

U.S. Geological Survey – UAS for Research & Applied Science

Department of the Interior U.S. Geological Survey National Uncrewed Systems Office

Website: <u>uas.usgs.gov</u>

© @USGS_UAS

FY 2022

USGS – Moab Biocrust (2022)

Sasha Reed Video

USGS – Moab Biocrust (2022)

USGS/University of Arizona – Moab, Utah

USGS – Moab Biocrust (2022)

USGS/University of Arizona – Moab, Utah

274-band Headwall Nano

Comparing multispectral and hyperspectral reflectance profiles

USGS National Uncrewed Systems Office – Sensor Integration

Headwall Nano Hyperspec

Sensor integrations are presently still in development

Resonon Pika L

Spectral Range (nm)	400 – 1000
Spectral Resolution (nm)	1.3
Spectral Channels	447
Spatial Channels	1600
Max Frame Rate (fps)	165
Bit Depth	12
Weight (lb/kg)	4.9 / 2.2
Dimensions (cm)	10.1 x 27.5 x 7.4
Connection Type	USB 3.0
Operating Temperature (°F/C)	41-104, 5-40
f/#	2.4
Pixel size (µm)	5.86
Avg. RMS Spot Radius (µm)	6
Smile (peak-to-peak) (µm)	4
Keystone (peak-to-peak) (µm)	5

USGS National Uncrewed Systems Office – Sensor Integration

Palo Alto, California Biofilm Resonon Pika-L Project (May 2021)

USGS Innovation Center Proposals – Software Defined Radar

(Sept 2020) Winter Park, CO

Dr. John Fulton, USGS Mr. Sam Prager, USC USGS NUPO

USGS Innovation Center Proposals – Software Defined Radar

(April 2021) Winter Park, CO

UAV-based software-defined radar sensors for environmental monitoring

Dr. John Fulton, USGS Mr. Sam Prager, USC USGS NUPO

Simultaneous Lidar Data Collection

Four separate systems to collect imagery, radar and lidar

USGS Snow Water Equivalent Project – UAS Lidar

Devils Thumb Ranch - Lidar vs Sfm a Snow Depth Comparison From September 2020 to February 2021

USGS Innovation Center Proposals – Wildfire Smoke Plume Sampling (EPA)

(April 2021) Konza Prairie, KS

USGS Innovation Center Proposal - Environment Protection Agency

Smoke Plume Sampling (EPA) (August 2022)

Partners

- University of Alaska Fairbanks Research Range
- Bureau of Safety and Environmental Enforcement (BSEE) –
 Oil Spill Response
- Environmental Protection Agency (EPA) Aerial Sampling
 Team
- USGS NUSO UAS Flight Operations Team flying Kolibri Sensor
- NOAA Smoke Plum Dispersion Modeling
- U.S. Coast Guard National Strike Force Pacific Strike
 Team Typhoon UAS
- International Arctic Research Center (UA-Fairbanks)
 Thermal UAS Skydio
- Alaskan Clean Seas oil burn logistics and operations

USGS – Post-Wildfire Fire Severity (2021)

Office of Wildland Fire – East Troublesome Fire Colorado

Technology for Analysis

- Ricoh Photogrammetry
- Yellowscan VX-20 Lidar
- Micasense 10 band MS

UAS Imagery Mapping Products Vegetative Indexes

No Data

of chlorophyll

(NDVI) is an index of plant

"greenness" or the amount

0.5 - 0.55 0.55 - 0.6 0.6 - 0.65 0.65 - 0.7 0.7 - 0.75 0.75 - 0.8 0.8 - 0.85 0.85 - 0.9 0.9 - 0.95 0.95 - 1

-0.09 - 0.10

(NDRE) is sensitive 0.16 - 0.19 to chlorophyll in 0.20 - 0.24 leaves and soil 0.25 - 0.28 background 0.29 - 0.33

0.11 - 0.15

0.34 - 0.38

0.39 - 0.43

0.44 - 0.49

0.50 - 0.74

Greeness NDVI

(GNDVI) is an index that detects photosynthesis activity in plants

Green/Red Vegetative Index

0.52 - 2.44 2.45 - 3.31

3.32 - 4.11 4.12 - 4.91

(GRVI) is an index that is more sensitive to forest 4.92 - 5.71 canopy health conditions

6.51 - 7.38 7.39 - 8.34 8.35 - 9.69

9.70 - 12.24 12.25 - 20.86

Chlorophyll/Optimized Soil Vegetation **Burned Area Index**

USGS – Slackwater Harbor Analysis (2021)

Corp of Engineers/USGS – Dardenelle Arkansas

- Collection at 5 m/s at 61m AGL
- QA/QC RMSE 0.03m based on photogrammetric point cloud and 12 Aeropoint GCP's corrected to Trimble R8 Base
- Photogrammetric collection used for colorization and QA/QC of the lidar point cloud

Technology for Analysis

- Ricoh photogrammetry
- Yellowscan VX-20 lidar
- Multibeam sonar bathymetry survey

USGS – Natural Hazard Rapid Response (2022)

Rocky Mountain National Park – Colorado

USGS National Uncrewed Systems Office

Stratospheric Micro Balloon Remote Sensing Pilot: Urban Sky

URBANSKY.COM

- Mission Objectives
 - Accurate pre-flight trajectory modeling
 - Remote, mobile flight system launch with minimum personnel
 - Targeted, broad-area, gap-free ~10cm GSD imaging from the stratosphere, ~16 sq. km AOI within East Troublesome Burn Scar 2020
 - Active and targeted termination, descent and soft landing of the flight system
 - Post-processing of the data per the USGS/NUPO Specifications
- Marketing
 - Starting at \$5 per sq.km for new tasking
 - ~10cm GSD 3-band aerial imagery
 - Working on multispectral and thermal payloads

USGS National Uncrewed Systems Office

Stratospheric Micro Balloon Remote Sensing Pilot: Urban Sky

- October 11, 2021 USGS Flight
 - Launch Time: 7:48am MT
 - Launch Location: A public, dirt road on BLM land just north of Wolcott, Colorado
 - Total Flight Duration: ~3 hours and 8 minutes
 - Distance Covered: ~177km (~109 miles)
 - Amount of area we would've imaged (if payload was functional): ~2,000 sq. km
 - System Landing Time: ~10:55am MT
 - System Landing Location: In a remote, unpopulated area ~10km (~6 miles) North of Livermore, Colorado (commanded and controlled, targeted descent).
 - Hardware Status after Mission: The payload was recovered with no noticeable damage.

USGS – Future

- DOI and USGS are moving to our 4th generation of UAS
 - Due to concerns with cybersecurity, policies are in place to move to USA friendly manufacturers
 - USGS has begun to procure systems currently on the Defense Innovation Unit (DIU) Blue sUAS Cleared List
 - Time to get back to normal ops
- Integration of existing sensors onto new 4th Gen systems
- Contracting Services
 - Contractors will need to be mindful of current Department of the Interior Secretarial Order and the 2021 Presidential Executive Order. There is also pending legislation that could impact contracting
- End Product Contracting, add covered UAS stipulation language
- Future Flight Service Contracting through the DOI Office of Aviation Services

USGS National Uncrewed Systems Office

Lance Brady
Team Lead Project Manager
Irbrady@usgs.gov

Dr. Matt BurgessRemote Pilot & Data Analysis maburgess@usgs.gov

Mark Bauer Remote Pilot & Data Analysis mabauer@usgs.gov

Joe Adams
Remote Pilot & Data Analysis
jdadams@usgs.gov

Jill Cress
Budget and Web Manager
ijcress@usgs.gov

Todd Burton
Reginal Aviation Manager
tburton@usgs.gov

Victoria Scholl
Remote Pilot & Data Analysis
vscholl@usgs.gov

Follow us on

@USGS_UAS