h_{\epsilon} + \omega \right) e^{-h_{\epsilon}} + (1 - e^{-h_{\epsilon}}) L(0) + \int_0^{h_{\epsilon}} \frac{G_{\infty}(x)}{\rho^{1,1}} dx
- \frac{h_{\epsilon}}{\rho_{1,1}} \int_0^{h_{\epsilon}} e^x G_{\infty}(x) dx - e^{-h_{\epsilon}} h_{\epsilon} L(0).
$$

Taking into account that $0 \leq G_{\infty}(x) \leq e^{-x}$ and $L(0) \geq e^{h_{\epsilon}}$, we obtain, after integration of the third and fourth terms in the right side of (34), by combining (34) with (30), the following inequality:

$$
\sup_{t_0 \geq 1} \beta_t(1, l) \leq e^{-h_{\epsilon}} + \left(\sup_{t_0 \geq 1} E_{10} \left[N_{t_0} - t_0 + 1 \mid N_r \geq t_0 \right] + h_{\epsilon} \right)
$$

as $h_{\epsilon} \to \infty$. By using the results of Theorem 1 we get the following upper bound for the probability of false isolation:

$$
\sup_{t_0 \geq 1} \beta_t(1, l) \leq e^{-h_{\epsilon}} \max \left\{ \frac{h_{\epsilon}}{\rho_{1,1} \min_{j \geq 0, 1} \rho_{1,1}} + h_{\epsilon} \right\}
$$

as $h_{\epsilon} \to \infty$ and $h_{\epsilon} \geq h_{\epsilon}$. Equation (35) follows immediately from (35). The proof of Theorem 2 is finished.

References

Validation of Nearest Neighbor Classifiers

Eric Bax, Member, IEEE

Abstract—This correspondence presents a method to bound the out-of-sample error rate of a nearest neighbor classifier. The bound is based only on the examples that comprise the classifier. Thus all available examples can be used in the classifier; no examples need to be withheld to compute error bounds.

The estimate used in the bound is an extension of the holdout estimate. The difference in error rates between the holdout classifier and the classifier consisting of all available examples is estimated using truncated inclusion and exclusion.

Index Terms—Error bounds, machine learning, nearest neighbor classifier, statistics, validation.

I. FRAMEWORK

Consider the following machine learning framework. There is a joint input–output distribution. For example, the input distribution could consist of typical satellite images of the North Atlantic Ocean, and the output could be 1 if the image contains a large iceberg and 0 otherwise.

We have a set of in-sample data examples

$$
S = \{ (x_1, \theta_1), \ldots, (x_n, \theta_n) \}
$$

with each example drawn independent and identically distributed (i.i.d.) from the joint input–output distribution. We will use a nearest neighbor classifier, composed of the in-sample examples and a distance metric, to classify the inputs of test examples drawn i.i.d. from the input–output distribution. For each test input, the classifier returns the output corresponding to the closest in-sample input. The test error rate is the fraction of test inputs for which the classifier and the test output disagree. The underlying error rate L_n is the expected test error rate over the input–output distribution. The average of L_n over all size n in-sample data sets drawn from the input–output distribution is R_n.

To make the definitions of L_n and R_n explicit, let y_{NN} be the output of the nearest neighbor classifier, and let y be the test output. Then

$$
L_n = \Pr \{y_{NN} \neq y \mid S \}
$$

and

$$
R_n = E_{\mu} L_n = \Pr \{y_{NN} \neq y \}.
$$

(We use subscripts to denote the distributions over which expectations are taken.)

II. INTRODUCTION

While this correspondence focuses on L_n, the error rate of the classifier at hand, much work in the past has focused on R_n, the average error rate over classifiers formed from randomly drawn examples. Cover and Hart [7] proved that under mild continuity assumptions, R_n is no more than twice the Bayes (optimal) error rate. Cover [6] and Psaltis, Snapp, and Venkatesh [17] have investigated the convergence of R_n to R_n. Cover [6] worked with the case of a one-dimensional input space.