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A B S T R A C T   

In this study, we develop urban ecosystem accounts in the U.S., using the System of Environmental-Economic 
Accounting Experimental Ecosystem Accounting (SEEA EEA) framework. Most ecosystem accounts focus on 
regional and national scales, which are appropriate for many ecosystem services. However, ecosystems provide 
substantial services in cities, improving quality of life and contributing to resiliency for substantial parts of the 
population. Our models estimate energy savings for indoor cooling resulting from heat mitigated by trees and 
rainfall intercepted by trees. Both models cover major cities in the contiguous U.S. and report the results through 
physical supply and use tables for multiple accounting periods (2011 and 2016). Using conservative assumptions, 
urban trees provide substantial heat mitigation (4,098 and 4,229 GWh, valued at $523 and $539 million in 2011 
and 2016, respectively) and rainfall interception (2,422 and 2,627 million m3, valued at $434 and $425 million 
for 2011 and 2016, respectively). Interannual differences largely reflect variations in weather patterns. Our work 
shows how Earth observation data can support urban ecosystem accounting. We provide model code within a 
public repository to facilitate model runs elsewhere, enabling the SEEA EEA and Earth observation user com
munities to reuse our models and provide feedback for improvement.   

1. Introduction 

Natural capital accounting extends conventional economic measures 
to more transparently show the environment’s role in supporting eco
nomic activity (Boyd et al., 2018). In both public- and private-sector 
settings, natural capital accounting seeks to integrate environmental 
accounts with conventional economic measures that previously ignored 
environmental contributions or attributed all environmental contribu
tions to economic actors. For example, the value generated by growth of 
a stand of trees has typically been attributed to the owner of forest land, 
and none to environmental processes that contribute to tree growth 
without direct human cultivation (Obst et al., 2016). Natural capital 
accounting may include accounts for minerals, natural resources, or 
contributions to people from complex ecological processes that may not 
be easily measured—for example, outdoor environments for a variety of 
recreation activities, or the ability of a locale to convey heavy rains 
without inundating homes or businesses. 

National statistical agencies have refined accounting frameworks 
over the past decades to record economic transactions at national and 
subnational scales, including inputs from the natural environment and 
those from economic inputs including labor, manufactured capital, in
termediate economic goods, and from outside national borders. A na
tion’s gross domestic product is a broad indicator of economic activity 
from these efforts. Researchers and agencies compile national data in 
many dimensions, across industries, and methodologically using statis
tical techniques and approximations, using the System of National 
Accounts. 

The System of National Accounts is an international statistical sys
tem, which by using common definitions and measures enables com
parison of accounts data across nations. In recent years, the United 
Nations has led development of international standards for environ
mental accounting, the first of which, the System of Environmental- 
Economic Accounting Central Framework (SEEA CF), was officially 
adopted in 2012 (United Nations et al., 2014a). The SEEA CF provides 
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accounting standards for natural assets and inputs to economic pro
duction, including timber, fish, water, and energy assets. The SEEA 
Experimental Ecosystem Accounting (SEEA EEA) framework extends the 
SEEA CF to include amounts of the stocks of ecosystem assets and the 
flows of services they deliver to the economy and society (United Na
tions et al, 2014b; United Nations, 2017). As with the System of National 
Accounts and SEEA CF, the SEEA EEA accommodates many types of 
accounts, including core accounts plus others serving supportive or 
experimental functions (see section 1.1). 

Accounting perspectives such as SEEA EEA that treat ecosystem 
services as transactions between an ecosystem unit and an economic 
unit must by definition address urban ecosystems. Urban ecosystems, as 
any other type of ecosystem, produce a variety of ecosystem services 
(Keeler et al., 2019). Some cities may appear to be less ecologically 
diverse or productive than “natural” ecosystems such as forests or wet
lands. However, larger human populations interact more frequently 
with urban ecosystems, increasing the number of physical transactions 
and typically the value for urban ecosystem services (Elmqvist et al., 
2015; McPhearson et al., 2015). Urban ecosystems can also provide 
different types of services than non-urban systems. A falcon in a remote 
area that no person sees may not enter ecosystem accounts as an 
ecosystem service, but a falcon in an urban area should be counted as an 
ecological product of the urban ecosystem that may be valued by many 
city dwellers. In some places, even a small number of trees can provide 
ecosystem services that affect well-being for city residents (Wolch et al., 
2014). Urban ecosystem accounting provides a framework for quanti
fying the extent and condition of urban ecosystems and the services they 
provide and associating these services with beneficiaries. Ecosystem 
accounting is not yet commonly used by local city planning institutions. 
However, the planning practice can benefit from standardized frame
works to track trends in the provision and use of important urban 
ecosystem services and their environmental justice impacts (Riley & 
Gardiner, 2020). Such reporting can, for instance, be useful for tracking 
the goals of city climate-action plans. This study shows how the SEEA 
EEA framework may be used in urban contexts to support planning. 

In the growing field of natural capital accounting, a deep literature 
on urban ecosystem accounting has yet to emerge. Work in Canada 
(Grenier, Lantz, Soulard, & Wang, 2020; Statistics Canada, 2016), the 
United Kingdom (Anderson, 2018), and Norway (NINA, 2019) are 
among the first to attempt a rigorous analytic foundation, though a large 
body of research on urban ecosystem services can provide a basis for 
urban ecosystem accounts (Keeler et al., 2019). Specifically, U.K. urban 
ecosystem accounts quantify natural land cover, functional green space, 
publicly accessible green space, and blue spaces in urban-area-specific 

ecosystem accounts (Anderson, 2018). The extent, condition, and 
accessibility of different types of green space in the U.K. are tracked. The 
U.K. accounts also assess the ecosystem services of urban woodland 
environments including carbon sequestration, air filtration, cooling 
impact, and noise mitigation. Although the most comprehensive urban 
ecosystem accounts to date, U.K. work remains both experimental and 
partial. With the exception of accounts for visitation to urban green 
space and property value premiums from open-space proximity, U.K. 
ecosystem accounts are for a single year. Ecosystem accounts in Canada 
have quantified changes in ecosystem extent, i.e., land cover, noting 
particularly the conversion of forests, shrublands, and agricultural land 
to urban land uses (Grenier et al., 2020; Statistics Canada, 2016). 
Additionally, experimental work is underway to develop urban 
ecosystem accounts for Norway (NINA, 2019). Urban trees provide 
critical benefits where a significant part of the population lives; in the U. 
S., about 40% of the population lives in cities with a population of 
50,000 or more (Cohen et al., 2015). Recent nationwide declines in 
urban tree canopy cover and increases in impervious surfaces have 
strong implications for the delivery of urban ecosystem services (Nowak 
& Greenfield, 2018). This shows the importance of urban ecosystem 
accounts for the U.S. that are compiled at the national scale but provide 
first-estimate city-level data about the value that urban trees provide 
and the consequences of their loss. Urban ecosystem accounts can pro
vide information useful for community and city-level planning, as well 
as informing national-scale progress, for example, on Sustainable 
Development Goal 11, Sustainable cities and communities (United Na
tions, 2015). 

In developing urban ecosystem accounts for the U.S., extensive 
literature shows that connection to nature in urban areas—specifically 
vegetation and trees—benefits physical and mental health (Beatley, 
2011; Bratman et al., 2019). Trees mitigate urban heat (Aminipouri 
et al., 2019; Kong et al., 2016; Livesley et al., 2016; Middel et al., 2015; 
Mullaney et al., 2015; Willis & Petrokofsky, 2017), stormwater runoff 
(Klingberg et al., 2017; McPherson et al., 2011), noise (Klingberg et al., 
2017), and air pollution (Nowak et al., 2006; 2014). Numerous studies 
have quantified the mechanisms through which trees benefit people 
living in built environments. Such studies most often use intensive ex
periments in small areas. The challenge of accounting for urban 
ecosystem services at national scales is that the required data and 
models are often not available for entire cities, and relationships un
derlying ecosystem service provision may vary by city, i.e., depending 
on its size, density, or climate zone (Keeler et al., 2019; Steele & Wolz, 
2019). 

Fig. 1. Components of ecosystem accounts (adapted from United Nations, 2017).  
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1.1. Ecosystem accounting framework 

The SEEA EEA provides the standard structure for a series of tables 
that quantify attributes of ecosystems and the services they provide to 
people, in a manner theoretically compatible with the System of Na
tional Accounts and SEEA CF (United Nations et al., 2014b; United 
Nations, 2017; Fig. 1). Since the accounts are inherently spatial, their 
outputs are often presented as maps as well as tables. Ecosystem extent 
accounts (1) measure changes over time in the area of different 
ecosystem types (see below), while ecosystem condition accounts (2) 
measure various attributes of ecosystems, particularly those relevant to 
their ability to produce the biophysical elements created by ecosystem 
processes (ecological end-products) that are used in ecosystem services 
now and into the future (Warnell et al., 2020). Ecosystem extent and 
condition typically influence the physical supply of ecosystem services 
(3), which are either directly measured or biophysically modeled in 
tandem with data on their use. A variety of valuation approaches (Obst 
et al., 2016) can provide monetary values of ecosystem service flows (4) 
or the net present value of stocks of ecosystem assets (5). Thematic ac
counts organize additional information on natural capital topics 
including land (Wentland et al., 2020), water (Bagstad et al., 2020), and 
carbon and biodiversity (Warnell et al., 2020). Data from thematic ac
counts can aid in the compilation of other ecosystem accounts, be used 
in standalone analysis, or support wider analysis of ecosystem ac
counting information (United Nations, 2017). Finally, capacity accounts 
quantify ecosystems’ potential to supply ecological end-products now 
and into the future, whose volume may differ from the quantity of ser
vices actually used by people (Hein et al., 2016). 

Because of the spatial nature of ecosystem services, ecosystem ac
counts must quantify how ecosystems, their characteristics, and their 
services are distributed on the landscape. SEEA EEA thus also specifies a 
set of spatial units for ecosystem accounting. A first premise of SEEA EEA 
is that complex functioning ecosystems are spatially separable, and that 
in parallel to economic production, each of the ecosystem types1 that 
together compose an ecosystem accounting area (EAA)2 produce flows 
of ecosystem services to economic units (i.e., specific industries, 
households, and governments, plus imports and exports). An ecosystem 
service flow is then a transaction between a place (an ecosystem asset) 
and a person or institution (economic unit), just as supply and use tables 
depict flows of goods and services from manufacturers to purchasers 
(United Nations, 2017). Spatial separation of “ecosystem assets” for 
accounting purposes does not presume that ecosystem units are 
ecologically independent, but simply separates where the economic 
transaction (human uptake of the ecosystem service) occurs within the 
EAA, or where a specific ecological process is measured in ecosystem 
condition, capacity, or thematic accounts. Ecosystem services are 
spatially explicit, with well-defined ecological end-products and human 
users (e.g., where a stretch of river through a developed area floods or 
not); the ecosystem types enable their attribution by specific ecosystems. 
In addition to EAAs and ecosystem types, United Nations, (2017) spec
ifies basic spatial units as the smallest level of analysis in ecosystem 
accounting. Basic spatial units are usually summarized by grid cells. 
Many urban ecosystem services are “produced” by trees, and ecosystem 
types occur at a coarser scale than basic spatial units. An individual cell 

that contains some trees might be part of a forest or an urban open-space 
ecosystem type. The use of grid cells as a basic spatial unit enables the 
models to aggregate ecosystem services across ecosystem types. 

To build initial urban ecosystem accounts for the U.S., we modeled 
heat mitigation and rainfall interception by trees in cities. Both are 
important urban ecosystem services, as described below. 

1.2. Heat mitigation impact of trees 

Trees mitigate urban heat primarily through two processes. First, 
they intercept direct sunlight and cast shade on buildings and sur
rounding ground surfaces, thereby reducing mean radiant temperature 
(the amount of heat that is received through radiation and is a measure 
of thermal comfort) at the pedestrian level, deceasing urban surface 
temperatures, and lowering cooling energy use of buildings (Gillner 
et al., 2015; Kong et al., 2016; Shashua-Bar & Hoffman, 2000; U.S. 
Environmental Protection Agency, 2014). Second, trees reduce air 
temperature through evapotranspiration (Oke, 1989). Both effects vary 
by climatic region, season, time of day, and tree species. Middel et al. 
(2015) modeled various tree planting scenarios under current and future 
climate for a residential neighborhood in Phoenix, AZ, and found an 
average air temperature reduction of 0.14 ◦C per 1% tree canopy in
crease across all scenarios. In a somewhat less arid climate, Heris et al. 
(2020a) found that trees reduce afternoon mean radiant temperature by 
10–15 ◦C in two neighborhoods in Denver and Boulder, CO, while 
lowering air temperature by less than 1 ◦C at an ambient range of 25–30 
◦C. Ziter et al. (2019) similarly found the impact of trees on reducing 
site-scale air temperature to be less than 1 ◦C in Madison, WI. Amini
pouri et al. (2019) modeled the impact of street trees on pedestrian 
thermal comfort and yielded an average mean radiant temperature 
cooling benefit of 2.1–4.2 ◦C across Vancouver’s local climate zone. 
Middel & Krayenhoff (2019), in an observational study, found a peak 
mean radiant temperature difference of 33.4 ◦C between a tree-shaded 
location and a sun-exposed asphalt parking lot, an above-ground air 
temperature difference of 1.6 ◦C, and a surface temperature difference of 
20 ◦C. Tan et al. (2016) observed that trees create better daytime ther
mal comfort by reducing mean radiant temperature in high-density 
urban areas, as they lower sky view factor (the extent of the sky that 
is observed; less sky exposure means that less direct and indirect energy 
is received). They conclude that tree plantings that account for wind 
direction and intensity can best contribute to heat mitigation. Mackey 
et al. (2017) argue that wind, direct short-wave radiation, and surface 
temperature are the most important factors in site-scale microclimate 
modeling; trees affect all of these variables. 

In a comprehensive review of the literature regarding the impact of 
urban heat on energy consumption, Santamouris et al. (2015) summa
rized 15 studies from around the world (including eight from the U.S.). 
They reported that for every 1 ◦C increase in air temperature, energy 
consumption increases between 0.5% and 8.5%. The underlying studies 
used various methods and metrics (i.e., daily vs. monthly energy con
sumption) and report a relatively wide range of the impacts of urban 
heat on energy use. While recognizing the importance of regional vari
ability in the relationship between heat and energy use as a function of 
climatic and cultural factors, regional variability is still relatively poorly 
understood and requires more systematic evaluation. 

Given that the urban heat island effect is known to raise tempera
tures 2–4 ◦C (Deilami et al., 2018), the impact on energy use can be 
considerable. Akbari et al. (2001) estimated that the electricity demand 
for cooling buildings increases by 5–10% to compensate for the urban 
heat island effect in Los Angeles. Some studies have aggregated such 
impacts across the country and provided monetized values. For example, 
Nowak et al. (2017) and McDonald et al. (2020) estimate national res
idential cooling energy savings provided by trees at $4.7 billion and 
$1.0–1.6 billion, respectively. 

1 Ecosystem types are homogeneous areas of, for example, forests, wetlands, 
or croplands, whose configuration can change over time (United Nations, 
2017). While land cover types cannot fully characterize ecosystems, in practice, 
land cover is often used as a proxy for ecosystem types in ecosystem accounts 
(Warnell et al., 2020). Ecosystem condition and supply and use tables quantify 
relevant ecosystem characteristics or production of ecosystem services, 
respectively, by ecosystem type.  

2 An ecosystem accounting area can be a political or physical boundary of 
management interest (e.g., watershed, biome) across which values for 
ecosystem accounts are summed (United Nations, 2017). 
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1.3. Rainfall interception by trees 

Trees slow the movement of water through the hydrologic cycle, 
intercepting rain and storing water, which affects the volume and timing 
of runoff. The proportion of intercepted water compared to throughfall 
(water that is not intercepted) is small yet meaningful at urban scales. 
Rainfall interception reduces the velocity and quantity of runoff and 
surface pollutant wash-off (Xiao & McPherson, 2002). This ultimately 
reduces stormwater treatment costs. Interception is a function of (1) the 
intensity and duration of storm events; (2) microclimate parameters 
such as temperature, relative humidity, wind, and pressure; (3) tree 
structure such as branch shape and size; and (4) leaf area and density 
(leaf area index) (Stovin et al., 2008; Xiao et al., 2000). Trees most 
effectively intercept rainfall during small storm events (Stovin et al., 
2008), so they may not substantially influence flood mitigation during 
extreme events. However, trees store rainfall and release water gradu
ally. This process can increase the effectiveness of water absorption by 
permeable surfaces around trees, reducing runoff. Klaassen et al. (1998) 
modeled the amount of interception that evaporates and found that up 
to 30% of the intercepted water can be evaporated, depending on the 
climatic variables, while the remaining water gradually drips to the 
surface. 

Reducing stormwater runoff by trees has multiple benefits. First, 
without trees, larger peak flows would require higher-capacity infra
structure. In cities with separate stormwater sewers, increased peak 
flows can lead to streambank erosion. In cities with combined sewer 
outfall (CSO) systems, where stormwater runoff and sanitary sewage 
share the same pipe, increased stormwater flows result in higher treat
ment costs at the wastewater treatment plant and combined sewer 
overflows to waterways. 

Xiao and McPherson (2002) estimated that urban trees intercept 
about 193,000 m3 (6.6 m3 per tree) per year in Santa Monica, CA, 
potentially saving about $110,000 in stormwater treatment costs. The 
Center for Urban Forest Research (2002) estimated that rainfall inter
ception by a medium-sized tree can reach up to 65 gallons per year in 
Sacramento, CA. However, these numbers vary greatly based on the 
length and intensity of different storm events, climatic region, and by 
tree species. Xiao et al. (1998) quantified interception in Sacramento 
and found that annual interception was about 11% during the leaf-on 
season and about 1% during the leaf-off season. Within the Blue River 
watershed in Kansas City, MO, the urban tree canopy intercepted 3.3% 
of total precipitation falling in the city while short vegetation inter
cepted an additional 1.4% (Nowak et al., 2013). 

Narayanan & Pitt (2002) found that the capital cost of contaminant 
removals (mostly floatable debris and oil removal from stormwater 
runoff from impervious surfaces) can vary between $2,000 to $4,000 per 
acre per year. Other stormwater best-management practices can provide 
similar benefits in the absence of or together with trees. For example, the 
construction cost of a rain garden is about $10-$20 per square foot 
(Costhelper, 2019); maintenance is a considerable portion of its lifecycle 
cost. As a rule of thumb, Erickson et al. (2010; P:81) suggest that the cost 
of maintaining stormwater treatment initiatives “will roughly equal the 
construction cost after 12 years for a $10,000 installation and 25 years 
for a $100,000 installation.” In summary, trees provide a considerable 
savings in stormwater treatment through rainfall interception. 

In this study, we focus on urban trees as critical providers of heat and 
stormwater mitigation. While this is an admittedly limited list of 
ecosystem services compared to the U.K.’s more comprehensive urban 
ecosystem accounts, our work covers a larger geographical area and 
provides pilot results for the U.S. that can be expanded in future work to 
cover more ecosystem services. For instance, the air-quality benefits 
provided by trees have been recently calculated in subnational 
ecosystem accounts for the U.S. Southeast (Warnell et al., 2020). Our 
initial models include estimation of the physical and monetary supply 
and use of (1) energy savings for indoor cooling as a result of heat 
mitigated by trees and (2) rainfall intercepted by trees. Both models 

cover the contiguous U.S. at 30-meter resolution for the years 2011 and 
2016, and aggregate physical supply and use accounts for urban areas 
(accounts can be flexibly aggregated; for instance, rainfall interception 
can also be estimated at the watershed scale). Our work supports a larger 
U.S. SEEA accounting effort (Bagstad et al., 2020; Boyd et al., 2018; 
Warnell et al., 2020; Wentland et al., 2020) as well as ongoing efforts to 
develop ecosystem accounts in urban areas where ecosystem services are 
generated through complex interactions between built and natural en
vironments (Keeler et al., 2019). 

2. Methods 

We developed our models to be flexible and reusable for ecosystem 
accounting, enabling the automated aggregation of results to any poly
gon layer as the EAA. The EAAs that we used in this study include (1) 
municipal boundaries extracted from Census Places (U.S. Census Bu
reau, 2019) including municipalities and Census Designated Places with 
a population of 50,000 or more (n = 768); and (2) watershed bound
aries, which we used to provide an aggregation example for rainfall 
interception in Denver, CO, at the 10-digit Hydrologic Unit Code (HUC 
10) level (U.S. Geological Survey, 2017). While we could have used 
larger metropolitan statistical areas as EAAs, these include suburban, 
exurban, and rural counties adjacent to cities where ecosystems 
providing heat mitigation and rainfall interception are less likely to be 
scarce, hence less valuable, than in denser core urban areas. All EAAs 
used in this study are for the contiguous U.S. We classified ecosystem 
types based on land-cover types provided by the National Land Cover 
Database (NLCD, Yang et al., 2018). Other applications of the SEEA EEA 
have frequently used land cover as a proxy for ecosystem types (e.g., 
Warnell et al., 2020). The analysis and basic spatial unit of our models is 
30-meter cells with the same alignment as the NLCD data. We used these 
data to compile physical and monetary supply and use tables for both 
heat mitigation and rainfall interception for the years 2011 and 2016. 

2.1. Data sources 

a. NLCD tree canopy, land cover, and impervious surface layers: 
We used 2011 and 2016 NLCD data for percent tree canopy cover, 
percent impervious surface, and land cover (Yang et al., 2018)3. We used 
the most recent versions of these data, published in 2019. Since the same 
algorithm is used for producing 2011 and 2016 data, we were able to 
compare the results of our models for both years. This dataset does not 
cover parts of Arizona (notably the cities of Avondale, Buckeye, Good
year, and Yuma, AZ) due to problems detecting tree canopy cover in a 
small number of Landsat scenes. 

b. Surface temperature layer: We produced a summer (June, July, 
and August) daytime surface temperature raster layer from Landsat 8 
images for the contiguous U.S. (Fig. 2). To produce a national surface 
temperature layer, we downloaded four summer images for each 
Landsat scene with the least cloud cover for years 2013–2018. We 
calculated surface temperature using thermal band 10 of Landsat 8, 
based on USGS guidelines (U.S. Geological Survey, 2019). The Landsat 
scenes have overlap on each edge. Since we downloaded four images per 
scene, some overlapping areas can include data from up to 16 images. In 
order to minimize the edge effect and surface temperature disparities, 
we used the median value for overlapping pixels. 

c. Climate data: For weather station-level data such as air temper
ature and precipitation, we downloaded daily summaries for each year 
(2011, 2016) from the Climate Data Online website (Menne et al., 
2012). This dataset provides daily maximum and minimum temperature 
and precipitation data (National Centers for Environmental Information, 

3 While a NLCD tree canopy dataset was produced for 2001, it used different 
definitions for trees and different methodology (Greenfield et al., 2009) and 
therefore is not suitable for time series analysis and ecosystem accounting. 
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2018). We extracted all stations in the contiguous U.S. (n = 58,117). We 
used the temperature data in the heat mitigation model and precipita
tion data for the rainfall interception model. 

d. Leaf Area Index (LAI): For the rainfall interception model, we 
used LAI raster data provided by the Copernicus Global Land Service 
(Copernicus Global Land Service, 2020). These data became available 
starting in 2014, so we used data for one year (2015) for both the 2011 
and 2016 interception modeling. These data are a 10-day product with 
global coverage and 300 m resolution. For leaf-off time, we chose a 10- 
day period in January (10th-20th) and for leaf-on time, we chose a 10- 
day period in August (10th–20th). 

e. Moderate Resolution Imaging Spectroradiometer (MODIS) 
phenology data: To assign leaf-on and leaf-off time for the rainfall 
interception model, we used phenology data for the start and end of the 
growing season extracted from MODIS images. These data are available 
through the MODIS Vegetation Monitoring project at 250 m resolution 
(Meier & Brown, 2014). 

f. Average energy use for residential buildings: To connect the 
cooling impact of trees to energy-use reductions, we used the Building 
Energy Performance Database developed and maintained by the U.S. 
Department of Energy (2019). We extracted generalized energy-related 
characteristics of residential buildings by U.S. state. This database pro
vides detailed energy use intensity data on other building types (i.e., 
commercial, industrial, institutional) and cooling systems as well. 
However, since we do not have detailed, spatial nationwide building- 
type data, we used the average residential building energy use in
tensity by state KBTU/ft2/year (Kilo British Thermal Unit per square foot 
per year). 

g. Land use: We used the National Land Use Dataset (Theobald, 

2014) to assign industries and households benefiting from heat mitiga
tion by North American Industry Classification System (NAICS) class (U. 
S. Office of Management and Budget, 2017) in the physical use table. 
Land-use classes in the National Land Use Dataset can be assigned cor
responding NAICS classes for use in SEEA CF and EEA accounting 
(Warnell et al., 2020). 

h. Buildings data: We used a rasterized version of the national 
building dataset generated by Microsoft (Microsoft, 2018) to provide 
total building footprint for each 30-m cell (Heris et al., 2020b). We used 
this layer in the heat mitigation model to associate cooling impacts with 
building footprint areas. 

i. Combined Sewer Overflow Systems (CSO): We used the EPA 
Enforcement and Compliance History Online (ECHO) database to 
identify cities with combined sewer systems (U.S. Environmental Pro
tection Agency, 2020). Cities with combined sewer systems tend to be 
older cities and small communities located in the Northeast, Midwest, or 
Northwest. Among 768 cities (with population of 50 k and above), 130 
cities (17%) have a combined sewer system that serves part of the city. 

2.2. Heat mitigation model 

To estimate the energy-saving impacts of urban trees, we used a four- 
step approach (Fig. 3). We first developed a linear regression model to 
estimate surface temperature (dependent variable) as a function of 
NLCD tree cover and impervious surface cover (independent variables) 
to estimate the impact of trees on surface temperature reduction. Next, 
we used weather station data to build a second regression model that 
estimates maximum air temperature (dependent variable) as a function 
of surface temperature, building footprint area, and latitude 

Fig. 2. Summer, daytime surface temperature from Landsat 8 thermal band data.  
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(independent variables). In the third step, we coupled these two models 
to estimate the impact of trees on air temperature. We used the error 
propagation method from Taylor (1997) to calculate the accumulated 
prediction uncertainties. Finally, we used building footprint area, 
building energy performance data, and the output of the air-temperature 
models to estimate the cooling energy savings provided by trees. We 
used the average energy cost for each state to monetize the value of 
energy savings provided by urban trees. To report the results at EAA 
level in supply and use tables, we aggregated the cell-based energy 
saving values using municipal boundaries. 

Step 1: We first built an independent bivariate regression model of 
surface temperature for every city as a function of cell-level tree and 
impervious surface cover–predictors that have been widely used in 
urban heat island modeling (Deilami et al., 2018). Building individual 
models for each city allows us to incorporate local disparities in the 
relationship between tree cover, impervious surface cover, and surface 
temperature. We kept the models simple (instead of using more so
phisticated models such as decision trees or random forests) since each 
model needs to be scrutinized for multicollinearity, overfitting, and 
other regression diagnostics. The number of cells is large enough that the 
regression results are statistically significant. The smallest city contains 
5,208 cells, and the average number of cells for all cities is 368,450. To 
keep the algorithm efficient, we converted the raster data (cells) to 
Numpy arrays. 

We tested the models for multicollinearity and statistical significance 
of the coefficients (alpha = 0.025). In testing the addition of other 
variables such as land cover and ecoregions, we did not observe a sig
nificant improvement in the quality of models while multicollinearity 

often became problematic when we added additional independent 
variables. 

The relationship between tree cover and surface temperature was 
positive in 32 out of 768 cities, and we excluded these cities from our 
accounting tables. The median R2 values for the remaining 736 cities 
was 0.39 and 0.40 for 2011 and 2016, respectively. Variables such as 
city size or location did not indicate low R2 values. However, most major 
cities have relatively strong R2 values (over 0.45) (SI Table 1 reports R2 

and regression model coefficients for each city). The only trend we 
observed was that cities with warm/hot and arid climate such as 
Phoenix, AZ, Las Vegas, NV, and San Diego, CA, had low R2 values (R2 ≤

0.11). 
Step 2: Since we lack high-resolution and nationwide observed air 

temperature data, we built a nationwide model that estimates air tem
perature (dependent variable) based on surface temperature, total 
building footprint area, and latitude (independent variables). The 
existing nationwide PRISM air temperature data are both coarse reso
lution and highly correlated with elevation due to their estimation 
methods (Daly et al., 2008). The relationships between local-scale sur
face temperature and observed air temperature at weather stations 
showed good correlations, which indicated that this relationship could 
be used to estimate first-order effects. To more reliably estimate ambient 
temperature, we downloaded daily summary data from U.S. weather 
stations. We used 8,000 stations with daily temperature readings, for 
which we calculated average summertime maximum and minimum 
temperature (June 15th to August 15th). For each station, we extracted 
the average surface temperature of its neighborhood (1,000-m radius). 
We then built the above-described regression model. SI Table 2 shows 

Fig. 3. Algorithm to estimate energy savings from the cooling impact of trees.  
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the regression model summary. 
Step 3: In this step, we coupled both models to build a zero-tree 

scenario. First, we assigned a value of zero to tree cover and estimated 
surface temperature in the absence of trees for each city. Then, we used 
the second model and estimated air temperature for the zero-tree sce
nario, based on estimated surface temperature for the zero-tree scenario. 
We subtracted actual estimated air temperature from estimated air 
temperature for the zero-tree scenario to quantify the cooling impact 
attributable to trees. Since we combine two models, the uncertainty of 
both models needs to be taken into account. To propagate error, we used 
the Taylor (1997) method, which is also used by McDonald et al. (2020). 
For each prediction, we took the observed upper and lower confidence 
interval (alpha = 0.05) values from cell-level predictions and calculated 
the fractional error of each model (Frost, 2017). Finally, we used Eq. (1) 
to calculate the fractional uncertainty of the cooling impact of urban 
trees: 

FractionalUncertanityofcoolingimpactsoftrees

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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(1)  

where δ is error, ea is estimated air temperature, es is estimated surface 
temperature, eat0 is the estimated air temperature for the zero-tree 
scenario, and est0 is the estimated surface temperature for zero-trees 
scenario. 

Step 4: Finally, we estimated the energy savings associated with tree 
cooling impacts in four steps. First, we used the Building Energy Per
formance Database (U.S. Department of Energy, 2019) to retrieve the 
average energy use intensity of residential buildings in each state. We 
built on a review by Santamouris et al. (2015) to quantify electricity 
savings, assuming that for every 1 ◦C increase in temperature (above 19 
◦C as the inflection threshold), electricity use increases by 4%, which is 
the middle of the range (0.5% to 8.5%) reported by Santamouris et al. 
(2015). Lacking a systematic understanding of regional variability in 
energy savings, we applied this value nationwide. Second, for each cell 
in each city, we used the estimated cooling impact, average energy use 
intensity, and building footprint to quantify the energy savings provided 
by trees (Equation (2)): 

CoolingEnergySaving = CI*0.04*BF*KBTU (2)  

where CI is cell-level cooling impact, BF is cell-level building footprint, 
and KBTU is the average energy use intensity of the area. Third, we 
aggregated all cell-level cooling energy savings by land-cover and land- 
use types. In our supply and use tables for each city, we reported total 
supply of cooling energy savings stratified by land cover (ecosystem 
types, in physical and monetary supply tables) and cooling energy use 
(land use classified by NAICS categories, in physical and monetary use 
tables). Finally, we used average electricity cost for each state per kWh 
in 2019 U.S. dollars (U.S. Energy Information Administration, 2019) to 
monetize the value of electricity savings provided by urban trees for 
building cooling systems. We used the above-mentioned error propa
gation approach to generate confidence intervals for both physical and 
monetary supply of energy savings from cooling by trees. 

2.3. Rainfall interception model 

We based our rainfall interception model on the approach developed 
by Wang et al. (2008), which is also the basis for the i-Tree rainfall 
interception model (Hirabayashi, 2013). In this model, the key param
eter is the LAI. The maximum capacity for rainfall interception by each 
square meter of tree cover is 0.0002 m times LAI. Also, the fraction of 
rainfall that would be intercepted (before reaching saturation) is 
calculated based on LAI. The i-Tree model uses high-resolution data and 
separates interception above impervious surfaces. We did not separate 
interception over impervious surfaces using unique grid-cell values 

because the NLCD tree cover and impervious cover datasets present only 
percent cover per 30 m grid cell without providing the exact overlap of 
these two. We used daily rainfall events data from Climate Data Online 
(National Centers for Environmental Information, 2018) for all available 
weather stations in the continental U.S. (hourly data are available from a 
smaller number of stations with more limited availability for 2011). If no 
storm data were found within an EAA, we expanded the search radius to 
4.8 km, which allowed rainfall data to be compiled for all U.S. cities. 
First, we separated rainfall events by date(s) (Fig. 4). We used the 
MODIS seasonality layers to assign a leaf-on and leaf-off date to each 
station, which allowed us to assign leaf-on and leaf-off flags to each 
rainfall event. 

We used three LAI values to calculate interception, providing a 
sensitivity analysis for the interception model. First, we used LAI raster 
data from Copernicus Global Land Service Catalog (Copernicus Global 
Land Service, 2020) for both leaf-on and leaf-off times. Since the reso
lution of this layer is low for urban areas (300 m), we observed a general 
underestimation of LAI, relative to higher resolution LAI data sources. 
The second LAI value we chose was a uniform value of 4.9, based on i- 
Tree Hydro’s database (U.S. Department of Agriculture and Davey Tree, 
2020) for urban areas. We adjusted this value for leaf-off time to 2.9 
(Scurlock et al., 2001). Since the Copernicus LAI values are generally 
lower than their i-Tree counterparts, we took the Copernicus values as 
the lower bound of interception. To create an upper bound for our es
timations, we used i-Tree average values plus 10% (5.39 and 3.19 for 
leaf-on and -off seasons, respectively). To generate cell-level results, we 
multiplied estimated interception in meters by the area of tree cover in 
the cell. In addition to interception, we also calculated total annual 
canopy rainfall (total annual precipitation at the canopy’s top surface) 
as a reference point that allowed estimation of the percentage of inter
cepted water. We used municipal boundaries as EAAs for this service, 
but as a demonstration also summarized results at the HUC 10 scale for 
Denver, CO. 

Hirabayashi (2013) describes methods for valuing rainfall intercep
tion using i-Tree, an approach we also follow. Hirabayashi estimates a U. 
S. national average value of $0.009 per gallon of avoided runoff, based 
on stormwater control costs for 16 U.S. cities across the nation’s climate 
zones. In 2019 dollars, this value is $2.58 per m3. To estimate rainfall 
interception over impervious surfaces (which is appropriate to value, as 
opposed to rainfall that would eventually be infiltrated by ground-level 
vegetation and soils), we followed Hirabayashi (2013) in assuming that 
impervious surfaces cover 25.5% of urban areas (Nowak & Greenfield, 
2012). Since the SEEA EEA only allows valuation of ecosystem services 
that enter physical supply and use accounts (i.e., have a direct benefi
ciary), we only estimate the value of interception to wastewater treat
ment plants in cities with CSO systems. While this method is an adequate 
one used in recent i-Tree applications, a more accurate valuation of 
avoided runoff would use high-resolution tree cover and impervious 
surface data (which are unavailable nationally) to measure the fraction 
of interception service over impervious surfaces. 

2.4. Accounting tables 

We used cell-level results to aggregate values by ecosystem type 
(using land cover type data as a proxy), land use type (for use tables), 
and EAA. Using these aggregations, we built the following accounting 
tables:  

a- Ecosystem extent table: Ecosystem service provision is a function of 
ecosystem extent and condition (United Nations, 2017). To aid in 
interpretation of ecosystem condition and supply and use tables, we 
created a table reporting ecosystem extent for each EAA.  

b- Condition table: For 638 cities without CSO systems, we included the 
amount of rainfall interception in the condition table. This represents 
generalized benefits to water quality and regulation of the urban 
hydrograph that cannot be attributed to a particular end user (i.e., 
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wastewater treatment), a functional state characteristic for 
ecosystem condition accounts (United Nations et al., 2020). 

c- Physical supply table: This table reports the amount of energy sav
ings (in GWh) and intercepted rainfall (m3 of water) for each 
ecosystem type. Since the main beneficiary for rainfall interception 
are municipalities with CSO systems (130 cities), we included 
interception in the physical supply table only for those cities.  

d- Physical use table: To quantify ecosystem service use by specific 
users (i.e., industries, households, government), we used the amount 
of energy savings (in GWh), aggregated by land use type to build the 
physical use table. Since the main final user of rainfall interception in 
CSO-system cities is wastewater treatment plants, we assigned all 
intercepted water to wastewater treatment in these cities.  

e- Monetary supply table: We monetized the supply of energy savings 
and rainfall interception provided by different ecosystem types in 
2019 U.S. dollars in the monetary supply table.  

f- Monetary use table: For the monetary use table, we used land-use 
data to assign energy savings by economic unit, in dollars. We 
attribute all monetary values for rainfall interception to wastewater 
treatment plants only for cities with CSOs. 

2.5. Sensitivity analysis 

In addition to reporting uncertainty for both models, we evaluated 
how uncertainty in the NLCD tree canopy layer, a critical dataset in our 
analysis, affects model results for three cities in widely different climate 
zones. Since our temperature data are observed rather than estimated 
values, we did not assign any uncertainty to them. However, if the un
certainty ranges of each dataset were available to us, we could have 
incorporated them in the error propagation. We used high-resolution (1 
m) vector tree canopy datasets for Denver, CO (Heris & Troy, 2018), 
New York, NY (New York City, 2017), and Seattle, WA (City of Seattle, 
2016) to quantify differences with the NLCD-tree canopy-derived model 
outputs in these cities. These high-resolution tree canopy cover data are 
produced from lidar data and high-resolution leaf-on and leaf-off im
agery. NLCD tree canopy data underestimate tree cover in all three cities 
(Coulston et al., 2012) and a comparison of the results for these cities 
can show the magnitude of change when higher-resolution data are 
available. 

2.6. Code availability 

We used Python to develop our models. Our models used open- 
source libraries such as Numpy, Rasterio, Fiona, Shapely, h5py, Scipy, 
Pandas, Scikit Learn, and Statmodels. We used Numpy arrays and 

Pandas dataframes extensively to speed up the algorithms. To manage 
national raster datasets, we used Hierarchical Data Format files for 
efficient Windows-based reading and writing. The code is available 
within a public code repository (U.S. Geological Survey, 2020). 

3. Results 

The results of both models are organized in multiple accounting ta
bles. We report results for ecosystem extent (Table 1), condition 
(Table 2), physical supply and use (Tables 3 and 4), and monetary 
supply and use (Tables 5 and 6; Fig. 1). For the heat mitigation model, 
we only report results for cities with valid regression results (i.e., 
negative relationship between tree cover and heat; n = 736 out of 768). 
For the rainfall interception model, we report the results for cities with 
CSO systems (130 cities, in supply and use tables) and those without CSO 
systems (638 cities, in the condition table). 

3.1. Heat mitigation 

We quantified the aggregate cooling energy savings from trees in 736 
U.S. cities to be approximately 4,098 and 4,229 GWh in 2011 and 2016, 
respectively (Table 3). The value of these electricity savings was $523 
million in 2011 and $539 million in 2016 (Table 5). Cities with the 
highest energy savings in 2016 were Los Angeles, CA, Charlotte, NC, and 
Jacksonville, FL ($16.5, $15.5, and $15.1 million, respectively, Table 7). 
Eight of the top 10 cities for energy savings were in the top 30 by 
population (Table 7), including cities in the Southeast and Southwest 
(Fig. 5). 

The supply table for energy savings from trees shows that the largest 
benefits were produced in the low-density developed land cover type 
(Table 3). In all 736 cities for 2016, 1,970 GWh of electricity savings 
were supplied by trees in low-density developed areas, with 1,229, 633, 
and 42 GWh supplied by trees in developed open space, medium-density 
developed, and high-density developed land cover areas, respectively. 
Energy savings in other land-cover types were much lower than in 
developed areas. The small numbers result from more scattered building 
presence in land cover types like forests and other open space. We 
observed similar patterns for physical supply of energy savings by 
ecosystem type for Colorado (17 cities with population of 50,000 or 
more) and Denver. 

Table 5 shows the monetized values of energy savings provided by 
each ecosystem type. Since the final users of energy savings from trees 
are residents or other building owners or managers, land-use data 
inform our use table (Table 6). Over 95% of use in the monetary use 
table was associated with households. Other users such as offices, retail, 

Fig. 4. Algorithm to estimate rainfall interception by trees. CSO: combined sewer overflow; LAI: leaf area index; MODIS: Moderate Resolution Imaging Spectror
adiometer; NLCD: National Land Cover Database. 
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and educational building owners received 1% or less of the total bene
fits. Without having accurate building type data (size and use), we 
recommend a cautious interpretation of the results. Since these use types 
are more likely to be located in multi-story buildings, their actual values 
could be larger. 

3.2. Rainfall interception 

Total modeled intercepted water for 768 cities was 2,422 and 2,627 
million m3 for 2011 and 2016, respectively. Most of the interception was 
in eastern cities, particularly in the Southeast (Fig. 6). However, only 
25–27% of interception occurred in cities with CSO systems, which we 

Table 1 
Ecosystem extent table (km2 per ecosystem accounting area and ecosystem type).  

Table 2 
Ecosystem condition table: rainfall interception for the U.S., 17 cities in Colorado, and Denver (cities without combined sewer systems).  

Table 3 
Physical supply table for the U.S., 17 cities in Colorado, and Denver. No cities in Colorado have Combined Sewer Overflow systems, so no rainfall interception results 
appear for these ecosystem accounting areas in the supply table.  
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valued at $433.6 and $424.7 million for 2011 and 2016, respectively 
(Tables 2–5). Modeled rainfall interception for four cities in Arizona 
(Avondale, Buckeye, Goodyear, Yuma) was zero due to gaps in the NLCD 
tree canopy cover dataset in those parts of the state for both years. Since 
rainfall interception is calculated based on localized, individual storm 
events for each city, interpreting change between years with very 

different weather patterns can be challenging. In some cities where the 
rainfall patterns in 2011 and 2016 were similar (length and frequency of 
storms), the amount of interception is also similar. For example, about 
6% of rainfall was intercepted in Chicago in both 2011 and 2016 (about 
4 million m3). By contrast, due to differing weather patterns between 
years, intercepted rainfall in 2016 for San Antonio, TX, was almost twice 

Table 4 
Physical use table for the U.S., 17 cities in Colorado, and Denver. No cities in Colorado have Combined Sewer Overflow systems, so no rainfall interception results 
appear for these ecosystem accounting areas in the supply table.  

Table 5 
Monetary supply table for the U.S., 17 cities in Colorado, and Denver.  

Table 6 
Monetary use table for the U.S., 17 cities in Colorado, and Denver.  
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Table 7 
Summary of heat mitigation and rainfall interception results for the 30 largest cities in the U.S. * indicates cities with Combined Sewer Overflow systems. CI: confidence 
interval; LAI: leaf area index.  

Fig. 5. Value of energy savings ($ per housing unit) in 2016 for U.S. cities with population over 50,000.  
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that of 2011 (20 vs 39 million m3), though the percentage of rainfall 
intercepted declined (from 4.9 to 3.1%). In 2016, the three cities with 
the highest amount of intercepted rainfall were Jacksonville, FL (204 
million m3), Nashville, TN (113 million m3), and Suffolk, VA (94 million 
m3). 

Our condition and supply tables for rainfall interception show that, 
as expected, forests, developed open spaces, and woody wetlands pro
vided the most total interception in all cities (Tables 2 and 3). Also as 
expected, a negative relationship exists between total interception and 
development density. More interception occurred in low-density 
(developed-low and developed-open) areas (852.5 million m3 nation
ally in 2016), though high-density developed areas still provided 4.9 
million m3 nationally in 2016, which is important considering that 
increased runoff in these areas could increase wash-off of hazardous 
pollutants. Comparing nationwide values with those for Colorado 
showed differences between national and state-specific urban landscape 
characteristics. Unlike the national total, the greatest interception for 
Colorado cities did not occur in forest ecosystem types, but in low- 
density developed areas. This reflects the fact that trees in Colorado 
are mostly planted and maintained in urban areas; Colorado cities 
generally lack natural forested areas as do cities in the East or Pacific 
Northwest. Results for Denver showed the same pattern, with over 50% 
of interception occurring in low-density developed areas. This shows 
how comparing results for cities (EAAs) of different sizes, urban mor
phologies, and climates provides insight for understanding urban 
ecosystem service patterns. 

Since the final beneficiaries of rainfall interception in cities with 
CSOs are sewage treatment facilities (NAICS code 221320), we assigned 
all use of this ecosystem service to that industry, calculated in physical 
and monetary terms based on interception over impervious surfaces 

(Tables 4 and 5). 

3.3. Watershed-scale rainfall interception analysis 

To illustrate how the use of different EAAs can aid the interpretation 
of rainfall interception’s role in the local water cycle, we summarized 
model results for Denver, CO, using HUC 10 watershed boundaries as 
EAAs. In this example, the intercepted rainfall outside of the city 
boundary still benefits water quality in the city through avoided runoff 
in upstream regions (Fig. 7). The majority of interception occurred 
outside the city boundary for all three watershed units, particularly in 
forest-covered areas. For instance, the greatest interception occurred in 
the Little Dry Creek watershed, with over 2.5 million m3 of interception 
in 2016, 12% of which occurred within the city boundary (Table 8). The 
Little Dry Creek watershed has about 20 km2 of tree cover outside the 
city limit and 3 km2 of tree coverage within the city. Watershed units can 
thus reveal how cities benefit from ecosystem services that are generated 
outside the city limits. 

3.4. Sensitivity analysis 

To assess the accuracy of our results, we developed two types of 
sensitivity analyses. First, for each model, we provided lower and upper 
bound estimates. In the heat mitigation model, we used the propagated 
error of the regression models to produce confidence intervals at the 
alpha = 0.05 level (reported by ecosystem type in Table 9). In 2016, the 
mid-level value for energy savings for 736 cities was 4,229 GWh, with 
lower and upper bounds of 3,622 and 4,825 GWh, respectively. The 
main source of uncertainty in the rainfall interception model is related to 
LAI. The three LAI values that we used—based on remote-sensing data 

Fig. 6. Intercepted rainfall (m3 per Ha) in 2016 for U.S. cities with population over 50,000.  
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(Copernicus LAI), the i-Tree average, and i-Tree average + 10%—pro
duced a relatively wide range of results, particularly for the lower 
bound. In 2016, interception for all cities based on mid-level LAI (i-Tree 
estimate) was 2,627 million m3, while the lower bound (Copernicus LAI) 
was 1,425 m3, and the upper bound (i-Tree average + 10%) is 2,868 m3 

(Table 9). 
Moderate-resolution (30 m) tree canopy data are known to under

estimate tree canopy cover in cities (Greenfield et al., 2009). When we 
replaced the NLCD tree canopy layer with a high-resolution (1 m) layer 
for New York, NY, Denver, CO, and Seattle, WA, energy savings and 
rainfall interception were substantially greater (Table 10). The results 
for energy savings more than doubled in Denver and New York City, and 
were 74% greater in Seattle. The rainfall interception model was simi
larly sensitive to the resolution of tree cover data. 

4. Discussion 

Our study shows how ecosystem accounts can quantify urban 
ecosystem services, their variation across different U.S. cities and re
gions, and how these benefits accrue to different users such as house
holds, industries, and government. The results illustrate how people in 
the built environment interact with and benefit from different urban 
ecosystems. We also show how an ecosystem accounting framework can 
be applied to cities and summarized at the watershed, city, state, and 
national levels. Our results characterize urban ecosystem extent, con
dition, and services, contributing to a larger set of pilot SEEA accounts 
for the United States. These include national-scale accounts for land 
(Wentland et al., 2020), water (Bagstad et al., 2020), and a subnational 
ecosystem account for a 10-state region in the U.S. Southeast (Warnell 
et al., 2020). In an example for Atlanta, GA, Warnell et al. also illustrate 
how the results of accounts can be integrated to show population, 

Fig. 7. Denver’s HUC 10 watersheds.  

Table 8 
Rainfall interception in Denver HUC10 watersheds.  

Ecosystem Accounting Area Rainfall Interception (m3 *106) Total Tree Cover (km2) 

Within City Boundary Outside City Boundary % within city Within City Boundary Outside City Boundary % within city 

Cherry Creek-South Platte River  0.59  0.91  39.2%  5.1  7.2  41.5% 
Little Dry Creek-South Platte River  0.30  2.22  12.1%  3.1  20.3  13.2% 
Sand Creek  0.04  0.81  4.4%  0.5  6.7  6.9%  
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economic, and environmental trends for an urban area. 
Periodic ecosystem accounts can inform policymaking processes at 

local, regional, and national levels. Since the outputs of our models are 
spatially explicit, they show the areas and users who benefit from tree 
cover the most or the least. With adequate time-series data, local plan
ning institutions can monitor tree cover changes and their related 
ecosystem services to track the benefits that trees provide to commu
nities. Recent declines in tree canopy cover, for instance, suggest losses 
of potentially important ecosystem services in cities (Nowak & Green
field, 2018). Cities can identify vulnerable populations that could 
benefit the most from trees in extreme weather events (Declet-Barreto 
et al., 2016). Cities can also use such data to guide and prioritize their 
green infrastructure investments. For example, the city of Denver has 
mapped their tree cover (Heris & Troy, 2018) to evaluate the impact of 
the city’s tree canopy cover loss from emerald ash borer. In another 
example, Sacramento, CA, has mapped their tree cover and quantified 
rainfall interception (Center for Urban Forest Research, 2002) to inform 
their various tree-planting and maintenance programs (City of Sacra
mento CA, 2019). At a national scale, periodic ecosystem accounts can 

depict how climate-related trends interact with long-term planning ef
forts in cities across the country. Urban ecosystem accounts would help 
urban, regional, and Federal government entities monitor the role of 
investments, tree diseases, weather patterns, and ecosystem service 
changes in communities. 

A primary contribution of this paper is in applying the ecosystem 
accounting approach to urban ecosystems at the national scale for a 
large, heterogeneous country with 768 medium- and large-sized cities, 
building from a relatively limited global experience base with urban 
ecosystem accounting. Modeling ecosystem services in urban areas is 
complex and challenging because of the heterogeneous nature and the 
variety of sizes, urban morphologies, climates, and socioeconomic 
characteristics of various beneficiaries in different cities (Keeler et al., 
2019). To run our models, we developed and used high-resolution 
datasets, including large climate datasets. Spatial computation of such 
layers was intensive and required advanced spatial data analytics and 
programing. Although our study was only focused on two services, the 
platform that we created can be expanded to include additional 
ecosystem services such as carbon sequestration, air filtration, and noise 
mitigation provided by urban vegetation, similar to the work that has 
been carried out for the U.K. (Anderson, 2018). 

In this study, we developed models explicitly designed to support the 
compilation of ecosystem accounts using the SEEA EEA framework. 
Numerous models for ecosystem services have been developed, 
including the impact of trees on rainfall and heat mitigation in urban 
areas (Keeler et al., 2019; Nowak et al., 2017; Zhou et al., 2017), and for 
other urban ecosystem services (Nowak & Dwyer, 2007). Our models 
enable (1) full customization of model inputs and parameters, which can 
be unique to each city (accounting for differences in e.g., cities’ size or 
climate zone); (2) alignment of data on a consistent 30-m grid to mini
mize error and use consistent basic spatial units; (3) the automatic 
summation as direct model outputs of ecosystem service supply by 
ecosystem type, use by economic units, and aggregation by EAAs, even 
for a large number of EAAs (768 in our study); and (4) programming 
using Numpy arrays, which are fast and facilitate the recalculation of 
updated ecosystem accounts as new data become available. Ideally, 
these models should be updated annually, though current limitations 
may make updates every few years more realistic, as new data become 
available. These features make our models better suited to ecosystem 
accounting than most urban ecosystem service models. 

A well-known challenge in developing models for urban ecosystem 
services is the complexity and heterogeneity of urban contexts. This 
heterogeneity has made previous researchers pessimistic about the 

Table 9 
Confidence intervals for energy savings and rainfall interception models. CI: Confidence interval, LAI: leaf area index.  

Table 10 
Sensitivity analysis using high-resolution vs. National Land Cover Database tree 
canopy cover data in ecosystem accounting models.  

Ecosystem 
Accounting 
Area 

Service Type Input Tree Cover Data Percent 
difference 

National Land 
Cover 
Database Tree 
Cover 

High- 
Resolution 
Tree Cover 

Denver, CO Energy Savings 
(GWh)  

41.9  104.3  149.2% 

Rainfall 
Interception 
(m3 *106)  

0.4  1.3  259.0% 

New York, NY Energy Savings 
(GWh)  

6.5  18.5  183.5% 

Rainfall 
Interception 
(m3 *106)  

5.0  8.2  62.5% 

Seattle, WA Energy Savings 
(GWh)  

28.3  49.3  73.9% 

Rainfall 
Interception 
(m3 *106)  

2.2  4.7  108.5%  
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capacity of generalized toolkits to estimate the value of urban nature, 
due to the wide variety of factors that influence it (Keeler et al., 2019). 
One approach that we used in this paper was to localize models for each 
city. Both of our models are based on local data such as temperature, 
precipitation, and energy use. More sophisticated methods to modify 
these models on the fly could improve the results. We evaluated decision 
tree, random forest, and extra random forest models but realized that in 
order to create a robust model, each region would require specific pa
rameters to produce meaningful results. Manual parameter adjustment 
for 768 cities would be impractical due to challenges in interpreting 
model coefficients, an inherent problem in machine-learning algo
rithms. However, machine learning is increasingly being applied to 
ecosystem services (Willcock et al., 2018) and offers one path forward in 
addressing the problem of context specificity in these relationships at 
both inter- and intra-city scales. A procedure to account for more model 
parameters would be a possible future improvement of our models. 

A set of simplifying assumptions was necessary to apply urban 
ecosystem service models at the national scale. We tended to make 
conservative assumptions where appropriate data were not available. 
Both of our models used NLCD tree canopy data (2011 and 2016). Dif
ferences between NLCD tree canopy 2011 and 2016 were relatively 
small. However, the NLCD tree canopy dataset has an inherent under
estimation (Greenfield et al., 2009), particularly in urban areas where 
built environments are heterogeneous and tree detection is more diffi
cult. Our cooling energy savings results used different models with more 
conservative assumptions than comparable studies, yielding smaller 
values ($528 million vs. $1.0–1.6 billion by McDonald et al. (2020) and 
$4.7 billion by (Nowak et al., 2017)). Notably, we did not account for 
the role of trees in reducing mean radiant temperature through shading. 
Additionally, Nowak et al. adjusted NLCD tree canopy values using a 
sampling approach based on plot-scale data for 20 cities and encom
passed a much larger area of “urban/community” land than our 768 
cities. Finally, our sensitivity analysis suggests that the value of these 
services may be much higher if, for example, 1-m data were available for 
all 768 cities nationwide. 

Future work could improve the simplifying assumptions and 
ecosystem accounting estimates of our models. Future versions of both 
models could take a wider view of ecosystem contributions to these 
services, by incorporating rainfall interception by shrubs and the effects 
of parks and other open space in providing heat mitigation. For the 
rainfall interception model, high-resolution data about tree species 
(coniferous vs. deciduous) and structure, canopy height, and impervious 
surface cover under the canopy could improve model accuracy, as could 
incorporation of hourly rainfall data. In addition, calculating the evap
oration portion of interception using local climate data such as vapor 
pressure deficit, temperature, and wind intensity could improve the 
results. 

For the heat mitigation model, incorporating wind and tree shade 
data could similarly improve results. Furthermore, the building 
component of the heat mitigation model has space for improvement 
through adding building use type and height information. We used 
building footprint area as a proxy for floor area to apply average cooling 
energy use values. However, our model underestimates energy savings 
in high-density areas where multi-story (2–4 floor) buildings have sub
stantially higher floor area than footprint area; we expect that the en
ergy savings impact of trees drops for high-rise buildings, however, as 
shaded building surface area declines. Applying residential average uses 
to all buildings also underestimates energy use in commercial and office 
buildings in moderate- to high-density areas. The impact of trees on 
building energy use could also be represented using a more complex 
relationship. For example, we assumed that buildings benefit only from 
being in the same grid cell with trees. In reality, the heat-mitigation 
impact of trees may extend beyond a 30-m grid cell. Our assumption 
is very conservative, so further experimental studies on the extent of 
trees’ impact based on wind direction at a national scale or for various 
climate regions would be a helpful addition to this approach. Finally, 

further investigation of the relationship between temperature and tree 
canopy cover would be valuable in the 32 cities where we found a 
positive relationship between these variables. 

Ecosystem service models used in accounting would ideally account 
for accurate, year-to-year changes over time in all model parameters. 
Land-use and building data, which are currently available only for a 
single year, are most limiting in this respect. Our building footprints 
dataset is based on data published by Microsoft in 2018, but without 
information about its base year. If such a dataset were updated in the 
future, knowing the base year would improve accounting results. 
Similarly, we used land-use data that are currently available only for the 
year 2010. Our models account for interannual weather differences. 
Similarly, in ecosystem accounts for the Southeast U.S., Warnell et al. 
(2020) use the method of Nowak et al. (2014) for quantifying air 
filtration change from 2010 to 2015. They use weather data for those 
years, but hold tree canopy constant, based on 2011 data. Future anal
ysis could more fully isolate the relative influence of weather and tree 
canopy change in cooling and infiltration, running models using for 
instance the same NLCD tree cover data (2011 or 2016), with 3-year 
average weather data to quantify the relative influence of interannual 
climate variation on these urban ecosystem accounts. 

Like most ecosystem accounts, this study relied heavily on remote 
sensing methods using Earth observation data (Tavares et al., 2019). Our 
data included well-established and frequently used products from 
MODIS and NLCD. Although NLCD’s 30 m resolution introduces error in 
both data (Greenfield et al., 2009; Wickham et al., 2020) and ecosystem 
service model results (Section 3.4) in heterogeneous urban environ
ments, its long-term record and national-scale availability remain 
valuable for urban ecosystem accounts. Adjustments to the tree canopy 
data may be able to remove bias and reduce error by about 5–10%, 
which can substantially improve the accuracy of ecosystem accounting 
assessments, though not to the accuracy levels provided by high- 
resolution (1 m) data. In addition, we developed novel data products 
from unprocessed Earth observation data, such as the national summer 
daytime surface temperature, which were not previously available at 
high resolution. We also demonstrated the value of the National Land 
Use Dataset (Theobald, 2014) for ecosystem accounting by aligning a 
national, 30 m land-use dataset with NAICS industrial classes in physical 
and monetary use tables. Finally, we adapted the Microsoft buildings 
dataset to better serve ecosystem accounting needs by developing a set 
of national building footprint data rasterized to a common grid with 
NLCD (Heris et al., 2020b). By integrating Earth observation products 
ranging from well established to entirely novel, we further illustrate the 
importance of Earth observation for ecosystem accounting (EO4EA, 
2019). 

5. Conclusion 

In this study, we developed models for heat mitigation and rainfall 
interception to support urban ecosystem accounting in the U.S. We 
applied those models to quantify ecosystem services generated by trees 
in 768 U.S. cities with populations greater than 50,000. In addition to 
providing the first of several planned nationwide U.S. ecosystem ac
counts (Boyd et al., 2018), we advance urban ecosystem accounting by 
developing models specifically designed to produce SEEA EEA 
ecosystem extent, condition, and physical and monetary supply and use 
tables with automated aggregation by ecosystem types and EAAs. We 
used open-source, computationally fast libraries in our models and made 
them publicly available for reuse and adaptation in ecosystem ac
counting and ecosystem service modeling (U.S. Geological Survey, 
2020). Given the time required to develop new ecosystem accounts and 
update them as new data become available, such shared data and model 
repositories offer an important path forward for increasing the use of 
ecosystem accounting in faster, more transparent ways. 
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