
Some Statistical Aspects of Methods for

Detection of Turning Points in Business

Cycles

E. ANDERSSON, D. BOCK & M. FRISÉN
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ABSTRACT Methods for online turning point detection in business cycles are discussed. The
statistical properties of three likelihood-based methods are compared. One is based on a Hidden
Markov Model, another includes a non-parametric estimation procedure and the third combines
features of the other two. The methods are illustrated by monitoring a period of the Swedish
industrial production. Evaluation measures that reflect timeliness are used. The effects of
smoothing, seasonal variation, autoregression and multivariate issues on methods for timely
detection are discussed.
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Introduction

For both government and industry it is important to have systems for predicting the future

state of the economy; for example, timely prediction of a change from a period of expan-

sion to one of recession. Leading economic indicators can be used to predict the turns of

the business cycles. By constructing a system for early warnings about turns in one or

several leading indicators, the turning point time of the general business cycle can be

predicted.

Here, we study different methods for early warning, i.e. methods for timely detection of

a regime shift, from a recession phase to an expansion phase (or vice versa) in a leading

index. For reviews and general discussions on the importance of timeliness in the detection

of turning points see, for example, Neftci (1982), Zarnowitz & Moore (1982), Westlund &

Zackrisson (1986), Hackl & Westlund (1989), Zellner et al. (1991), Li & Dorfman (1996) &

Layton & Katsuura (2001). Suggested methods for detecting regime shifts are presented in

the works by, for example, Diebold & Rudebusch (1989), Hamilton (1989), Jun & Joo

(1993), Lahiri & Wang (1994), Layton (1996), Koskinen & Öller (2003), Layton (1998)

and Birchenhall et al. (1999).

As pointed out by, for example, Diebold & Rudebusch (1996), Kim & Nelson

(1998) and Birchenhall et al. (1999), two distinct but related approaches to the
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characterization and dating of the business cycle can be found. One approach emphasizes

the common movements of several variables. This approach is pursued by, for example,

Stock & Watson (1991, 1993) and is briefly discussed in the section on multivariate

approaches. The other approach, the regime shift, is the one pursued in this paper, and

also in the works by Neftci (1982), Diebold & Rudebusch (1989), Hamilton (1989), Jun

& Joo (1993), Lahiri & Wang (1994), Layton (1996), Koskinen & Öller (2003), Layton

(1998) and Birchenhall et al. (1999).

The inference situation in this paper is one of repeated decisions: a new decision is made

after each new observation. Several other research areas treat turning points, but from

another perspective, for example estimating the location and size of structural breaks in

a series of a fixed number of observations (Mudambi, 1997; Delgado & Hidalgo, 2000).

To make this decision an alarm system is used, based on an alarm statistic and an alarm

limit. Statistical surveillance, and especially the inference questions regarding the repeated

decisions, has been investigated and developed by, for example, Shiryaev (1963), Frisén &

de Maré (1991), Wetherhill & Brown (1991), Srivastava & Wu (1993), Lai (1995), Frisén &

Wessman (1999) and Frisén (2003).

Statistical surveillance methods were first used in industrial process control, but are now

used in many areas, for example for financial decisions (signalling the optimal time to

trade). In Theodossiou (1993) and Blondell et al. (2002) a surveillance method,

CUSUM, is used to discriminate between healthy firms and firms in financial distress.

Since September 11, 2001, there is an increased interest in surveillance methods, in

order to detect bio-terrorism (online detection of health hazards).

In recent years, online surveillance methods based on the likelihood ratio (or posterior

distribution) have been in focus. In the general theory on statistical surveillance there are

proofs for their optimality properties (see, for example, Shiryaev, 1963 and Frisén & de

Maré, 1991). The posterior probability is often used as an alarm statistic in methods

based on a hidden Markov model (HMM), see Hamilton (1989).

When comparing and evaluating methods for online detection, it is important to con-

sider timeliness, i.e. the time of the alarm in relation to the time of the turn. Suitable

measures are the probability of successful detection within a specified time limit, and

the expected delay of an alarm. Another important aspect is the predictive value of an

alarm, which can indicate the appropriate action.

One purpose of this paper is to review some likelihood-ratio-based surveillance methods.

We discuss different assumptions regarding the process under surveillance and the esti-

mation procedures connected with them. Data transformations, e.g. seasonal adjustment

and smoothing can distort the characteristics of the data and hence influence the surveil-

lance performance. Some of the suggested approaches for dealing with seasonal variation

are reviewed and the effects of smoothing the data are investigated by a Monte Carlo study.

The purpose is also to discuss how to deal with autocorrelated data, trend and multivariate

problems in surveillance. The properties of the methods are demonstrated by application to

the problem of turning point detection in the Swedish Industrial Production (IP).

The paper is organized as follows. The next section contains a description of different

likelihood-based approaches in surveillance and common ways in surveillance for making

different methods comparable. In the section after, special data problems and estimation

procedures are discussed. In addition, a Monte Carlo study regarding the effects of

smoothing on the detection ability is presented in this section. In the fourth section,

three monitoring methods are applied to a period of the Swedish industrial production con-

taining a turn and the pros and cons of this way to evaluate methods are discussed. Also in

this section, the timeliness properties of the three methods are described. The fifth section

contains a summarizing discussion.
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Concepts of Likelihood-based Surveillance for Detection of Turning Points

In this section, the basic concepts of likelihood-based surveillance for online detection of

turning points are given.

First, we formulate the surveillance problem. Here, a process X (leading economic indi-

cator) is under surveillance, where X is often measured monthly or quarterly. For quarterly

data, a new observation becomes available every quarter. Thus, every quarter, based on the

available observations, we decide whether the observations so far indicate a turn. An alarm

system is developed for this purpose, with an alarm statistic and an alarm limit. The alarm

statistic at time s is a function of the available observations, p(xs) ¼ p(x(1), . . . , x(s)) and

the alarm limit can be constant or time dependent. In the alarm statistic the observations

x(1), . . . , x(s) are weighted together. For example, in the EWMA method of surveillance

(Roberts, 1959) the observations are weighted exponentially, whereas in the Shewhart

method (Shewhart, 1931), all weight is given to the last observation. The EWMA

method is evaluated in, for example, Sonesson (2003).

Thus at every decision time s, we use the alarm system to decide whether there has been

a turn or not. This can be formulated as, at every decision time, discriminating between

two events: D ¼ ‘the turn has not occurred yet’ and C ¼ ‘the turn has occurred’. This

is further described in the next section.

Event to be Detected

The situation under study is one where X is a leading economic indicator. By monitoring X

we want to detect a regime shift (a turning point) as soon as possible. The model for X at

time t is:

X(t) ¼ m(t)þ 1(t) (1)

where 1(t) �iid N[0; s2] and m(t) is a cyclical stochastic process described below. This

simple assumption regarding the disturbance term is used to emphasize the inferential

issues. Suggestions of how to adjust the surveillance system in the presence of autoregres-

sion in the disturbance term are discussed later.

The regime shift occurs at an unknown and random time t, i.e. at t there is a turn in m.

An alarm system is developed, for online detection of the turn. At each decision time s an

alarm statistic is used to discriminate between the two events D(s) ¼ ‘the turn has not

occurred yet’ and C(s) ¼ ‘the turn has occurred’. The event D is often defined as

D(s) ¼ ft . sg. Regarding the event C(s), it could be that we want to decide if a turn

has occurred at the time point t0, and then C(s) ¼ ft ¼ t0g. But when we want to decide

whether there has been a turn since the start of the surveillance, then C(s) ¼ ft � sg.

Knowledge of whether the next turn will be a trough or a peak is assumed. The solutions

for peak- and trough-detection are equivalent, as everything is symmetrical. It is the

knowledge per se which is important. For simplicity in the presentations henceforward

the turning point will be expressed as a peak (a transition from expansion to recession).

This is not, however, a restriction in the methods.

A time t there is a turn in m and as t is random, so is m. Different assumptions can be

made about m, conditional on D and C, i.e. about the expected value of the process in

expansion (or recession) and at a turn. Parametric assumptions regarding m make the

method more powerful if the assumptions are valid. Under the assumption that the

regression consists of linear functions where the slopes are symmetrical for the two
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phases, the aim is to discriminate between D and C, such that

D(s) :m(s) ¼ b0 þ b1 � s (2)

C(s) ¼ { < Ct},

where Ct : m(s) ¼ b0þ b1(t 2 1) 2 b1(s 2 tþ 1) and where t ¼ f1, 2, . . . , sg and b0

and b1 are known constants.

Then we have the following model for the turn

E½X(t)� ¼ m(t) ¼
b0 þ b1t, t , t

b0 þ b1(t� 1)� b2(t � tþ 1), t � t

�
(3)

where t ¼ f1, 2, . . .g. The expected value in equation (3) holds for a random walk with drift

where the value of the drift parameter changes from b1 to 2b2 at time t ¼ t.

The assumption that m is known is not always realistic in online detection. Instead of

assuming that the parametric shape is known, we can use only monotonicity restrictions

to define m under C and D. Then the aim is to discriminate between the following two

events:

D(s) :m(1) � � � � � m(s) (4)

C(s) :m(1) � � � � � m(t� 1) and m(t� 1) � m(t) � � � � � m(s)

where t ¼ f1, 2, . . . , sg and at least one inequality is strict in the second part.

Thus, here the exact parametric shape of m is unknown. We only know that m is

monotonic within each phase, that is

E½Xt� ¼ mt :
m(1) � m(2) � � � � � m(t), t , t

m(1) � � � � � m(t� 1) and m(t� 1) � � � � � m(t), t � t

�
(5)

where t ¼ 1 is in a period of expansion, t is the random time of a turning point (the time of

change from the expansion to a recession) and Xt ¼ fX(1), X(2), . . . , X(t)g and where, for

t � t, at least one inequality is strict in the second part. The monotonicity restrictions for a

trough are the opposite of those in equation (5).

If an HMM is assumed then, at decision time s, an alarm statistic is used to discriminate

between

D(s) :m(s� 1) � m(s) (6)

C(s) :m(s� 1) . m(s)

The s in equations (2), (4) and (6) is the decision time and s ¼ 1 when the surveillance is

started. At the next time point (e.g. the next quarter), s ¼ 2. Thus, the events D and C are

not constant from one decision time to the next. The difference between D and C in

equations (2) and (4) is only the assumptions regarding m(t). However, when D and C

are specified as in equation (6), the events are different also in another aspect. The appar-

ently simpler event in the HMM approach is combined with a more complicated situation

for the information of previous states. No knowledge of previous states is utilized in an

HMM approach. Thus, the probabilities for the history of those earlier states will

have an effect. The two events in equation (6) correspond to families of histories of
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states; for example, are the events in equation (4) only a subgroup of the events in equation

(6)? Because of Markov dependence the probabilities for the histories of those earlier

states will have an effect and earlier observations carry information of the history of states.

In many HMM approaches, the series under observation, X, is differentiated and the

expected value of the differentiated process is assumed to be constant, conditional on

the state, see for example Layton (1996), Ivanova et al. (2000) and Layton & Katsuura

(2001). If the process is assumed to be a random walk with drift, or another process

with an expected value as in equation (3), then the differentiated series will have a constant

expected value, conditional on the state. For the situation when the turn is a peak we have

E½X(t)� X(t � 1)� ¼
b1, t , t

b2, t � t

�
(7)

where b1 � 0 and b2 , 0. When the observations are independent over time, as in

equation (1), the expected values in equation (7) imply the linear functions in equation (3).

For a process with an expected value as in equation (3), then equation (7) is valid.

The variation might be different for recession and expansion, and French & Sichel

(1993) find that the variation is largest around business-cycle troughs. Macroeconomic

time series are sometimes considered to have a continuously varying standard deviation.

If there is evidence of considerable heteroscedasticity, then the observations in the alarm

statistic should have different weights. Another suggestion, by Fang & Zhang (1999), is to

use time varying limits. Maravelakis et al. (2004) show that ARL1 changes with a larger

heteroscedasticity. Sometimes the logarithm transformation is used for variance stabiliz-

ation. This is the case here, where the observation X is the logarithm of the original obser-

vation. After this transformation, the variance is here assumed equal, as also by Andersson

(2004). The surveillance is conducted and evaluated for the transformed variable X.

In this paper, the alarm statistics are based on the likelihood ratio between the events

D and C, i.e.

f (xsjC)

f (xsjD)

where xs ¼ fx(1), . . . , x(s)g and f is the likelihood function. This is described later.

Assumptions about Transition Probabilities

The probability of a transition from recession to expansion (or vice versa) is, in most

approaches in the HMM framework, assumed to be constant with respect to time, see

for example Hamilton (1989), Layton (1996) and Ivanova et al. (2000). But the transition

probability can also be assumed to be time varying, as by Neftci (1982), Diebold et al.

(1994), Filardo (1994) and Layton & Katsuura (2001). One approach for the time

varying transition probability is to use a model where the transition probability is a func-

tion of economic indicators, see for example Layton & Katsuura (2001). The probability of

a transition might depend on the time spent in the current state, and Zuehlke (2003) finds

evidence of duration dependence in several US economic indicators. Filardo & Gordon

(1998) use an extension of Markov switching models where a probit model allows the tran-

sition probabilities to vary with the information in the leading indicators. The assumption

of a time invariant transition probability is made for all three methods investigated in this

paper.
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The specification of C and D in equations (2) and (4) implies that we know the type of

the latest turn (whether it was a peak or a trough) and we specify C and D accordingly, that

is if the latest turn was a trough, we want to detect the next peak and we specify C and D

accordingly. At an alarm the surveillance is restarted so that we are always looking for the

next turn, no more than one turn at a time. When the information about the time and type

(peak or trough) of the last turning point is not utilized (as in equation (6) above), it is

necessary to make a probability statement regarding the type of the next turning point

as well as inference about whether the turning point has occurred or not. For this

purpose, it is necessary to consider all previous possible turns (both peaks and troughs)

and hence two transitions probabilities are needed in the monitoring system. The probabil-

ities of transitions can also be expressed as intensities of the occurrences of peaks and

troughs.

Contrary to the situation of an HMM, where a whole history is considered, sometimes

the specific type of the next turn (peak or trough) is used (e.g. Neftci, 1982). In that case it

is sufficient with one measure of intensity in the monitoring system. The intensity, is here-

after denoted n.

n ¼ P(C(t)jD(t � 1)) ¼ P(t ¼ tjt � t) (8)

Note that the value of the intensity may differ for peak detection and trough detection.

The assumption of a constant transition probability, and thus a geometric distribution for

the turning point time t, is not very realistic in the business cycle application. The lengths

of the cycles vary more than for a geometrical distribution and the probability of small

values of the time for the turning point is much smaller for the business cycle than for

a geometrically distributed variable, as shown in Figure 1.

It could be argued that the empirical distribution for t should be used. However a prior

based on the observed data above would result in a high prior probability for a turning

point after about nine quarters. The consequence would be that the influence of the

actual data is reduced and the probability of an alarm after nine quarters would be very

high, only due to prior information.

Figure 1. Left: density for peak with observed sample density function (B–B–B) compared to

geometric density function with intensities 0.07 (-------) and 0.13 (———). Right: density for

trough with observed data (B–B–B) compared to geometric density with intensities 0.53 (-------)

and 0.10 (———). Source: National institute of Economic Research, Sweden.
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Estimation of the probabilities can be made using data from an earlier period. But a very

long time series is required since there is often several years between transitions in the

business cycle (see Figure 1).

In order to avoid the risk of misspecification, a non-informative prior for the turning

point time can be used. This is done by the Shiryaev–Roberts (SR) approach, suggested

by Shiryaev (1963) and Roberts (1966). The SR approach is used for two of the methods in

this paper.

Alarm Rules

As mentioned earlier, all methods considered here use a likelihood-ratio-based alarm stat-

istic. The likelihood ratio (LR) method has several optimal properties, see Frisén & de Maré

(1991). The expected utility, based on very general functions of the gain of an alarm and the

loss of a false alarm, is maximized. The LR method yields a minimum expected delay of an

alarm signal conditional on a fixed probability of false alarm. In Frisén & Wessman (1999)

several properties of the LR method are investigated and compared with other methods of

surveillance, e.g. the Shewhart method and the CUSUM method (Page, 1954). Frisén &

de Maré (1991) showed that the posterior probability approach is equivalent to the

LR approach for the situation where C is the complement of D.

The LR method is based on the full likelihood, which is a weighted sum of the partial

likelihoods for the components in C ¼ fC1, C2, . . ., Csg, For the situation where m are

known functions under D and C (see equation (3)), the alarm rule for the likelihood

ratio at time s is written as

Xs

j¼1

ws( j) � f (xsjm ¼ mCj)

f (xsjm ¼ mD)
. ks

where ws( j ) ¼ P(t ¼ j )/P(t � s), ks ¼ k/(1 2 k) . P(t . s)/P(t � s) and mCj and mD are

vectors under restriction Cj ¼ ft ¼ jg and D ¼ ft . sg.

The assumptions made about the intensity affect the alarm method through the weights,

ws( j ), and the alarm limits, ks. In the SR approach, the weights as well as the alarm limit

are constant.

Xs

j¼1

f (xsjm ¼ mCj)

f (xsjm ¼ mD)
. kSRlin (9)

where kSRlin is a constant alarm limit. The method, where mD and mCj are modelled using

known linear functions with a symmetric turning point and where the SR approach is used

regarding the intensity, is hereafter referred to as the SRlin method. The SR approach (i.e.

with equal weights) has also been used for a Poisson process (Kenett & Pollak, 1996).

The non-parametric approach, without parametric assumptions regarding m, has the

alarm rule

Xs

j¼1

f (xsjm ¼ m̂Cj)

f (xsjm ¼ m̂D)
. kSRnp (10)

where kSRnp is a constant alarm limit and m̂D and m̂Cj are the maximum likelihood estima-

tors of the vector m under monotonicity restrictions D and Cj, described in the next section.
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This method is hereafter referred to as the SRnp method and was suggested by Frisén

(1994) and evaluated by Andersson (2002) and Andersson et al. (2004).

With an HMM approach (e.g. Hamilton, 1989), the posterior probability is used in order

to classify time points into either expansion or recession, based on the following rule

P(C(s)jxs) . kHMM (11)

The alarm limit, kHMM, is usually chosen to be 0.5 (see for example Hamilton, 1989 and

Ivanova et al. (2000)). The classification by the posterior probability can be used in pro-

spective monitoring (see for example Neftci, 1982). LeSage (1991) uses the posterior

probability as a turning-point indicator. By ‘the HMlin method’ we hereafter refer to a

monitoring method where the rule in equation (11) is used with kHMM ¼ 0.5, together

with the definition of the event C in equation (6) and the assumption that the differentiated

series is constant in each regime according to equation (7). These conditions agree with

those used by Koskinen & Öller (2003).

The approach by Birchenhall et al. (1999) is similar to both the HMM approach and the

likelihood ratio method of surveillance in two respects: (i) Birchenhall’s approach is based

on Bayes theorem and the likelihood and (ii) a classification is made of the type of regime.

A major difference, however, is that the classification into different regimes is based on

explaining variables and not on the earlier state. This difference is discussed further in

Andersson et al. (2004).

The time of alarm, tA, is the first time for which the alarm statistic (in equations (9), (10)

and (11) respectively) exceeds its specified alarm limit.

The alarm limits can be determined indirectly, in order to control the false alarms. The

most common way in the general theory and practice of surveillance is to control the

ARL0, (the Average Run Length to the first alarm if the process has no turn). In addition,

the MRL0 (the median run length) has been used (Hawkins, 1992; Gan, 1993, and

Andersson, 2002), which has a clearer interpretation for skewed distributions. The

alarm limit 0.5, for the posterior probability (11), is based on a symmetric loss function

and no direct conclusion can be made regarding the rate of false alarms. Canova &

Ciccarelli (2004) provide methods for forecasting variables and turning points using

VAR models and an alarm is called if the probability of a turn, given a model, exceeds 0.5.

Estimation and Special Data Problems

When a surveillance method is applied to a set of data, for example the industrial pro-

duction, in order to detect the next turn, the user is faced with several practical problems:

which assumption should be made regarding the parameters of the surveillance system?

Which estimation procedure should be used? If the data are very noisy – should it be

smoothed before monitoring? How will seasonal adjustment and trend adjustment affect

the performance of the surveillance? How should surveillance be made if we have more

than one leading economic indicator? For all these questions the special situation of

surveillance must be born in mind – we can only use data from previous cycles for

estimation, since the current cycle is not over yet.

Estimation

An important aspect is which assumptions are made about the process, since these assump-

tions determine how the parameters of the model are estimated. The parameters are often

estimated using previous data. If the parameters are estimated from a short period the
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variance of the estimates will be large and the parameters might be severely misspecified.

As a result, the method will produce misguiding results, leading to wrong conclusions and

decisions. Here we discuss assumptions and estimation ofm and the transition probabilities.

Estimation of the level Sometimes it is assumed that m is known, which in practice

means that it has been estimated from a large enough set of data from earlier periods.

If it is assumed that the differentiated series has a constant expected value, conditional

on the state, and that the expected values are constant over the cycles, then the estimation

can be made using previous data. This assumption is used by, for example, Neftci (1982),

Layton (1996), Ivanova et al. (2000) and Layton & Katsuura (2001). One example of such

an estimation procedure, under the model assumptions in (1), is to first use some classifi-

cation rule to classify each time point in the estimation period as belonging to either the

expansion state or the recession state (see, for example, Koskinen & Öller (2003)). Then

the parameters b1 and b2 in equation (7) can be estimated as

b̂j ¼
�dj ¼

1

nj

Xnj

i¼1

d ji

where nj ¼ the number time points classified as state j and dj is the differentiated series

classified as belonging to state j.

In order to avoid the rather strong assumption of a specific parametric function for m, or

when reliable information on the parametric function is not available, an approach based

only on the knowledge that the monotonicity of m changes at a turning point can be used,

as specified in example (5). Then m is also estimated, not however under a strong para-

metric assumption, but only under the monotonicity restrictions in equation (5). The esti-

mation is made using a least square criterion and under the model assumptions in equation

(1), the estimates m̂D and m̂C are also the maximum likelihood estimates. The m̂D is the

estimated parameter vector which corresponds to

max
m[FD

f (xsjm)

where FD is the family of m-vectors such that fm(1) � m(2) � � � � � m(s)g. Thus, m̂D is the

maximum likelihood estimator of m under the monotonicity restriction D. For a trough, the

estimation is made under the restriction fm(1) � � � � � m(s)g. This estimator is described

by, for example, Robertson et al. (1988, pp. 1–58).

The event C is a composite, C ¼ ft � sg, and thus we have C ¼ fC1, C2, . . . , Csg and

m̂Cj is the estimated parameter vector which corresponds to

max
m[FCj

f (xsjm)

where F Cj is the family of m-vectors such that fm(1) � � � � � m( j 2 1) and

m( j 2 1) � m( j ) � � � � g, where j ¼ f1, 2, . . . , sg and where at least one inequality is

strict in the second part. Thus, m̂Cj, j [ f1, 2, . . . , sg, is the maximum likelihood estimator

of m under the monotonicity restriction Cj. This estimator is given by Frisén (1986). For a

trough, the estimation is made under the restriction fm(1) � � � � � m( j 2 1) and

m( j 2 1) � m( j ) � � � �g.
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Estimation of transition probabilities When considering different methods of estimation,

simultaneous maximum likelihood estimation of all parameters in the model is an

obvious choice. However, if the whole parameter set is estimated using a maximum

likelihood criterion then the rareness of the turning points can lead to large errors

around turning points, compensated by high accuracy within phases, as pointed out by

Lahiri & Wang (1994) and Koskinen & Öller (2003). For that reason, the transition prob-

abilities are sometimes estimated using some other criterion than maximum overall

likelihood.

Of the three surveillance methods compared here, only the HMlin method needs esti-

mates of the transition probabilities. Maximum likelihood estimates, based only on the

events of transitions, are a natural choice. For the data on the Swedish IP (source: National

Institute of Economic Research, Sweden), the transition probabilities, p12 and p21, are

estimated using

p̂12 ¼
n12

n11 þ n12

¼
5

34þ 5
¼ 0:13(0:054)

p̂21 ¼
n21

n21 þ n22

¼
4

4þ 36
¼ 0:10(0:047)

(12)

where nij is the number of transitions from state i to state j and the standard errors are given

in parenthesis.

Special data problems There are many special data problems when applying methods for

online turning point detection in cyclical, economic processes. In this subsection we

discuss the problems connected with using a surveillance system on data that have been

transformed (e.g. smoothed, adjusted for seasonality and adjusted for trend). The subsec-

tion is also concerned with the problems of monitoring data that exhibit autoregression and

the surveillance of multivariate data. Additional problems not discussed here concern, for

example, those associated with the data quality (reporting delays, measurement errors and

revisions).

Effect of smoothing In surveillance it is important to have control over the false alarms

by being able to make a statement regarding how often we can expect a false alarm by a

certain surveillance system. The variability of the process affects the false alarm rate. In

order to reduce the false alarm rate some authors, e.g. Koskinen & Öller (2003),

recommend that the observations should be smoothed after differentiation, see also

Öller (1986). One motivation of the smoothing, has been the reduction of white noise

and by that the false alarm rate. Another motivation has been a time adjustment when

using multivariate data, where the turning points of the different processes are not

always the same.

Smoothing by kernel estimators is used by, for example, Hall et al. (1995). Often the

differentiated observations y(t) are smoothed according to

~Y(t) ¼ lY(t)þ (1� l) ~Y(t � 1)

where 0 , l , 1 can be determined in different ways. Koskinen & Öller (2003) estimate

the transition probabilities and the smoothing parameter simultaneously from historical

information, with the criterion of minimizing a cost-function based on the sum of two

measures of error (the Brier probability score and the proportion of wrongly classified
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states) obtained by classifying observations from a previous period of data. The Brier

probability score, also referred to as the Quadratic probability score, is the mean square

error for the posterior probability, i.e. the average squared deviation between the true

state (0 or 1) and the posterior probability.

The smoothing of observations reduces the variance and hence reduces the false alarm

probability. However, there are also disadvantages in a surveillance situation as will be

seen in the Monte Carlo study on the effect of smoothing on the HMlin method. Results

will be given on the distribution of the alarms, both conditional of no change and of a

turn, and the probability of detecting a turning point within a specified time.

Data on the (logarithm of the) Swedish IP were used to get a reasonable simulation

model (see Appendix 1). A linear function was fitted to the officially dated (National Insti-

tute of Economic Research, 1992) expansion phase 1987 to 1989. The observations on X,

under event D, are simulated using the following model

XD(t) ¼ mD(t)þ 1(t) (13)

where mD(t) ¼ 11.194þ 0.0069 t and 1(t) � iid N[0; 0.016]. In order to evaluate the

alarm properties under event C the following model is used:

XC(t) ¼ mCt(t)þ 1(t) (14)

where mCt(t) ¼ 11.194þ 0.0069 . t 2 2D1 � 0.0069(t 2 tþ 1), t ¼ f1, 2, . . .g, and

D1 ¼
1, t � t

0, otherwise

�

and 1(t) � iid N[0; 0.016].

Replicates of sequences of three expansion phases and four recession phases are

simulated.

The alarm limit for the smoothed data (l ¼ 0.3) is adjusted to yield the same MRL0 as

for the unsmoothed data (l ¼ 1).

The common value of the MRL0 is 17. For both cases, l ¼ f1, 0.3g we have a large

enough sample so that the standard error of the median is less than 0.15. We can see in

Figure 2 that the density of the time of the alarm has different skewness for l ¼ 1 and

l ¼ 0.3.

The probability of successful detection (PSD) is the probability of detecting a turn

within d time units, that is

P((tA � t) � djtA . t ¼ t0)

For both cases, l ¼ f1, 0.3g, the number of replicates is large enough to yield a standard

error of PSD of less than 0.0030. The reduced distinctness of the turning point, due to

smoothing, decreases the probability of successful detection (see Figure 3).

Seasonal variation The variables (leading economic indicators) are measured monthly

or quarterly and thus often contain seasonal variation, which could complicate the moni-

toring. The seasonal variation can be considerable, as is seen in Figure 4.

If seasonality is neglected in the monitoring, it could lead to seriously wrong con-

clusions. In the monitoring situation here, it is important that the time of the turns is
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preserved after the adjustment in order to make actions induced by an alarm powerful. The

problem of altered change points by seasonal adjustment has been briefly discussed in a

fixed sample context, see for example Ghysel & Perron (1996) and Franses & Paap (1999).

Often the monitoring is made on data that have been adjusted for seasonality. The ques-

tion of whether the seasonal variation can be considered stable over time is treated by, for

example, Canova & Hansen (1995) and Busetti & Harvey (2003). These issues are impor-

tant to consider when deciding the method for seasonal adjustment. The effect of using

different filters in order to adjust for seasonality is analysed in Andersson & Bock

(2001) and it is demonstrated that the detection of a turn is delayed when data are differ-

entiated or when a one-sided moving average is used. In the monitoring, the largest

reduction in probability of detection is caused by the moving average.

Autoregression Economic time series often exhibit strong autocorrelation. For instance,

this can this be a problem when the sampling intervals are short (Luceno & Box, 2000).

Lahiri & Wang (1994) evaluate the performance of a monitoring system where a model

with autoregressive errors is assumed and where the posterior probability is used together

Figure 2. HMlin method, l ¼ 1 (-- -- -- -) and l ¼ 0.3 (———). Left: Distribution of the time of an

alarm, conditional on event D (no turn). Right: Distribution of the time of an alarm, conditional on

t ¼ 10.

Figure 3. Probability of successful detection within d time points for t ¼ 10. HMlin method, l ¼ 1

(-- -- -- -) and l ¼ 0.3 (———).
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with an alarm limit. The same alarm limit is used for models with autoregressive errors of

different orders. They find that the introduction of autoregression in the errors leads to a

smaller forecast error within phases but increases the risk of wrong inference concerning

turning points. Three ways to deal with the effect of autoregressive errors are (i) to use the

correct likelihood ratio alarm statistic, see Pettersson (1998); (ii) to ignore the dependency

but to adjust the alarm limit; or (iii) to monitor the residuals of an estimated model of the

dependency. If the assumption of an independent process is used, when it is in fact depen-

dent over time, the result is an increased false alarm probability. The consequence of auto-

regression in the process is examined in the general theory of surveillance where remedies

are also suggested. For a review, see Pettersson (1998) and Frisén (2003). The situation

with multivariate time-dependent data, modelled using a VAR model, is studied in

Pan & Jarrett (2004).

Ivanova et al. (2000) argue that the effect of the autoregressive parameters will largely

be captured by the probabilities of remaining in the current state ( p11 or p22). Many of the

suggested methods of surveillance assume that the possible autoregression is not a severe

problem, as is also assumed here.

Adjusting for trend Many macroeconomic variables can be characterized as cyclical

movements around a trend. In order to distinguish the movements and make the time

series stationary around the cycle it is sometimes necessary to adjust for the trend. In

model (1) no separation between the trend and the cycle is made.

Adjusting for trend implies a data transformation, which may result in a distortion of the

characteristics of the original series, whereby the surveillance will not give reliable

signals.

The effect of trend removal has often been studied in a non-surveillance context, but the

results can still be used in this discussion. Gordon (1997) studies the effect of trend

removal for predictive densities of the US GDP and warns against using other information

from the data than that which is directly associated with the business cycle turning points.

Canova (1998) discusses trend removal and evaluates the effect using several different

approaches, among them first-order differentiating. One conclusion from the study is

that linear trend removal does result in turning point times that do not correspond to the

official turning point times of the National Bureau of Economic Research

Figure 4. Swedish Industrial Production, quarterly data (1970 to 1992). Source: National Institute of

Economic Research, Sweden.
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(NBER), USA. In another paper Canova (1999) points out that previous research has

shown that the trend may interact with the cyclical component and is therefore difficult

to isolate. The general conclusion is that statements concerning the turning points are

not independent of the statistical assumptions needed to extract trends.

In most HMM approaches, and also the one considered here (HMlin), differentiation is

used and the surveillance is made on the differentiated process, whereas in SRlin and SRnp,

surveillance is made on the undifferentiated process. The removing of the trend has less

effect on the possibility to distinguish the turning points when analysing short time

series. Since the SRlin and SRnp methods are applied to a part of the time series that con-

tains one turning point at most, no attempt to separate the trend from the cycle is made.

Multivariate problems In the common movement approach, a business cycle is charac-

terized as the cyclical movement of many economical activities. This is one example of

how multivariate data are used. The common movement approach demonstrates that

important information is contained in the relation between the turns of different indices.

This information can be utilized, either by transforming the problem to a univariate one

(by using a composite index of leading indicators) or by applying another method for sur-

veillance of multivariate data. We discuss general approaches in the theory of multivariate

surveillance and review some important contributions to the multivariate approaches to

business cycles.

Wessman (1998) demonstrates that when the variables have the same change point

(or known time-lag) the minimal sufficient alarm statistic is univariate. An example is

that several leading indices with a known time lag concerning the turning point can be

the base for one leading economic index. Reducing data to a univariate index is, in fact,

the recommendation also for most of the earlier studies.

Stock & Watson (1991, 1993) model the common movements of coincident variables as

arising from an unobservable common factor (the overall state of the economy). The key

elements are the selection of variables and the estimation of the common factor.

Diebold & Rudebusch (1996) consider the common movements of coincident variables

where the common factor is assumed to be governed by a two-state HMM. Kim & Nelson

(1998) use the same approach as in Diebold & Rudebusch (1996) and find that the main

cause of increase in forecast accuracy is the ability to capture the common movement

among several variables instead of just one, whereas the prior assumptions concerning

the transition probabilities has a minor influence.

Hamilton & Perez-Quiros (1996) compare the accuracy in predicting the phases of US

real gross national product using univariate and bivariate linear models, where the latter

included a composite leading index (CLI), and corresponding HMM. Adding a CLI to

the linear model was found to result in the greatest increase in accuracy, whereas using

HMM makes no substantial increase in accuracy.

Koskinen & Öller (2003) utilize multivariate information by monitoring a joint vector

of leading indicators with a common time of turn.

Birchenhall et al. (1999) exploit the feature of a business cycle, of common movements

across variables, by extracting a business-cycle index from a vector of time series. As in

the works by Stock & Watson, the selection of variables is an important element.

One alternative to the transformation to surveillance of a univariate index is to base the

multivariate surveillance on the union intersection principle for the marginal processes.

This is, for example, done in Woodall & Ncube (1985), where one surveillance system

is applied to each process, and the aim is to detect the first change in any of the processes.

Kalgonda & Kulkarni (2004) propose a surveillance method for a VAR process, where

each process is standardized and the alarm statistic is the maximum of the standardized
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processes. Kontolemis (2001) compares turning point identification based on individual

series to a multivariate approach (in all cases HMM approaches). It is shown that the

business cycle chronology based on the latter approach is closer to that of NBER than

the turning points obtained from individual series.

An optimal multivariate LR method can be based on the joint density function

(Sonesson & Frisén, 2004). For reviews on the theory of multivariate surveillance, see

e.g. Basseville & Nikiforov (1993), Lowry & Montgomery (1995), Ryan (2000) or

Sonesson & Frisén (2004).

A Comparison of some Likelihood-based Approaches for Detecting a Turn
in a Leading Index

When evaluating a surveillance method it is important to be able to make statements

regarding the statistical properties of the method, for example the false alarm rate and

the expected delay time for a motivated alarm. In the following subsection, the perform-

ance of the methods are demonstrated for a turn in the Swedish industrial production and in

the subsequent subsection, statistical properties of the three methods (SRlin, SRnp, HMlin)

are summarized.

Evaluation by Data on Swedish Industrial Production

The most common way to evaluate methods for the detection of turning points in business

cycles is by using one set of data. Here we use quarterly data on the Swedish industrial

production. The three methods (SRnp, HMlin and SRlin) are applied to the period 1987

to 1992.

According to official records (National Institute of Economic Research, 1992), the

period contains one turn, a peak, at time 1989 (t ¼ 10) which implies that the time of

change is 1989 (t ¼ 11). The period is displayed in Figure 5. The official turning point

Figure 5. Seasonally adjusted values of the (logarithm of) Swedish industrial production, for the

period 1987–1992. The official time of change, 11, is marked with a solid vertical line. The

alarm times (tA ¼ f4, 7, 10g for SRnp, HMlin and SRlin, respectively) are marked with dashed

vertical lines. The model for m with t ¼ 11, used by SRlin and HMlin, is marked with a solid

curve. The 2.5th and 97.5th percentiles of values of the observations according to the model is

marked as dotted curves. Source: National Institute of Economic Research, Sweden.
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times can often be based on more information than data. This other information might

make the official time different than it should have been, if only the IP data had been

used. Figure 5 indicates that the turning point in the data is earlier than the official

time. Thus the methods, using only the IP data, cannot be expected to be good at indicating

the recorded official time for this realization. All three methods give alarms earlier than the

official times for this set of data.

Both the SRlin method and the HMlin method use the assumption of a piecewise linear

model for m (see equation (3)). The piecewise linear model fits less well at the turning

point as we have a plateau. McQueen & Thorley (1993) argue that it is reasonable that

recessions tend to be preceded by plateaus. A plateau will result in a tendency to give

alarms just before the turn. It can be discussed whether this is a drawback or not. An

early indication of a coming recession is a plateau. In this light, alarms just before the

turning point can be considered to be good, since they can be seen as warnings.

The two parametric methods, SRlin and HMlin, rely on the assumption that the

parameters (slopes and standard deviations) are known or are possible to estimate with

great certainty. Here we use the data on Swedish IP from the period 1970–1987 and

the estimation procedure described in Appendix 1 to estimate the parameters. The result-

ing signal–noise ratios are: b̂1=ŝ1 ¼ 0:47 (expansion phase) and b̂2=ŝ2 ¼ 0:40 (recession

phase). These estimates are used for the HMlin method when calculating the posterior

probability. The SRlin method assumes a symmetric turning point and homoscedasticity.

We use pooled (by their frequency) estimates for both parameters, resulting in

b̂=ŝ ¼ 0:41, when calculating the alarm statistic. The HMlin method also includes two

transition probabilities, whose values are estimated according to equation (12).

An actual data set, as used above, is representative of the specific time period and

situation at hand. However, the real data set might deviate stochastically from the

process of interest. When a method is intended to be used on future data, then it is the pro-

perties of the process that are important for that method. In order to be able to make a

general statement about, for example, the average delay time of a method, it is necessary

to replicate the performance of the method at a turning point. Then Monte Carlo methods

are a valuable tool.

Statistical Properties

In Andersson et al. (2004) an evaluation was made of the properties of the three methods

by means of a Monte Carlo study. The major results are summarized here. The evaluation

was made both for the situation when the correct parameter values were used and for the

situation when the values were misspecified.

Correct parameter values used For all three methods the alarm limits are set to yield

MRL0 ¼ 17 (quarters), but the distribution of the alarm times differs. The HMlin

method has more frequent alarms at early time points, but low alarm probability later

on, compared with the others.

The expected delay measures the delay time for a motivated alarm (i.e. the time between

t and tA). This measure depends on t. For a turning point within a year from the last turn,

the SRnp method has the longest expected delay. For turning points that occur later, the

SRnp method has a (slightly) shorter delay than the HMlin method. SRlin has the shortest

delay time for every value of t.

In a practical situation, it is important to have a strategy for what action to take when a

turning point is signalled. The predictive value (see Frisén, 1992) reflects the trust you

should have in an alarm. For the HMlin method the high alarm probability at the first

272 E. Andersson et al.



time point results in alarms at t ¼ 1 being of little value, whereas the predictive values for

SRnp and SRlin at this time have much higher predictive values. The alarms that come at

time points t ¼ 4 and hence forward, have predictive values of (at least) 0.75 for all three

methods.

Incorrect parameter values used The effect of using wrong parameter values for m was

evaluated both for the situation when only the slope after the turn was misspecified and for

the situation when both slopes (pre-turn and post-turn) were misspecified. Also in this

evaluation the alarm limits are set to yield MRL0 ¼ 17 (quarters).

When only the post-turn slope is misspecified, it has very little effect on the conditional

expected delay and the predictive value.

When both slopes (pre-turn and post-turn) are misspecified, the effect on the conditional

expected delay and the predictive value is major. For small and moderate values of t

(t , 10), the delay time is longer when the slopes are specified as being too steep. There-

after, the delay time is shorter for misspecified slopes. The price for the short delay times

is, however, that the predictive value of those alarms is low.

In view of these results, using a method that does not require any parametric values for

m is a safe way, particularly since the properties of the SRnp method are almost as good as

those of the SRlin method.

Discussion

When estimating the parameters of the monitoring system, historical data are often used.

Then there has to be a balance between, on one hand, the risk of using data sets that are too

small, which results in estimates with a large variation and, on the other hand, the risk of

using historical data that might be out of date. The user of a system for online detection is

faced with the paradox that the parameters in the surveillance system might be estimated

using previous data, which means that it is assumed that previous patterns will repeat

themselves. However, the aim of the surveillance is to detect changes and by estimating

parameters from previous data, the ability to detect changes in the current cycle might

be diminished. Sarlan (2001) examines the change in intensity and duration of US business

cycles and concludes that the modern business cycle is different from the historical one.

Other issues that must be considered in online detection is how to handle seasonal vari-

ation and whether to apply different kinds of transformations of data (e.g. trend removal

and smoothing).

Since the surveillance methods are based on the ratio between the likelihoods given that

the cycle has or has not reached a turn, suitable models for the cyclical process must be

found. Parametric models contain information that should be used whenever it is reliable.

However, wrong specifications do cause bad stochastic properties and misleading results.

Here, a non-parametric approach, which works also when such reliable information is not

available, is considered. The safe way with the non-parametric method might be preferred

in order to avoid risks of misleading results.

Many alarm systems, for example methods based on a Hidden Markov model, use

assumptions regarding the intensity of the change (the transition probability). These

parameters also need to be estimated. One approach is to use only the observed transition

frequencies. Another approach is to estimate several parameters simultaneously. If, for

example, both transition probabilities and smoothing parameters are estimated simul-

taneously then the parameters compensate for each other (a heavy smoothing is combined

with a high transition probability). Thus, it might be difficult to interpret the parameters

separately. Different criteria can be used in the estimation and if the Brier probability
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score is used as a criterion when estimating the transition probabilities, it must be borne in

mind that this measure does not take into account the order of the observations. As a result,

the transition probabilities might again be difficult to interpret.

In many systems for online detection, it is assumed that the transition probability is

constant, which implies that the time of the turn has a geometric distribution. This

might not be in accordance with reality for business cycles, but can be interpreted as a

way of avoiding using strong assumptions regarding the intensity of turns. Good estimates

of the transition probabilities are useful if the pattern is constant over time and will remain

the same, even in the future. Technically, the inclusion of transition probability estimates

in the monitoring system is easily done by likelihood ratio methods. However, it is

important that the monitoring system has the ability to detect a turning point also when

this happens at an unexpected time. Thus, it might be preferred to use a non-informative

prior for the time of the turn in the suggested SRlin and SRnp methods, so as to avoid the

risk of errors due to wrong assumptions or uncertain estimates.

The smoothing of the observations before applying a method of monitoring will reduce

the variation and hence reduce the false alarm probability. However, the smoothing will

introduce autocorrelation and, as pointed out by Öller & Tallbom (1996), will lead to a

delayed signal. In this paper it is confirmed that the expected delay of a motivated

alarm is increased by smoothing (when the false alarms are controlled). One method of

surveillance, where the smoothing procedure is included in the alarm statistic and not

made separately, is the EWMA method (see for example Crowder, 1987; Domangue &

Patch, 1991; and Frisén & Sonesson, 2004)). This method allows for a controlled false

alarm rate at the same time as the variability is reduced by smoothing.

Economic time series often exhibit seasonal variation. Most data-driven filters can

seriously alter the turning point times (see for example Andersson & Bock, 2001).

Thus, information from historical data or other prior knowledge, which makes the seasonal

adjustment independent of the data to be monitored, is very valuable.

In surveillance of multivariate data, different approaches have been suggested. A

common approach is to reduce data to a univariate index (e.g. a mean) and then apply

methods for univariate surveillance to the index. Reducing data to a univariate index is,

in fact, the recommendation also for most of the earlier studies. It can also be theoretically

motivated if the turns occur at the same time (or with a known time lag). Surveillance with

several leading indicators is, as it appears, an interesting topic for future research. Aspects

influencing which approaches are optimal are the dependency structure of the variables

(X1, X2, . . .) as well as the dependency between the turning point times (t1, t2, . . .).
When evaluating methods for online detection, it is important to consider the timeliness

of the alarms. The rate of false alarms in surveillance is often controlled by setting the

alarm limit so that the average time to the first false alarm is fixed (ARL0 or MRL0). A

hybrid between surveillance and hypothesis testing is to set the alarm limit so that the

probability of a false alarm is, at every time point, less than, for example, 0.05, which

has been suggested by, for example, Chu et al. (1996). This approach has the disadvantage

that the detection ability is very low if the change occurs after a long time (see Frisén,

2003, and Bock, 2004).

The performance of a surveillance method should be measured by how quickly an actual

change is detected (for example by the expected delay of an alarm or by the probability of

successful detection). Evaluations using the power or using measures like the MSE do not

take the timeliness into account.

Once the evaluation measures have been determined, there are still two main roads for

evaluating a method of surveillance. In this paper, the effect of smoothing is evaluated

by in a simulation study, whereas the monitoring methods are evaluated with a set of
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real data – a period of the Swedish IP. Evaluation of the properties of a method by one

sample of real data is difficult. One difficulty is to know whether the turnout of

the sample is typical. Evaluations by several real data sets (instead of just one) would

decrease some of the stochastic variation in the measures of evaluation. However, if

these analyses are not totally independent (for example if the same parameter estimates

are used) then some of the stochastic components would keep their variance.

The results from the application of the three methods on a period of the Swedish IP did

not contradict the conclusion by the statistical properties that the non-parametric method is

a safe way without much loss of efficiency.
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Appendix. Model for Monte Carlo study of the effect of smoothing

Data on the Swedish IP was used to get a reasonable simulation model. For the dating of

recession and expansion phases, official records are used (National Institute of Economic

Research, 1992),

The data on ln(IP) is seasonally adjusted and then, for each expansion and recession

phase, a polynomial regression function is fitted.

yij(t) ¼ mij(t)þ 1ij(t) ¼ (u0ij þ u1ij � t þ u2ij � t
2)þ 1ij(t)

where i ¼ fexpansiong or frecessiong and j ¼ f1, 2, 3, 4g.

Results for the intercept-adjusted polynomials are given in Table 1.
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