Testsfor Parameter Instability and Structural Change With Unknown Change
Point

Donald W. K. Andrews

Econometrica, Vol. 61, No. 4. (Jul., 1993), pp. 821-856.

Stable URL:
http://links.jstor.org/sici ?sici=0012-9682%28199307%2961%3A 4%3C821%3A T FPI A S%3E2.0.CO%3B2-1

Econometrica is currently published by The Econometric Society.

Y our use of the JSTOR archive indicates your acceptance of JISTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of ajournal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journal s'econosoc.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archiveisatrusted digita repository providing for long-term preservation and access to leading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It isan initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advancesin technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Thu Mar 27 11:28:08 2008


http://links.jstor.org/sici?sici=0012-9682%28199307%2961%3A4%3C821%3ATFPIAS%3E2.0.CO%3B2-I
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/econosoc.html

Econometrica, Vol. 61, No. 4 (July, 1993), 821-856

TESTS FOR PARAMETER INSTABILITY AND STRUCTURAL
CHANGE WITH UNKNOWN CHANGE POINT

By DonaLD W. K. ANDREWS!

This paper considers tests for parameter instability and structural change with un-
known change point. The results apply to a wide class of parametric models that are
suitable for estimation by generalized method of moments procedures. The paper
considers Wald, Lagrange multiplier, and likelihood ratio-like tests. Each test implicitly
uses an estimate of a change point. The change point may be completely unknown or it
may be known to lie in a restricted interval. Tests of both “pure” and “partial” structural
change are discussed.

The asymptotic distributions of the test statistics considered here are nonstandard
because the change point parameter only appears under the alternative hypothesis and
not under the null. The asymptotic null distributions are found to be given by the
supremum of the square of a standardized tied-down Bessel process of order p > 1, as in
D. L. Hawkins (1987). Tables of critical values are provided based on this asymptotic null
distribution.

As tests of parameter instability, the tests considered here are shown to have nontrivial
asymptotic local power against all alternatives for which the parameters are nonconstant.
As tests of one-time structural change, the tests are shown to have some weak asymptotic
local power optimality properties for large sample size and small significance level. The
tests are found to perform quite well in a Monte Carlo experiment reported elsewhere.

Keyworps: Asymptotic distribution, change point, Bessel process, Brownian bridge,
Brownian motion, generalized method of moments estimator, Lagrange multiplier test,
likelihood ratio test, parameter instability, structural change, Wald test, weak conver-
gence.

1. INTRODUCTION

THIS PAPER CONSIDERS TESTS for parameter instability and structural change
with unknown change point in nonlinear parametric models. The proposed tests
are designed for a one-time change in the value of a parameter vector, but are
shown to have power against more general forms of parameter instability. Tests
are considered both for the case where the change peint can be specified to lie
in a particular interval and for the case where the change point is completely
unknown. Tests are considered for the case of “pure” structural change, in
which the entire parameter vector is subject to change under the alternative,
and for the case of “partial” structural change, in which only a component of
the parameter vector is subject to change under the alternative.

The results given here cover Wald, Lagrange multiplier (LM), and
likelihood-ratio (LR)-like tests based on generalized method of moments (GMM)
estimators. Included in this class are tests based on various least squares,
nonlinear instrumental variables, maximum likelihood (ML), and pseudo-ML

' thank Inpyo Li for computing the critical values reported in Section 5. I also thank two
referees, a co-editor, Jean-Marie Dufour, Bruce Hansen, Werner Ploberger, and the participants of
the Princeton econometrics workshop for helpful comments. 1 gratefully acknowledge research
support from the National Science Foundation through Grant Numbers SES-8821021 and SES-
9121914. The first version of this paper appeared as the discussion paper Andrews (1989c).
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822 DONALD W. K. ANDREWS

estimators among others. See L. P. Hansen (1982) for further discussion of
GMM estimators. The data may be stationary or nonstationary under the null
hypothesis of parameter stability, provided they do not exhibit deterministic or
stochastic time trends. For results based on a more general class of extremum
estimators, see Andrews (1989c).

The statistical literature on change point problems is extensive. (See the
review papers by Zacks (1983) and Krishnaiah and Miao (1988).) The economet-
ric literature, on the other hand, is relatively small but growing rapidly. Most of
the results in the statistical literature concern models that are too simple for
economic applications. Most, but not all, cover scalar parameter models and /or
models with independent observations. For example, the recent papers by
James, James, and Siegmund (1987), D. L. Hawkins (1987), and Kim and
Siegmund (1989) fall into this category. Few econometric models are covered by
such results. In addition, results in the econometric literature focus entirely on
linear regression models, e.g., see Chu (1989), Banerjee, Lumsdaine, and Stock
(1992), Zivot and Andrews (1992), and B. E. Hansen (1992).2

The contribution of this paper is to provide results for a wide variety of
nonlinear models that arise in econometric applications and to provide tests
that can accommodate different restrictions on the change point. The results
allow for multiple parameters, temporally dependent data, and nonlinear mod-
els estimated by a variety of different methods.

The closest results in the literature to those given here are those of D. L.
Hawkins (1987). Hawkins considers Wald tests of pure structural change based
on ML estimators for independent identically distributed (iid) data when no
information is available regarding the change point. When specialized to this
case, the Wald test statistic considered here is identical to Hawkins’ statistic.
The method used here to obtain the asymptotic distributional results is essen-
tially the same as that used by Hawkins (1987). (The proofs are different,
however, because the present paper applies in a more general context.)

The remainder of this paper is organized as follows: Section 2 describes the
null hypothesis and various alternative hypotheses that are of interest. Section 3
introduces a class of partial-sample GMM (PS-GMM) estimators and estab-
lishes their asymptotic distributions. Section 4 defines the Wald, LM, and
LR-like test statistics which are based on the PS-GMM estimators. Section 5
determines the asymptotic null distributions of the Wald, LM, and LR-like test
statistics and provides tables of critical values for them. Section 5 also estab-
lishes the asymptotic distributions of these test statistics under local alternatives
and obtains two local power optimality results. Section 6 contains some conclud-
ing comments. An Appendix provides proofs of the results given in the paper.

Lastly, we mention notational conventions that are used throughout the
paper: Unless specified otherwise, all limits are taken as T — o, where T is the
sample size. The symbol = denotes weak convergence as defined by Pollard

2 One paper in the econometrics literature that does consider nonlinear models is B. E. Hansen
(1990). This paper was written subsequent to the first version of the present paper.
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(1984, pp. 64-66) for sequences of (measurable) random elements of a space of
bounded Euclidean-valued cadlag functions on [0, 1] or on IT c(0,1) equipped
with the uniform metric and the o-field generated by the closed balls under this
metric, —, denotes convergence in distribution, —, denotes convergence in
probability, X2 abbreviates Xb_,, Il Il denotes the Euclidean norm of a vector or
matrix, |- ||, denotes the L? norm of a random vector (i.e., || X ||, = (E|| X |*)!/2),
and for simplicity Tw denotes [T#], where [-] is the integer part operator. IT
denotes a set whose closure lies in (0,1). Throughout, it is implicitly assumed
that any sequence of random variables or vectors that converges in probability
or almost surely to zero is Borel measurable.

2. HYPOTHESES OF INTEREST

In this section we discuss the null and alternative hypotheses of interest and
provide a general discussion of the choice and use of the test statistics that are
considered in the paper.

We consider a parametric model indexed by parameters (B,,8,) for t=
1,2,.... The null hypothesis of interest here is one of parameter stability:

(2.1) Hy:B,=B, forall ¢>1for some B,€ B CR”.

In the case of tests of pure structural change, no parameter §, appears and the
whole parameter vector is subject to change under the alternative hypothesis. In
the case of tests of partial structural change, the parameter 8, appears and is
taken to be constant under the null hypothesis and the alternative.

The alternative hypothesis of interest may be of several forms. First, consider
a one-time structural change alternative with change point 7 € (0, 1). Here, T is
the sample size, T is the time of change, and for simplicity 7, rather than T,
is referred to as the change point or point of structural change. The one-time
change alternative with change point 7 is given by

By(m) fort=1,...,Tw

(22)  Hy(m):B,= By(m) fort=Tm+1,...

for some constants B,(), B,(7) € BCR”.

For the case where 7 is known, one can form a Wald, LM, or LR-like test for
testing H, versus H,;(w) (e.g., see Andrews and Fair (1988) for such tests in
nonlinear models). For specificity, let W (w), LM (w), and LR (1), respec-
tively, denote the test statistics that correspond to these tests. For a normal
linear regression model (with B, equal to the regression parameter), these tests
are equivalent F tests and are often referred to in the literature as Chow tests.

In the present paper, we are interested in cases where the change point 7 is
unknown. In such cases, one has to construct test statistics that do not take = as
given. Doing so is complicated by the fact that the problem of testing for
structural change with an unknown change point does not fit into the standard
“regular” testing framework; see Davies (1977, 1987). The reason is that the
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parameter 7 only appears under the alternative hypothesis and not under the
null. In consequence, Wald, LM, and LR-like tests constructed with = treated
as a parameter do not possess their standard large sample asymptotic distribu-
tions.

Here we adopt a common method used in this scenario and consider test
statistics of the form

(2.3) sup Wr(m), sup LMy (m), and sup LR;(m),
well

mell mell

where IT is some pre-specified subset of [0, 1] whose closure lies in (0,1). (The
specification of IT is discussed below.) Other papers that consider tests of this
form include Davies (1977, 1987) and D. L. Hawkins (1987) among many others
in the statistical literature. Tests of this form can be motivated or justified on
several grounds. First, sup,. . ; LR;(w) is the LR (or LR-like) test statistic for
the case of an unspecified parameter 7 with parameter space I1. In addition,
the test statistics sup,. . y Wr() and sup,, . ; LM (1) are asymptotically equiv-
alent to sup,. . ; LR;(7) under the null and local alternatives under suitable
assumptions. Second, the test statistics sup, pWg(m),...,sup, LR ()
correspond to the tests derived from Roy’s type I (or union-intersection)
principle; see Roy (1953) and Roy, Gnanadesikan, and Srivastava (1971, pp.
36-46). Third, the above test statistics can be shown to possess certain (weak)
asymptotic optimality properties against local alternatives for large sample size
and small significance level. These results are due to Davies (1977, Thm. 4.2) for
scalar parameter one-sided tests and are extended below to multi-parameter
two-sided tests.

We note that although the paper concentrates on statistics of the form (2.3),
the results of the paper apply more generally to statistics of the form g({Wy(mr):
m €I} for arbitrary continuous function g (and likewise for LM,(-) and
LR,(+)). Depending upon the alternatives of interest, one may want to use a
function g that differs from the “sup” function. For example, in the maximum
likelihood case analyzed recently by Andrews and Ploberger (1992), test statis-
tics of the form [,;A(W(w), ) dA(1r) are considered. Test statistics of this form
are found to have some advantages in terms of weighted average power, for a
certain weight function, over test statistics of the “sup” form.

We now return to the discussion of the alternative hypotheses of interest.
Two distinct cases arise. The first is the case where interest centers on change
points in a known restricted interval, say IT c(0,1). The second is the case
where no information is available regarding the time of possible structural
change and hence all change points in (0, 1) are of some interest.

The case of a known restricted interval IT arises when one wants to test for
structural change that is initiated by some political or institutional change that
has occurred in a known time period. For example, in a model estimated using
annual data from 1920 to 1989, say, one might want to test for structural change
occurring sometime in the “war period” 1939-1949. In this case, one would
specify IT=[20/70, 31/70]. Analogously, for some models of post-World War
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II U.S. economic behavior, the Viet Nam war period might be of interest as a
potential time of structural change. Alternatively, one could test for a presiden-
tial administration effect (or a chairman of the Fed effect) on certain parame-
ters by letting IT correspond to a president’s (chairman’s) term of office.

A second set of cases where one can specify a restricted, but nondegenerate,
interval IT includes those in which a specific exogenous event is the potential
cause of structural change, but change occurs only after a lag of unknown length
or before the event due to anticipation of the event. For example, in a model of
aggregate or disaggregate productivity, one might want to test for structural
change that occurs some time around the 1973 oil price shock. Or, in a model of
the communications industry, one might want to test for structural change that
occurs some time close to the court decision to break up AT & T. Or, in a small
open economy, one might want to test for structural change that occurs some
time close to a significant change in tariff or exchange rate policy. As a last
example, in an industry study, one might want to test for structural change that
occurs some time close to the introduction of a new product or technological
process (which may take some time to diffuse), such as a new drug, a new
chemical, or new computer equipment.

For any of the above examples, the tests considered in this paper can be
applied using the critical values provided below for a very broad range of
different IT intervals. The only requirement is that II be bounded away from
zero and one for reasons discussed below.

Note that the structural changes associated with the above events may be
more complicated than an abrupt change. For example, there may be a
movement from one regime to another with a transition period in between. It is
shown below that the tests considered here have power against alternatives of
this sort even though they are not the alternatives for which the tests are
designed.

Next, we consider the case where no information is available regarding the
time of structural change. This case arises, for example, when one wants to
apply a test of structural change as a general diagnostic test of model adequacy.
The usefulness of such tests is well recognized in the literature, as shown by the
widespread use of the CUSUM test of Brown, Durbin, and Evans (1975) for
linear regression models and by the inclusion of rolling change point tests (even
without accompanying distributional theory) in popular econometric packages
such as PC-GIVE and Datafit; see Hendry (1989, pp. 44, 49).

When a structural change test is employed as a general diagnostic test of
model adequacy, the range of alternatives of interest is usually broader than
U, e gHir(m) for some ITc(0,1). In such cases, the alternative hypothesis
may be

(24) H;:B,+P, forsomes,t>1.

Although the tests sup_ o g Wr(m),...,sup, c g LR(w) are constructed with
the more restricted alternatives U . < g H;7(7) in mind, we show below that
they have power against more general alternatives in H,. In particular, we
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consider local alternatives of the form B, = B, + n(t/T)/ VT for some bounded
function n(+) on [0, 1] (as do Ploberger, Krimer, and Kontrus (1989)) and show
that the tests of (2.3) have power against all alternatives for which n(-) is not
almost everywhere on IT equal to a constant. In addition, these tests even have
power against many alternatives for which n(-) is constant on IT and noncon-
stant elsewhere. Thus, as tests of parameter instability, the tests of (2.3) have
some desirable properties.

On the other hand, if the model is stationary under the null and parameter
instability can be characterized by the omission of some relevant, but unob-
served, stationary variables (which can be viewed as causing structural change
with an infinite number of regime changes as T — ), then tests of the form
(2.3) will not detect it asymptotically. The reason is that the model is stationary
under the alternative, and so, the nonrandom parameters B, (however defined)
are constant across all ¢ > 1.

A natural choice of the set of change points IT for use with the statistics
of (2.3) is (0,1) when one has no information regarding the change point.
This choice, however, is not desirable. When II=(0,1), the statistics
sup, e g Wr(m),...,sup, < y LRy(1) are shown below to diverge to infinity in
probability, whereas when II is bounded away from zero and one the statistics
converge in distribution. In consequence, the use of the full interval (0, 1) results
in a test whose concern for power against alternatives with a change point near
zero or one leads to much reduced power against alternatives with change
points anywhere else in (0, 1). Thus, when no knowledge of the change point is
available, we suggest using a restricted interval II, such as IT=[.15,.85].

As tests of general parameter instability, the tests of (2.3) can be compared
with several other tests in the literature, such as the CUSUM test of Brown,
Durbin, and Evans (1975) and the fluctuation test of Sen (1980) and Ploberger,
Krimer, and Kontrus (1989). These tests are all designed for the linear regres-
sion model whereas the tests of (2.3) apply more generally. A drawback of the
CUSUM test is that it exhibits only trivial power against alternatives in certain
directions, as shown by Krimer, Ploberger, and Alt (1988) using asymptotic
local power and by Garbade (1977) and others using simulations. The tests of
(2.3) do not exhibit these local power problems. The fluctuation test is similar to
the sup,, < y Wr(m) test considered here, but the latter possesses large sample
optimality properties for each fixed =, whereas the former does not.

Monte Carlo comparisons of the CUSUM, fluctuation, and sup,, o g Wy(7)
tests reported in Andrews (1989c) show that sup,, . ; Wy(w) is superior to the
CUSUM test in terms of closeness of true and nominal size and very much
superior in terms of power (both size-corrected and uncorrected) for almost all
scenarios considered. In addition, sup, . ; Wy(w) is clearly preferable to the
fluctuation test in terms of the difference between true and nominal size and in
terms of uncorrected power and more marginally preferable in terms of size-
corrected power.

Several additional tests in the literature for testing for parameter instability
are the tests of Leybourne and McCabe (1989), Nyblom (1989), and B. E.
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Hansen (1992). (Also, see the references in Krimer and Sonnberger (1986, pp.
56-59).) These tests are designed for alternatives with stochastic trends and,
hence, have a different focus than the tests considered here. On the other hand,
they also have a number of similarities.

3. PARTIAL-SAMPLE GMM ESTIMATORS

In this section we analyze partial-sample GMM (PS-GMM) estimators.
PS-GMM estimators are GMM estimators that primarily use the pre-T7 or the
post-Tr data in estimating a parameter 8 for variable values of 7 in IT and use
all the data in estimating an additional parameter 8. These estimators are the
basic components of the sup Wald test. Furthermore, the properties of PS-GMM
estimators are used to obtain the asymptotic distribution of the corresponding
sup LM and LR-like statistics.

The first subsection below defines the class of estimators to be considered.
The second subsection establishes the weak convergence of PS-GMM estima-
tors to a function of a vector Brownian motion process on [0, 1] restricted to IT.
The third subsection considers the estimation of unknown matrices that arise in
the limiting Brownian motion process. Estimators of these matrices are needed
to construct the Wald and LM statistics.

3.1. Definition of Partial-Sample GMM Estimators

First we define the standard GMM estimator, which we call the full-sample
GMM estimator. Under the null hypothesis of parameter stability, the unknown
parameter to be estimated is a p + g-vector (8/,8'). Let B(CR?) and A (CRY)
denote the parameter spaces of B and & respectively. We assume the data are
given by a triangular array of rv’s {W;,: 1 <t < T, T > 1} defined on a probabil-
ity space (2, &, P). (By definition, a rv is Borel measurable.) Triangular arrays
are considered because they are required for the local power results below.

The observed sample is {W,: 1 <t < T}, where W, is used here and elsewhere
below to denote W;, for notational simplicity. The population orthogonality
conditions that are used by the GMM estimator to estimate the true parameter
(By, 8p) are (1/T)LTEm(W,, By, 8,) =0 for a specified R*-valued function
m(-, -, ).

DEeFINITION: A sequence of full-sample GMM estimators {(B, 5): T > 1} is any
sequence of (Borel measurable) estimators that satisfies

17 . v 17 -
(3.1) ?Xl:m(W,,B,&)&?Xl:m(W,,B,&)

1

1T T
= inf = W,,B,8) 9= W,,B,0
oo s T LW B 8Y 97 Lm(WB,0)

with probability — 1, where (8,8’Y €B XA CR? XRY, m(-, -, ) is a function
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from WX B X A to R*, WC R¥, and 7 is a random (Borel measurable) symmet-
ric v X v matrix (which depends on T in general). As is well-known (e.g., see
L. P. Hansen (1982)), the class of GMM estimators is quite broad. Among
others, it includes least squares, nonlinear instrumental variables, ML, and
pseudo-ML estimators.

Next consider the case where the sample is broken into two parts, viz.,
t=1,...,Tm,and t =Tw +1,...,T, the parameter 3 takes the value B, for the
first part of the sample and another value B, for the second part, and the
parameter & is constant across the whole sample. In this case, the unknown
parameter of interest is 6 = ([5’1, B5,8Ye®@=BXBXACR?XR?XR-

Let 6=(B,p,5). We call § the full-sample GMM estimator of 6. It is a
restricted estimator that is consistent only under the null hypothesis that
B1=B,-

We now define an unrestricted GMM estimator of 8 that allows the estimates
of B, and B, to differ. Suppose the true value of 8 is (B}, B5g, 85). For the
observations t=1,...,Tw, we have the population orthogonality conditions
(/T)LT"Em(W,, By, 8,) =0, and for the observations t=Tm +1,...,T, we
have a second set of orthogonality conditions (1/T)X%_.  Em(W,, B4, 8,) = 0.
For each potential change point 7 € IT < (0, 1), we can define an estimator that
is based on the sample analogues of these orthogonality conditions. The
collection of such estimators for 7 €II is called the partial-sample GMM
estimator of 6.

DerINITION: A sequence of partial-sample GMM estimators () T>1=
{(6(7): weII): T = 1} is any sequence of estimators that satisfies

(32)  mp(b(m),w) H(m)mp(8(m), ) = nf 7 (0, 7) 3 (m) iz (6, )

forall mwelIl

with probability » 1 and 6(-) is a random element, where 6= (B,, 8,,8') €
@ =BXBXACRPXRPXR1,

1T (m(w,,B,8)) . 1 & 0
mr(0,m) = — ePLO) )y~ €R
(0. T‘L;( 0 ) Trgl(m(W”Bz’S))
m(-,-,-) is a function from WXB XA to R*, WCR¥ y(m) is a random
symmetric 2v X 2v matrix (Wthh depends on T in general), and 9(:) is a

random element.

Existence of partial-sample GMM estimators can be established under stan-
dard conditions. For example, compactness of @ and continuity of the criterion
function above are sufficient.

(By definition, a random element is a measurable function from (2, %, P) to
a space of bounded Euclidean-valued cadlag functions on [0, 1] or on IT c(0,1)
equipped with the o-field 4 generated by the closed balls under the uniform
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metric. Note that such a function, say £, is necessarily #/A4-measurable, and
hence is a random element, if §(7) is F/Borel-measurable for all = € II; see
Pollard (1984, Problems 2 and 4(b), pp. 80-81). Thus, measurability of 6(-) can
be established under standard assumptions. For brevity, we do not give suffi-
cient conditions here.)

As the definition indicates, 6(m) = (B(mY, Bo(mY,8(mYY is a 2p + g-vector
comprised of an estimator B,(w) € R? that primarily uses the pre-7T# data, an
estimator Bz(‘"') € R? that primarily uses the post-Tw data, and an estimator
8(m) € RY that uses all of the data. For a fixed value of =, the PS-GMM
estimators defined above are a special case of the extremum estimators of
Andrews and Fair (1988).

3.2. Weak Convergence of Partial-Sample GMM Estimators

In this subsection we establish the asymptotic distribution of the PS-GMM
estimator 6(-) for the case of no structural change. To do so, we need to
introduce some additional notation and definitions. The asymptotic distribution
of 6(-) depends on the following matrices:

1 T
33 S= Th_l:nao Var (_\/—T_ }l:m(W,,BO,BO)) e RV,

1T om(W,B, ¥
M= lim _ZE_(.__t_é_O.O_).€RVXP’
T-oo T 1 aB
1T om(W,B,,3d
M5= lim —ZE ( tBO 0)

€ R"™ 1, and
Too T 1 a8’

™M 0 Mg
M(")=[0 (1-m)M (1—7)M,

c R2V><(2p+q).

For simplicity, let m, or my, denote m(W,, B,,8,). Let the domain W of
m(-, B, 8) be chosen to include the support of W, V¢,¥T. Let B, and 4, denote
some compact subsets of R” and R? that contain neighborhoods of B8, and g,
and are contained in the parameter spaces B and A respectively (where
6, = (By, By, 8,) when no structural change occurs). Let wu;, denote the distri-
bution of Wy, and let ;= (1/T)LTuy,. We say that {m,: T > 1} is tight on W
if hm,_,wsupbl(l /TIZTP(Wr, & C;) =0 for some sequence of compact sets
C;cW for j > 1. (A sufficient condmon for tightness of {i;: 7> 1} when W is
closed is the weak moment condition lim, . (1/T)LTE(W,,|I° < for some
e >0.) For a sequence of nonrandom matrices {A,(A): T > 1} indexed by a
parameter A € A, we say that lim, _, A7(A) exists uniformly over A € A, if
there exist matrices { A(1): A € A} such that lim _, sup, ¢ ,147(1) —A(A)| =0.
Following McLeish (1975a), for a constant g > 0 and a sequence of nonnegative
constants {v,,: m > 1}, we say that {v,,: m > 1} is of size —q if v,, converges to
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zero at a fast enough rate. A sufficient condition is that v,, = O(m ) for some
A > g. The precise definition of size is given in McLeish (1975a).

Next, we define a type of asymptotically weak temporal dependence called
near epoch dependence (NED). This concept has origins as far back (at least) as
Ibragimov (1962). It has appeared in various forms in the work of Billingsley
(1968), McLeish (1975a, b), Bierens (1981), Gallant (1987), Gallant and White
(1988), Andrews (1988), Wooldridge and White (1988), B. E. Hansen (1991), and
Pétscher and Prucha (1991) among others. The NED condition is used to obtain
laws of large numbers, CLTs, and invariance principles for triangular arrays of
temporally dependent rv’s. It is one of the most general concepts of weak
temporal dependence for nonlinear models that is available. See Bierens (1981),
Gallant (1987), Gallant and White (1988), and P6tscher and Prucha (1991) for
examples of its application to particular econometric models.

DeriNiTiON: For p > 0, a triangular array of rv’s {XT, =1,...,T, T>1}is
said to be LP-NED on the strong mixing base (Yy,: t 0,1, T 1}if{Yy,:
.,0,1,...; T > 1} is a strong mixing (i.e., a-mixing) array of rv’s and

hm ?Z“XTt E(XTtlyTt —-ms* ’YTt+m)”p—)0

T— oo

as m — o« when p >0 or

1
;‘lm _ZP(“XTI E(XTtIYTl —m>* "?YTl+m)“>£)_)0
as m— o VYe>0 when p=0. For p>0, ¢g>0, and r>0, {X;;: t=1,...,
T, T>1} is said to be LP’-NED of size —q on a strong mixing base
{(Yr:t=...,0,1,...; T>1} of size —r if {v,: m >1} is of size —gq, where
Vpp =SUp, <7 751 1 X0, — ECX7 | Yy, Yy o )l and {a,,,: m > 1} is of size
—r, where {a,,: m > 1} are the strong mixing numbers of {Y;,}.

The following assumption is sufficient to obtain the weak convergence under
the null hypothesis of the PS-GMM estimator 6(:) as a process indexed by
aTell

AssumpTioN 1: (@) (Wy,: t < T, T > 1} is a triangular array of W-valued rv’s
that is L>-NED on a strong mixing base {Y;,: t = ...,0,1,...; T > 1}, where Wis a
Borel subset of R*, and {i,: T.> 1} is tight on W.

(b) For some r>2, {my,: t<T, T>1} is a triangular array of mean zero
R"-valued rv’s that is L>-NED of size —1/2 on a strong mixing base {Yr,:
0,1,...; T> 1} of size —r/(r—2) and sup, .1, 75, Ellmy,|” < co.

(c) Var((l / \/- T)X"my,) > 7S VYmwe(0,1] for some positive definite v X v
matrix S. )

(d) sup,, ;7 16(m) = 8,ll =, 0 and § —, 6, for some 8= (B, By, 8,) in the
interior of @ =B X B X A.
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(© sup,, ¢ g 119(m) = y(m)ll =, 0 for some symmetric 2v X 2v matrices (1)
for which sup_ . ; ly(m)Il < .

(f) m(w, B, 8) is partially differentiable in (B,8) V(B,8) € ByX A Vw e W,CW
for a Borel measurable set W, that satisfies P(Wp, € W,)=1Vt<T, T>1,
m(w, B, 8) is Borel measurable in w Y(B,8) € ByX 4,, dm(w, B,8)/B,8) is
continuous in (w,B,8) on WX B, X A, and

sup E  sup lom(Wy,,B,8)/3(B,8)'"* <w
t<T,T21 (B,8)eByx4,

for some ¢ > 0.

(@ lim, (/T Edm(W,,, By, 8,)/H( B, &) exists uniformly over m < Il
and equals mM V€ II.

(h) M(w)y(w)M(w) is nonsingular VY €I1 and has eigenvalues bounded
away from zero.

We now discuss Assumption 1. Assumptions 1(a) and (b) are typical of
asymptotic weak dependence conditions found in the literature on nonlinear
dynamic models; see the references above. They are closest to conditions given
by Potscher and Prucha (1991). Assumptions 1(c) and (g) are asymptotic
covariance stationarity conditions that are used for the results of the present
paper, but are not needed for results in the literature that deal only with the
estimation of nonlinear dynamic models. Assumptions 1(d) and (e) are used to
show that various remainder terms in the proof of weak convergence of 0( ) are
negligible. Sufficient conditions for Assumption 1(d) are provided in the Ap-
pendix. The verification of Assumption 1(e) depends, of course, on the choxce of
the weight matrix 9(w). Often §(s) is of the form Diag($; () /m, $; () /
(1 — )}, where § [m) is an estimator of § for r=1,2. The deﬁmtlon of,
motivation for, and uniform consistency of the estimators S (1) are discussed in
the Comment following Theorem 1 and in Section 3.3 below. Assumption 1(f) is
a standard smoothness condition on the function m(w, B, 8). It could be relaxed
at the expense of greater complexity by using the approaches taken in Huber
(1967), in Andrews (1989a, b), or elsewhere in the literature. Assumption 1(h)
ensures that the estimator 6(s) has a well-defined asymptotic variance V1 € I1.
In the common case that y(7) is of the form Diag{y/=,vy/(1 — )}, Assump-
tion 1(h) holds if y, M, and M are full rank v, p, and g respectively and IT has
closure in (0,1). For the ML estimator, for instance, this requires that the
information matrix for (B, 8) in. the case of parameter constancy is nonsingular,
as usually occurs.

Before stating the main result of this section, we introduce some additional
notation. Let {B(s): m<[0,1]} denote a wv-vector of independent Brownian
motions on [0, 1]. Let

S'2B( )

(3.4) G(m)= SV2(B(1) = B(m))
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TueoreM 1: Under Assumption 1, every sequence of PS-GMM estimators {60-):
T > 1} satisfies

VT (B(-) = 8,) = (M(-Yy(-)M(:)) " "M(-Yy(-)G(")

as a process indexed by m € I1, provided II has closure in (0, 1).

ComMmENT: For any fixed value of 7, an optimal choice of the asymptotic
weight matrix y(7) is

(3.5)  y(m)=Diag{S '/m, S /(1-m)}.
This matrix is asymptotically optimal in the sense of minimizing the covariance
matrjx of the asymptotic normal distribution of the normalized Aestimator
VT (6() — 8,).> For y(w) as in (3.5), the limit process of VT (8(w)—6,)
evaluated at 7 can be written as

TM'S ™M 0 TM'S M,
(3.6) 0 A-m)M'S™'M (1—-m)M'S™'M;

TMSTM  (1—-m7)MiS™'M MS'M;

M'S~'/2B()
X | M’S~'/2(B(1) - B(7)) |.
M}S~1/2B(1)

3.3. Covariance Matrix Estimation for Partial-Sample GMM Estimators

The Wald statistic defined in Section 4 below is based on the vector VT (B,(+)
— /32(-)). Here we introduce estimators of the unknown matrices that appear in
the limit distribution of VT (B,(-)— B,(+)). These estimators are needed to
construct the weight matrices of the Wald and LM test statistics. For brevity, we
consider the standard case where the weight matrix 9(7) is chosen to be
asymptotically optimal:

AssumpTioN 2: y(7) = Diag{S~! /7, S ! /(1 — =)} for

1
S = lim Var (ﬁ ZleT,)

T

(as in Assumption 1).
Let
(37)  H=[l,:~1,0] € RP*CP*D,

3 This result can be proved using standard arguments; e.g., see the proof of Theorem 3.2 of L. P.
Hansen (1982).
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By Theorem 1, VT (B,(w) — By(m)) = HVT (8() — 6,) converges in distribution
to H(M(r)y(m)M (1)) M(7) y(7)G(sr). By (3.6) and Lemma AS of the
Appendix, the latter simplifies to

1 -
—(M'S7'M) 'M'S-12B( )

T (M'STIM) T MIST2(B(1) ~ B(w))

1 1
~N(O,(—+ )V), where
T 1—-m
V=(M'S" M)
Consider the following estimators of V:
(39)  V(m) = (M(my S (m)M,(m)) " for r=1,2.4

The estimators M, () and $,() can be defined in two ways. The first way uses
only the data for t=1,...,Tw for the case r=1 and only the data for
t=Tm+1,...,T for the case r=2:

(3.10) l(#)_LTif’"l(W Bi(m),8())

(38 [L:-]

p. p

b

9B}
oL L am(WBy(m),8(m))
Mm) =777 TEI 2B,

(Corresponding estimators S‘,(w) are defined below.) The second way uses all of
the data for r=1 and r =2:

X . 1.7 om(w,B,5)
(311) M (m)=M T 21: B
where (8, ) are the full-sample GMM estimators of (83, 8).

The estimators defined in (3.10) and (3.11) have the same probability limits
under the null hypothesis and under sequences of local alternatives (see Section
5). They do not necessarily have the same probability limits, however, under
sequences of fixed alternatives. Typically, unrestricted estimators, such as those
of (3.10), are used to construct weight matrices for Wald statistics whereas
restricted estimators, such as those of (3. 11) are used for LM statistics. The
weight matrix is taken to equal ( Vl(ﬂ')/ 7+ V,(m)/( — )~ in either case, but
in the latter case Vy(7) = V,(m) = V. As with the choice of weight matrices for
classical Wald and LM tests, one cannot distinguish between the two methods
based on local power.

’

4 Under the assumptlons, (M, (Y37 Y ()M, (7))~! may exist only with probability — 1. When
(M (ﬂ-)’ 1(77-)M (@)~ is smgular, a g-inverse can be used in place of the inverse. Similar
comments apply elsewhere below.
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Next we consider the deﬁmtlon of the estimators S (m) of S(=

hmT_,wVar((l /VT)XIm,)). If {m,: t > 1} consists of mean zero uncorrelated
rv’s, then S = llmT_,w(l / T YLTEm, m, and we define either

A 1 Im A A
(312)  $i(m) = 7 K (m(We Bi(m), 8(m)) = ir(m))

X (m(W,, By(m),8(w)) = Fiyr(m)) and

A 1 T N o
Sy(m) = T—Tm Zl(m(Wt’Bz("T)’B("T)) _'7127(77))
X (m(W,, By(),8(m)) = Fyp(m)), or

(313) S(m)=S=1 Zj‘,(m(lfV,,é,S) iy (m(,B,5) —

forr=1,2,

where () = A/Tm)ET"m(W,, B(w), 8(w)), @yp(w) = A /(T -
Ta)El . mW,, B(m),8(x)), and Fip= (1/T)ZIm(W,, B, ).

Alternatively, if {m,: ¢ > 1} consists of mean zero temporally dependent rv’s,
then S=X;_,I,+X,_,I,, where I,,=lim;_ . (/T)L] Emm,_,. In this
case, the estimator S,(7) corresponding to (3.11) can be taken to be

(3.14) S$,(m)=$= Zk(v/z(T))

X = Z (m(W,_,,,/;,S) —ITIT)(m(l'V,,B,S) _mT)’

for r=1,2, where k(-) is a kernel and I(T) is a (possibly data-dependent)
bandwidth parameter. The estimator S is a kernel estimator of the spectral
density matrix at frequency zero of the sequence of rv’s {m(W,, 8o, By t<T}
e.g., see Hannan (1970). For a suitable choice of kernel, S is necessarily positive
semi-definite. See Andrews (1991) regarding Ehe choice of kernel and bandwidth
parameter.® Unrestricted kernel estimators S,(w) and S,(r) that correspond to

5 An attractive alternative to the kernel estimator of (3.16) is a prewhitened kernel estimator
described in Andrews and Monahan (1992) (and for brevity not defined here). This estimator has
proved to work well in simulation studies in terms of minimizing the discrepancy between the
nominal and true size of test statistics constructed using a nonparametric covariance matrix
estimator.
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(3.10) can be defined analogously to (3.14) using the data from the time periods
1,...,Tmand Tm + 1,..., T, respectively, and using the estimators (B(m), 8(m))
and (Bz(w) 8(m)) respectlvely

. Under Assumptions 1 and 2 and the following assumption, the estimators
V() defined above are consistent for V' uniformly over 7 € IT:

ASSUMPTION 3: V(rr) is constructed using an estimator S (1) that satisfies
sup_. < 7 I18,(m) — S| —,0 and V.(-) is a random element for r = 1,2.

Assumption 3 holds for $ () as defined in (3.13) under Assumption 1 plus

Im(W,, B,0) | _
D)

Assumption 3 holds for § () as defined in (3.12) under the same conditions
provided IT has closure in (0,1) (using Lemmas A3 and A4 of the Appendix in
the proof). Assumption 3 holds for S‘,(w) as in (3.14) under the conditions given
in Andrews (1991).

E sup
BEB,, 6€4,

m(W,, B, 8) — ————

THeEOREM 2: Under Assumptions 1-3,

sup ||I7,(1r) - V” -,0 forr=1,2,
mell
provided II has closure in (0,1).

4. DEFINITIONS OF THE TEST STATISTICS
4.1. The Wald Statistic
The Wald statistic for testing H,, against H,;(7) is given by

(41)  Wp(m) =T(By(m) — Bo(m))

X (Py(m) /m+ Vo(m) /(1 =) (Bi(m) = Ba(m)),

where V() and V,() are as in (3.9) plus either (3.10) or (3.11), etc. Based on
W (1), the following statistic can be used for testing H, versus U , o g H, ()
or H, versus H:

(4.2) sup Wy(m),

mell
where II is a set with closure in (0,1). One rejects H, for large values of
sup,, < g Wr(m).

Note that the asymptotic variance of VT ( Bl(ﬂ') B,(m)) takes on the additive
form V/m + V/(1 — ) even though Assumption 1 allows for temporal depen-
dence. This occurs because of the assumption of asymptotically weak temporal
dependence plus the fact that the fraction of observations that are close to the
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change point, say within R time periods, goes to zero as T — « and this holds
for all R.

The sup Wald test of (4.2) has been considered previously by others in less
general contexts. For example, D. L. Hawkins (1987) considers it in the context
of tests of pure structural change based on ML estimators for models with iid
observations. Hawkins takes IT=[¢,1 — ¢] for small £ > 0, whereas we consider
more flexible choices of II.

One can compute W;(7) using a standard GMM computer routine as follows.
For given 7 €1I, form the vector of orthogonality conditions mT(e ) and
the weight matrix 9(w) = Diag{S; (=) /7, S; (m)/(1 = 7)}. Let 6(w) and
() denote the parameter vector and its estimated covariance matrix that are
produced by the GMM computer routine. Then, Wi (w) equals
0(rYH'(HO(w)H')"'Hé(7), where H = 7, - IPIO].C‘

4.2. The LM Statistic

Next we define the LM () statistic. It makes use of the full-sample GMM
estimator 6 = (B B &Y. For fixed change point , the LM statistic is a
quadratic form based on the vector of first-order conditions from the minimiza-
tion of the PS-GMM criterion function evaluated at the restricted estimator 6
(.e., [0m(0,7)/30'Y y(7)mi (0, 7)). The weight matrix of the quadratic form is
chosen such that the statistic has a )(j distribution under the null for each fixed
7r. The LM statistic can be written as

(43)  LM(m) =cp(m) (P(m) /m+ Vy(m) /(1 =m)) " er(m), where

cr(m) = [1,:~ 1]

X VT i (6,7)

and M M, (), S S (1), and V(1r) are as in Section 3.3 for r=1,2.
Typlcally one uses “restricted” estimators M, (1), S (), and V(w) when

constructing the LM statistic. In this case, LMT(w) simplifies. In particular,

suppose M ()= M is asin (3.11) and § () = $ is as in (3.13) or (3.14). Then,

% As defined, the weight matrix (HQ()H’)~! will not necessarily be identical to that specified in
(4.1), but it will at least be asymptotically equivalent to it.
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LM () simplifies to

~ A A A A Nt SN ~
(44) LMy(m)= iy (0,7) STIM(M'S™IM)  M'S™'mp(6,),

m(l—)

where

and = denotes equality that holds with probability — 1.7 The LM statistic is
particularly easy to compute because the only estimate of 0 that is required is
the full-sample GMM estimate.

4.3. The LR-like Statistic

Lastly, we define the LR-like test statistic. For fixed change point , it is
given by the difference between the PS-GMM objective function evaluated at
the full sample GMM and the PS-GMM estimators:

(45)  LRp(w)=Tm(0,7)9(m)mq(8,m)
- T?TIT(é(‘IT),#)"fl(ﬁ)mr(é('ﬂ),ﬂ').

As in (4.2), for testing H, versus U , .y H,7(7) or H, versus H, based on
LM(-) or LR;(-), we consider

(4.6) sup LM (7)) and sup LR, ().

mell mell

The null hypothesis H|, is rejected for large values of these statistics.

5. ASYMPTOTIC PROPERTIES OF THE TEST STATISTICS
5.1. Asymptotic Distributions under the Null Hypothesis

This subsection provides the asymptotic null distributions of the test statistics
introduced in Section 4.

"The simplification of LM (w) from (4.3) to (4.4) occurs because the first-order condi-
tions of the full-sample GMM estimator are [MM,5]S 1(1/T)):,1Tm(W,,B 8)=0, where Ma
(1/T)LTom(W,, 8,5)/38'. In consequence,

st 0 | s | M ()
SN mr(6,m) = N Al .
0 M'S -M'S~'mp(0,7)
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THEOREM 3: Suppose Assumptions 1-3 hold. Given any set II whose closure
lies in (0, 1), the following processes indexed by m € II satisfy:

@ Wr(-)=Q,(-) and sup,c;Wr(m)—, sup, c; Q,(m), where Q,(m)=
(B,(m) — wB,(1)Y(B,(7) — wB,(1))/[7(1 — m)];

(®) LM (-) = Q,() and sup,,. ¢ y LM() =, sup,. < y Q,(7);

(© LR(:)=Q,(*) and sup,. < ; LR (1) =, sup, < Q,(7);
where B, (+) is a p-vector of independent Brownian motions on [0,1] restricted to

y4
I1. The convergence in (a)-(c) holds jointly.

CommMmeNTs: 1. The limit process Qp(-) is referred to in the literature as the
square of a standardized tied-down Bessel process of order p; see Sen (1981,
p. 46). For any fixed w€(0,1), Q, () has a chi-square distribution with p
degrees of freedom. Under the assumptions, the asymptotic null distribution of
sup, < g Wy(m),...,sup, < y LRy(m) is free of nuisance parameters except for
the dimension p of B. Thus, critical values for the test statistics can be
tabulated; see Section 5.3 below.

2. The requirement that IT is bounded away from zero and one is made to
ensure that the estimators upon which the test statistics are based are uniformly
consistent for 7 € IT and to ensure that the function mapping B,(-) into Q,(-)
is continuous. For example, if IT=[0,1], the functions # —>1/7 and # > 1/
(1 — 7) are not continuous. In fact, if IT =1[0,1], the test statistics
sup,, « g We(m),...,sup, <« g LRy(7) do not converge in distribution; see Corol-
lary 1 below.

3. Theorem 3 establishes the asymptotic distributions of test statistics of the
form g({W,(w): w <II}) for arbitrary continuous functions g (using the uni-
form metric on the space of bounded cadlag Euclidean-valued functions on IT).
In particular, g({Wr(7): wI}) = g({Q, (7). w €II}) under the assumptions
and likewise for LM () and LR,(-).

5.2. Asymptotic Behavior of the Test Statistics When IT = [0, 1]

Next, we consider the limiting behavior under the null of the statistics
sup,. « g Wr(m),...,sup, < g LRy(m) when IT=[0,1]. For the location model
with iid N(0,1) errors, D. M. Hawkins (1977) has already investigated this
behavior (heuristically). In the general model scenario considered here, this
behavior is determined using the results of Theorem 3. Note that Anderson and
Darling (1952, Sec. 5) have considered a similar problem.

CoROLLARY 1: Suppose the conditions of Theorem 3 and the null hypothesis H,,
hold. Then,

sup Wy(m) —,, sup LMp(m) —,%, and
we(0,1] me(0,1]

sup LRp(m) —,®.
w€[0,1]
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CommMmenTs: 1. The Corollary shows that the restriction in Theorem 3 to sets
IT whose closure is in (0,1) is not made only for technical convenience. Unless
IT is bounded away from zero and one, critical values for the test statistics
Sup, e g Wm),...,sup, « y LR(7) must diverge to infinity as 7 — o to obtain
a sequence of level a tests. By bounding 7 away from zero and one, however, a
fixed critical value suffices for all T large. This suggests that the restriction of IT
to a set whose closure is in (0,1) yields significant power gains if the change
point is in IT or is close to II. Some Monte Carlo results of Talwar (1983) and
James, James, and Siegmund (1987) for the location model substantiate this
result. Furthermore, the Monte Carlo results of Talwar (1983) show that the test
statistic sup,, < y Wr(s) has much closer true and nominal sizes in the location
model under nonnormal errors when IT is restricted than when IT =10, 1].

2. Suppose 7 maximizes Wi(w), LM (), or LR (1) over [0, 1]. By Theorem
3 and Corollary 1, sup, (. 1-;Wr(m) =0,(1) Ve >0, sup, <o yWrlm) -,
under the null hypothesis, and analogous results hold for LM (7) and LR ().
In consequence, 7 —, {0,1} under the null hypothesis. By symmetry, presum-
ably, # —, Bern(1,/2), where Bern(1,/2) denotes a Bernoulli distribution with
parameter 1/2. In contrast, if IT has closure in (0,1) and Qp(-) has a unique
maximum on IT with probability one, then # —, argmax{Q (): 7 € IT} by the
continuous mapping theorem. The latter distribution has support equal to II.

5.3. Asymptotic Critical Values

Critical values c, for the test statistics sup, <z Wp(m),...,sup, < g LRy()
are provided in Table I based on their asymptotic null distribution
sup,, 1 Q,(7). By definition, c, satisfies P(sup,, <y Q,(7) > c,) = a. The table
covers a = .01, .05, and .10, p = 1,2,...,20, and IT = [m,, 1 — m,] for an array of
, values between .05 and .50.

Table I covers a much wider range of intervals II, however, than just the
symmetric intervals [wy,1 —m(]. If IT = [7,,7,] for 0 <7, <7, <1, then it can
be shown (see the proof of Corollary 1 in the Appendix) that

(5.1) P( sup Q,(7) > ca)

mell

=P( sup BM(s)'BM(s)/s>ca),
s€[l,my(1—m /(w1 —m,)]

where BM(-) denotes a p-vector of independent Brownian motion processes on
[0, ©). In consequence, critical values based on the distribution of
SUD,; e (), ) @p(7) depend on 77, and 7, only through the parameter A = 7,(1
—771)/(77121 —r,)). Table I provides the value of A corresponding to each
value of m, considered (viz., A =(1 —m,)?/732). This allows one to obtain
critical values for all intervals IT=[w,,7,] whose corresponding value of
A =m,(1—m,)/(w (1 —m,)) either is tabulated or can be interpolated from the
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TABLE I

AsyMPTOTIC CRITICAL VALUES

p=2

p=1 p=3 p=4 p=5
To A 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
50 1.00 271 3.84 6.63 461 599 921 625 7.81 1134 778 9.49 1328 9.24 11.07 15.09
49 1.08 347 473 7.82 542 686 1030 7.19 883 1258 893 10.63 14.64 10.39 1228 16.34
.48 117 379 5.10 826 580 731 1071 7.64 929 1305 942 11.17 1517 1096 12.88 16.83
47 127 402 538 865 612 7.67 11.01 798 9.62 1339 9.82 11.63 1591 11.40 1327 17.32
45 149 438 591 9.00 6.60 811 11.77 850 10.15 1423 10.35 12.27 16.64 12.05 14.00 18.06
40 225 510 6.57 982 745 9.02 1291 946 11.17 1488 11.39 13.32 17.66 13.09 15.16 19.23
35 345 559 7.05 1053 8.06 9.67 13,53 10.16 12,05 1571 12.10 14.12 1854 1386 1593 19.99
30 544 6.05 7.51 1091 857 10.19 14.16 10.76 1258 1624 12.80 1479 19.10 1458 16.48 20.67
25 9.00 6.46 7.93 1148 9.10 1075 14.47 1129 13.16 16.60 13.36 1534 19.78 15.17 17.25 21.39
20 1600 6.80 845 11.69 9.59 11.26 15.09 11.80 13.69 17.28 13.82 15.84 20.24 1563 17.88 21.90
15 3211 7.17 8.85 1235 10.01 11.79 1551 1227 14.15 17.68 1431 1645 20.71 1620 1835 22.49
10 8100 7.63 931 12.69 10.50 1227 16.04 12.81 14.62 1828 14.94 1698 21.04 16.87 18.93 23.34
.05 361.00 819 9.84 13.01 11.20 1293 16.44 1347 15.15 19.06 1562 17.56 21.54 17.69 19.61 24.18
p=6 p=17 p=8 p=9 p=10
Ty A 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
50 1.00 10.64 12.59 16.81 12.02 14.07 18.48 13.36 1551 20.09 14.68 16.92 21.67 15.99 1831 23.21
49 1.08 11.81 13.74 18.32 13.27 1552 1993 13.29 15.63 2053 16.17 1856 23.05 1735 19.79 24.62
48 1.17 1242 14.45 19.12 13.92 16.14 20.64 13.89 1631 21.14 16.82 19.25 23.83 18.08 2035 25.75
47 1.27 12.90 14.86 19.64 14.32 16.63 21.14 1443 16,74 21.72 17.26 19.74 24.80 18.67 20.92 26.43
45 149 13.53 1559 2045 14.97 17.38 2232 15.05 17.53 2228 18.10 2059 25.52 1939 21.78 27.30
.40 2.25 14.71 1691 21.60 16.23 1841 2335 1626 18.73 23.63 19.56 22.12 26.86 20.74 23.15 28.86
35 3.45 1556 17.75 2233 17.09 1934 24.10 17.06 19.46 24.64 20.49 2293 27.77 21.87 24.17 29.76
.30 5.44 16.32 18.46 23.06 17.74 20.01 24.86 17.90 20.36 25.64 21.27 23.65 28.50 22.73 25.05 30.74
25 9.00 17.00 19.07 23.65 18.38 20.63 25.11 18.61 20.95 26.10 21.93 2431 29.23 2332 2580 31.32
20 16.00 17.56 19.64 24.27 19.04 21.07 25.72 19.17 2147 26.76 22.54 2491 29.92 24.00 2642 31.98
15 3211 1812 20.26 24.79 19.69 21.84 26.23 19.82 22.13 27.25 23.15 2547 30.52 24.62 27.03 32.33
.10  81.00 18.78 20.82 25.21 20.32 22.51 26.91 2045 22.87 27.69 23.77 26.16 31.15 2539 27.87 3295
.05 361.00 19.49 21.56 25.96 21.02 23.22 27.53 21.23 23.60 28.77 24.64 2694 31.61 2624 28.63 33.86
p=11 p=12 p=13 p=14 p=15
Ty A 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
.50 1.00 17.28 19.68 24.73 18.55 21.03 26.22 19.81 2236 27.69 21.06 23.68 29.14 2231 25.00 30.58
49 1.08 18.65 21.02 26.43 20.27 22.70 28.04 21.05 23.73 29.67 22.52 25.17 3123 2430 2693 32.73
48 1.17 19.40 21.81 27.04 21.01 23.54 28.64 21.87 24.53 30.23 2345 26,11 3211 2513 27.82 33.55
47 1.27 19.94 2236 27.84 21.54 24.08 29.14 2246 2524 30.87 24.09 26.75 32.57 25.65 2842 34.08
45 1.49 2070 23.27 28.47 2242 2499 30.03 2331 2595 31.62 2498 27.65 33.39 2659 2925 35.16
40 2.25 22,24 2495 3020 23.81 2626 31.52 2491 27.56 3338 26.46 29.20 34.97 2821 31.07 36.59
35 3.45 2325 25.93 31.14 24.80 27.45 3246 26.00 28.77 34.65 27.52 30.30 36.10 29.23 32.11 37.32
30 5.44 2419 26.71 31.65 25.63 28.18 33.27 2695 29.70 3526 28.41 31.08 37.02 30.21 32.80 38.28
.25 9.00 24.82 27.43 32.39 2637 2898 33.77 27.64 3048 3585 29.31 31.83 37.25 3093 33.65 38.93
20  16.00 25.41 27.93 33.42 27.08 29.61 34.56 2836 31.10 36.47 29.98 32.65 3841 31.68 34.41 40.07
15 3211 26.14 28.55 33.75 27.74 30.16 35.07 29.13 31.80 37.04 30.67 33.45 39.22 3251 3506 40.56
.10 81.00 26.86 29.21 34.46 28.47 30.88 35.75 30.01 32.62 37.64 3148 3422 39.60 3328 3576 4128
.05 361.00 2791 30.15 35.14 29.31 31.76 36.70 3090 33.42 3844 3248 35.00 40.10 3425 36.74 42.05
p=16 p=17 p=18 p=19 p=20
Ty A 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
.50 1.00 23.54 2630 32.00 24.76 27.58 33.43 2599 2887 34.81 27.19 30.14 36.21 2841 3141 37.57
49 1.08 2532 28.17 34.11 26.77 29.72 33.57 27.85 30.79 36.82 29.36 32.40 38.97 30.44 33.56 40.04
A48 1.17 26.22 29.05 35.09 27.65 30.58 36.78 28.76 31.57 37.70 30.18 33.20 39.93 3139 34.62 40.88
47 1.27 26.83 29.73 35.87 28.16 31.25 37.38 29.32 32.24 38.65 30.87 33.86 40.28 3201 3512 41.72
45 1.49 27.75 30.59 36.88 29.14 32.18 38.25 30.38 33.17 39.31 31.95 34.82 4140 33.09 3641 42.97
40 2.25 29.34 32.28 38.56 30.82 33.74 39.66 32.11 35.10 40.99 33.54 36.53 43.34 3478 37.93 44.20
35 3.45 30.56 33.40 39.18 31.96 34.86 40.81 33.40 3623 41.84 3471 37.79 4430 36.04- 39.21 4534
.30 5.44 3156 34.41 4029 3299 35.83 41.73 3433 37.09 4269 3572 38.77 44.76 37.04 40.25 46.14
25 9.00 32.33 35.19 41.07 33.85 36.71 4246 3527 37.94 43.68 36.60 39.75 45.66 37.92 40.98 46.79
20 16.00 33.21 3595 41.78 34.53 37.49 43.27 36.07 3877 44.09 37.47 4043 46.68 3897 4190 47.75
15 3211 33.90 36.66 42.40 35.39 38.12 43.95 36.85 39.55 44.84 3836 41.25 47.25 39.96 43.00 48.40
.10 81.00 34.72 37.48 43.10 36.19 39.05 44.52 37.64 4038 45.89 39.16 42.01 4795 40.74 43.76 49.58
.05 361.00 35.81 38.51 44.20 37.24 40.05 4539 38.68 4136 46.69 4027 43.05 49.02 41.83 44.52 50.76
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table. The table covers values of A between 1 and 361, so almost any interval of
interest can be considered.

Note that ||[BM(-)|| is a Bessel process of order p. In consequence, the
probability given in (5.1) is the probability that a Bessel process exceeds a
square root boundary somewhere in the given interval. Such probabilities and
corresponding critical values for given significance levels have been computed
numerically for p <4 for a variety of A values by DeLong (1981). In contrast,
the critical values given here have been computed by simulation. They cover a
considerably wider range of values of p and A than those considered by
DeLong.

The values reported in Table I are estimates of the critical values ¢, obtained
by (i) approximating the distribution of the supremum of Q () over 7 € [w,
1 —m,] by its maximum over a fine grid of points II(N) and (ii) simulating the
distribution of max , ¢ ;x, @,(7) by Monte Carlo. The grid II(N) is defined by

(52) I(N)=[mg,1-m]N{m=j/N:j=0,1,...,N}.

The value of N was chosen to be 3,600 based on a comparison of the
approximations obtained here with the numerical results of DeLong (1981),
which are available for p <4. A single realization from the distribution of
max ., . vy @,(7) was obtained by simulating a p-vector B,(-) of independent
Brownian motions at the discrete points in II(N) and computing
max . c gny (B(m) — 7B, (D))(B,(m) — 7B, (1)) /[7(1 — w)]. The number of
repetitions R used was 10,000. The accuracy of the simulated critical values for
approximating the critical values based on the statistic max,, < ;v Qp(qr) can be
determined by noting that the rejection probability of the statistic
max . ¢ vy @,(7) using the simulated critical value has mean « and standard
error approximately equal to (a(l —a)/R)'/2. For a = .01, .05, and .10, the
standard errors due to simulation are .001, .002, and .003 respectively.

5.4. Asymptotic Local Power

In this section, we consider the behavior of 8(-), W(+), etc. under sequences
of local alternatives. We introduce the following assumption:

AssUMPTION 1 — LP: Assumption 1 holds but with the assumption in part (b)
that Em;,=0Yt <T, T > 1 replaced by sup_ . ; INT#i(0,,7) — u(m)ll = 0,(1)
for some nonrandom bounded R*'-valued function w on II.

We write u(m) = (u (7Y, u(7)) for w(m), u,(m) €R".

In many cases, u(7) can be expressed in more primitive terms. For example,
suppose (i) Assumption 1—LP holds, (i) {Wy,: t<T, T>1} is such that
Em(Wy,, By +n(t/T)/VT,8,) =0Vt < T, T >1, for some bounded RP?-valued
function n(-) on [0,1] that is Riemann integrable on [0, 7] uniformly over
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me U1}, and (i) max, .7 supg. 5-p, <k, 7 | E@ /08 )Mm(Wr,, B,80) — M|
— 0 as T — ®, where K =sup,_ . 7 [ln(m)l. In this case,

Ko(m)

_ —M [ "n(s) ds
(5.3) u(m) = pa( )) 0 )

) —Mfln(s) ds

THEOREM 4: Suppose Assumption 1 — LP holds, Assumption 2 holds except in
part (a) below, and Assumption 3 holds except in parts (a) and (e) below. Given
any set II whose closure lies in (0,1), the following processes indexed by e Il
satisfy:

() VT (6(+) = 05) = (MY y(OME)TMCYy(-XG(-) — u(-));

(®) sup,.c o IV,(m) = V>, 0 forr=1,2;

© W ()=05C)=7xC)I¥() and sup, . Wp(m)—>, sup,cp Qn(m),
where

B,(m) —7B,(1)
[7(1-m)]"?

—AS_I/Z(('l_';_ﬂ)l/ZMI(ﬂ) - (1—1_7—#)1/2#2(#));

(d) LM(-) = Q}(*) and sup,,  y LM () =, sup,, c ; Q¥ (m);

(e) LR(*) = Q5(-) and sup,, c y LR(m) >, sup,. c g Q5 (m);
where B,(+) is a p-vector of independent Brownian motions on [0,1] restricted to
II, A=(CC")"Y2CeR”*, and C=(M'S"'M)"M'S™/2e€RP* If p=v,
one can take A = I,,. The convergence in (b)—(e) holds jointly.

Iy (m) =

CommeNTs: 1. The local power results of Theorem 4 are similar to those
obtained by D. L. Hawkins (1987), but are more general. Hawkins’ results cover
the particular case of one-time structural change in which u(-) is as in (5.3) with
1(-) of the form n(w)=b1(m < m,) for some fixed 7, € (0,1) and some con-
stant b. His results apply to ML estimators in iid contexts.

2. When u(-) satisfies (5.3), Q}(-) depends on n(-) in the following way:
Q¥(m)=Jx(wYJ¥(m) and

B,(m) —mB,(1)
[7(1-m)]""

m\'?% =
+AS‘1/2M((T) fon(s)ds
—(l—f—qr‘)l/zfqun(s) ds).

8By definition, this means that m is Riemann integrable on [0,7] YweIlU{l} and
A/T)ET™q(t/T) > [Fn(s) ds uniformly over w € ITU{1} as T - o.

(54)  Ip(m) -
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3. For fixed 7 € (0, 1), Q;',‘(ﬂ-) has a noncentral chi-square distribution with p
degrees of freedom and noncentrality parameter given by the squared length of
the second summand in the definition of J} ().

4. By simulating the distribution of sup, . ; Q}(s), the sensitivity of the
power of the test considered here to the form of the alternative, as specified by
wu(+) or n(+), can be determined and the results hold asymptotically for a wide
variety of models and estimators. For example, one can determine the effect of
the location of the change point on the tests’ power by simulating sup,. . ; Q:(TJ’)
with n(7) = 1(w < m,) for a variety of values of ,. The results of Theorem 4
also can be used to compare the asymptotic power of the tests considered here
for a wide variety of models with that of other tests in the literature, again by
simulation.

5. The local power of the tests considered in Theorem 4 is the same whether
8, is estimated or is known.

The local power results of Theorem 4 can be used to show that the tests
based on sup..pgWy(m),...,sup_ g LR () each have nontrivial power
against alternatives for which the parameter B, is nonconstant on II. These
results are analogous to results obtained by Ploberger et al. (1989, Cor. 1) for
the fluctuation test in the more restrictive context of testing for pure structural
change in an iid linear regression model.

COROLLARY 2: Suppose the assumptions of Theorem 4(c) (resp. 4(d), 4(e)) hold
with p(-) as in (5.3) but with n(-) replaced by ¢n(-). Suppose II is an interval
whose closure lies in (0,1). If n is not almost everywhere (Lebesgue) equal to a
constant vector on II, then

lim lim P( sup W(r) >ca) =1

oo THwx rell
(resp.
lim lim P( sup LM (m) > ca) =1,

E—oow THw rell

lim lim P( sup LRy(m) > Ca) =1),

E—o T—Hw rell

where c,, is as defined above and a € (0,1).

Next, using Theorem 4, we can establish a weak optimality result for the test
statistics sup,,. g Wy(m),...,sup,, gy LR(7) for testing against the alternatives
in U, cpgH7(7). This result is a generalization to multiparameter two-sided
tests of a result of Davies (1977, Thm. 4.2) for scalar parameter one-sided tests.
The result shows that as the significance level a goes to zero, the power against
all local alternatives of the level a test based on sup,. . g Wy(m) is at least as
large as that of the level a test based on Wy (#) for any fixed 7 € II. Thus, if
W (i) possesses asymptotic local power optimality properties against certain
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alternatives, e.g., as it does in the ML case against one-time structural changes
(ie., for n(s)=0 for s <7, n(s) =4 for s > ), then sup,_ .y W,(7) inherits
these properties as o — 0. The same also holds for sup,.; LM, (7) and
sup,, « g LR(r).

THEOREM 5: Let m denote a bounded RP-valued function on [0,1] that is
Riemann integrable on [0, ] uniformly over w Il U (1}. Let 5 denote the set of
all such functions m for which there exists a distribution P, of the triangular array
{(Wr,: t<T, T>1} such that 1 —LP, 2, and 3 hold with u(-) as in (5.3). Then,

(55)  lim inf inf lim [Pn(sz% Wr(m) > c,) = P,(Wr(7) >&,)| >0,

a—-0 nef #we€ll Tox

where c,, and ¢, are such that the tests based on sup, . f Wp(m) and W () have
asymptotic level a €(0,1). The result (5.5) also holds with W (-) replaced by
LM.(+) or LR,().

ComMeENT: The optimality result (5.5) is referred to above as a weak result
because it appears that a must be quite small before the result is illustrative of
finite sample behavior of the test statistics sup,.;Wr(m) and Wi (7).
Nevertheless, the result does serve to indicate that as a decreases the dif-
ference decreases between the power function of the level a test based on
sup,, < g Wy(w) and the envelope of the power functions of the level a tests
based on W (7) for fixed 7 € II.

6. CONCLUDING COMMENTS

1. The tests discussed in this paper are asymptotic in general. Nevertheless,
exact versions of them can be obtained in some cases. In particular, consider a
linear regression model with fixed regressors and iid normal errors. In this case,
the sup Wald test statistic based on the least squares estimator has null
distribution that is invariant with respect to the regression and variance parame-
ter values. In consequence, one can set the regression parameters equal to zero
and the error variance equal to one and generate exact critical values by
simulating the resultant model. Since least squares regressions are very quick to
compute, this procedure is not very burdensome computationally. See Andrews,
Lee, and Ploberger (1992) for further details.

2. The basic Assumption 1 employed above utilizes the concept of near epoch
dependence. This assumption can be simplified if the underlying random
variables {W,: t = ...,0,1,...} are stationary and ergodic. In particular, it can be
shown that Assumption 1 can be replaced by the following assumption and
Theorems 1-5 still hold.” Let % denote the o-field generated by {W,: —o <
t <s}. Let m,, B,, and A, be as in Section 3.2.

° The invariance principle used to show this is given by Hall and Heyde (1980, Cor. 5.4, p. 145).
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AssumpTiON 1*: (@) {(W,: t = ...,0,1,...} is stationary and ergodic;
(b) Em,=0, Em,m, <o, X2_ (ElE(m,| % _)I)/? <, and S is positive
definite;

(c) m(w, B, 8) is continuously partially differentiable in (B, 8) Y(B, §) € B, X 4A,,
VweW,CW for a Borel measurable set W, that satisfies P(W,€ Wy)=1,
m(w, B, 8) and dm(w, B,8)/3(B', 8') are Borel measurable functions of w for each
(B,8) € By X Ay, and E Sup g s,c p,xa, 10m(W,, B, 8)/3(B’, 8"l < ;

(d) Assumptions 1(d), (e), and (h) hold.

3. In the event that a test for structural change rejects the null hypothesis, it
may be of interest to estimate the parametric model defined by the restricted
alternative U .  ;H,7(). This involves estimating the time of change parame-
ter 7. Properties of the maximum likelihood (ML) estimator of 7 have been
considered by Hinkley (1970), Picard (1983, 1985), Deshayes (1983), Bai (1991),
and Bai, Lumsdaine, and Stock (1991) for a variety of models. No optimality
properties are known for the ML estimator of .

Cowles Foundation for Research in Economics, Yale University, P.O. Box 2125
Yale Station, New Haven, CT 06520, U.S.A.

Manuscript received June, 1991, final revision received November, 1992.

APPENDIX

For notational simplicity, we say Xp(w)=o0,,(1) if sup, <l X (m)l=0,(1) and we say
X(m) = 0,, ) if sup,. ¢ ;7 | Xr(m)ll = O,(1). .

First we provide conditions under which the PS-GMM estimator 6(-) is consistent for 6,
uniformly over 7 € IT under the null hypothesis.

AssuMPTION A: (a) Assumption 1(a) holds.

) sup, e I9(m) — y(w)ll >, 0 for some symmetric 2v X 2v matrices y(m) for which
sup,, ¢ g ly(m)ll < oo,

(c) B and A are bounded subsets of R” and RY respectively.

(d) m(w, B, 8) is continuous in w for all (B,8) € B X A and is continuous in (B,8) uniformly over
(B,8,w) € BX A XC for all compact sets CCW.

(e) limy ,(1/T)ETE sup g 5)c pxa |MWr,, B, 8)| 1*¢ < for some & > 0.

® limgy_,Q/TEI"Em(Wy,, B,8) exists uniformly over (B,8,m)EBXAXII and equals
wlimg_, o, (1/T)ETEm(Wr,, B, 8).

(® m(Bg,dy) =0, where m(B,8) =limy_,,(1/T)CTEm(Wy,, 8,8), and for every neighborhood
0, (CO) of 8y, inf, pinfycg,q,m0,7)y(wIM(0,m) >0, where m(8,m)= (mm(By,8Y,(1 -
w)m(B,,8)Y.

When Assumptions 2 and 3 hold, Assumption A(b) automatically holds and A(g) simpli-
fies to: m(By, ;) =0 and for all neighborhoods B, and A, of B, and A4, respectively,
inf g, 5y Bxa /Byxa, M(B, 8YS™H(B, 8) > 0.

TureorReM Al: Under Assumption A, the PS-GMM estimator 6(-) satisfies sup,, <  [16() — 8o/l = b
0 for any set II whose closure lies in (0,1).
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ComMmenT: To obtain consistency of the full-sample GMM estimator 5 Assumption A only
needs to be altered slightly. Consider the condition A(b"): ¥ -,y for some nonsingular symmetnc
v X v matrix y, where § is the weight matrix of the full-sample GMM estimator. We have 6— p 00 if
Assumption A holds with A(b) replaced by A(b’) and with A(g) replaced by the simplified vers1on of
A(g) given above except with y in place of ™1

The proof of Theorem Al uses the following three lemmas (the latter two of which are also used
in the proofs of other results below).

LemMma Al: Suppose 6(m) minimizes a random real function Q(6,m) over 6 € ® CR*?*4 for
each w €Il with probability —» 1. If (a) sup,cp oce |Qr0,7)~ Q(0,7)| —,0 for some real
function Q on @ X II and (b) for every neighborhood 0, (C ) of 8, inf,. (mf,,ee /0,200, m) ~
Q(60¢,7)) > 0, then sup,, ¢ 7 116(7) — 6ll >, 0.

Lemma A2: Suppose (X, t<T, T>1} is a triangular array of mean zero real-valued rv’s
that is L>-NED with respect to a strong mixing base (Yp,: t= ...,0,1,...; T>1} and

limy o, (1/T)TTE (X1, | '€ < © for some € > 0. Then, Esupg .7 |(1/T)E{X7,| >0 as T - co.

LemMa A3: Suppose (a) Assumption 1(a) holds, (b) A is a bounded subset of R*, (¢) f(w, A) is an
RC-valued function on W X A that is continuous in w for all A € A and is continuous in A uniformly
over (A,w) € A X C for all compact sets C CW, and (d) limy _, ,(1/T)ZTE sup, ¢ 5 |f(Wy,, D[E<
o for some &€ > 0. Then,

1 S
sup sup TZ[f(WrM)—Ef(Wn’)‘)] -,0
A€A S<T 1

ProoF oF THEOREM Al: We apply Lemma Al with Qr(8,7)=m(8,7)$(w)m(0,7) and
0(8, ) =m(8, wYy(mw)m(0, ). Condition (b) of Lemma Al holds by (Assumption) A(g). Given
A(b), condition (a) of Lemma A1l holds if

A1) sup sup |mr(8,m) —m(8,7)|| =, 0.

well 6

Using L% ., = ZT — =T, the latter holds if

(A2) sup sup
(B,8)eBxA Tm<S<T

-,0 and

S
% Y [m(W,,B,8) - Em(W,,B,8)]
1

Tm
= S LEm(#, 8,8~ (8,0)]| >0

1

(A3) sup sup
(B,8)eBxA well

where 7, =inf{w: m€II}> 0. (A2) holds by Lemma A3 under A(a)-(e). (A.3) holds by A(f).
Q.E.D.

ProoF oF LEmMa Al: By Assumption (b), given any neighborhood @, of 6, there exists a
constant & > 0 such that inf, ¢ ;[infyc g0, 2(0,7) — Q(8g, 7)] > & > 0. Thus,

(A4) P(é(ﬂ') €60/0, forsome 7 eII)
<P(ﬁ‘2§] [Q(é(’ﬂ'),’ﬁ') —Q(Go,ﬁ')] >¢ for some weH)

<P(Q(é(7r),7r) - Q(0g,m)=¢ forsome EH) -0,

where “— 0” holds provided sup,, « [ Qb(r), ) — Q(8y,7)| -, 0. Using Assumptions (a) and
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(b), the latter follows from
(AS) 0< 171257 [Q(é(w),w) - Q(OO,'n')] < su;l)_l [Q(@(‘rr),‘rr) —Q(OO,‘rr)]

< Sgl;)] [Q(é(‘n’),fr)—QT(é(w),w)] + s:];] [Qr(é(‘n'),‘n') —Q(GO,‘n')]
< Slellli7 [Q(é(‘"‘),ﬂ) —Qr(é(”')ﬂ’)] + 521:1 [Qr (80, 7) = Q(80,m)]

<2 sup |Qr(8,m)-Q(6,7)|—,0. Q.E.D.
well,€0

PrROOF OF LEMmMA A2: Under the moment conditions, {X,} is L!-NED by Theorem 6.1 of
Potscher and Prucha (1991). This property and inequalities (2) and (3) of Andrews (1988) show that
@) limy_,,(1/TETE(X | Ypss ..., Yri_)| =0 as m—o and (i) llmT_,m(l/T)ZTIXT,
E(X7\Yrioms---» Yrr)| = 0 as m — ». Conditions (i) and (ii) are a slightly weaker version of the
L'-mixingale condltlon of Andrews (1988) with constants ¢,=1 and o-fields Fy, given by those
generated by {Yr,}. Theorem 1 of Andrews (1988) holds with the L!-mixingale condition replaced by
(D and (ii). In fact, the conclusion of Theorem 1 can be strengthened from E|(1/ T)21X1,| - 0to
Esupg 7|1/ T)ZIXT,I — 0 as T — » with some alterations in its proof. This gives the result of
Lemma A2. The alterations in the proof of Theorem 1 include changing (1/n)X}_;- to
sup; ¢, |(1 /n)):‘,’ -| and E|Y,,,] to E E sup;  , IY ;| in equation (7) and strengthening the result of
the Lemma in Andrews (1988) from IIY I, =0 as n - ®© to ||supj<,, I(j/n)YI l, > 0as n—o. To
achieve the latter, the proof of the Lemma needs to be changed by replacmg (1/n)Cf.; - by
sup; ¢, 11 /n)Li_; " | throughout and by using the martingale inequality llsup; < , 1(1/n)E} 1(W< -
EW,| Z_DIl2<2I1/n)Cr (W, — EW;| F_ )l due to Doob (see Theorem 2.2 of Hall and
Heyde (1980, p. 15)) in equation (4). Q.E.D.

ProoF oF LEMMA A3: The desired result follows from Theorem 1 of Andrews (1992) with G,(6)
set equal to supg . 7 |(1/T)ES[ f(Wr,, A) — Ef(Wr,, M)]|. Hence, it suffices to verify the conditions
BD, P-WCON, and SE of Theorem 1. BD holds by Assumption (b). For G,(8) as above, the proof of
Lemma 3 of Andrews (1992) shows that DM and TSE imply SE. DM holds by Assumption (d). By
Lemma 4(b) of Andrews (1992), TSE-2 implies TSE. TSE-2 holds by Assumptions (a) and (c). It
remains to show P-WCON. Under Assumptions (a), (c), and (d), Theorem 6.5 of Potcher and
Prucha (1991) implies that {f(Wr,,A). t < T, T> 1} is L’-approximable by the base {Y;,} for all
A € A. By Assumption (d) and Theorem 6.1 of P6tscher and Prucha (1991), the approximators can
be taken to be the conditional means {E(f(Wr,, )| Y7, _p,- YT,+m) t<T, T>1, m>1} In
consequence, {f(Wr,,A): t < T, T > 1} is LO-NED on the strong mlxmg base {Yn} forall A € A. We
now apply Lemma A2 with Xy, equal to an element of the c-vector f(Wy,,A) — Ef(Wy,,A) to
obtain P-WCON. Q.E.D.

The following lemma is used in the proof of Theorem 1.

Lemma A4: Let {nr(:): T>0} be a sequence of random elements of the space of bounded
RY-valued cadlag functions on a set A [0,1). If (i) &'n(-) = a'ne(-) Va €RY and (i) {n7(:): T> 1}
has asymptotically independent increments (as defined, e.g., by Billingsley (1968, p. 157)), then
'YIT(')=>'f]0(')-

(Note that Prop. 4.1 of Wooldridge and White (1988), which claims that condition (i) alone is
sufficient for a multivariate invariance principle, is not correct. Their proposition cannot be derived
in the manner they suggest.)

PROOF OF THEOREM 1: Since 6(r) minimizes 7 (0,7)7(m)#(8,7) and 6(r) is in the interior
of ® V1 € IT with probability —» 1 by (Assumption) 1(d), we have

[ m-,-(O(‘n')

(A6) ﬂ)] F(aWTmr(8(m), ) =0,(1).
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Let 7i7;(6,7) denote the jth element of (6, 7). A mean value expansion of VT mT,(O('n-) )
about 00 gives: Vj=1,...,2v,

(A7) ﬁmrj(é(ﬂ),w) _ ‘ﬁ:mrj(oo,‘n')+ erj(o*,w)\f;(O(ﬂ) —00) ,

where 6*(=6(sr)) is a rv on the line segment joining () and 6, (see Jennrich (1969, Lemma 3)
for the mean value theorem for random functions). The latter property and 1(d) imply that
0* =09+ 0,,(1).

Below we show that

omp(0*(mw),w
(A.8) su;I)7 ———Z(—ao(,—)—)-—M(fr) -,0
TE

whenever 6* (i) satisfies sup,, < j7 116*(ar) — 6,ll =, 0. We also show that

(A9) VTir(6,,) = G(*)

as a process indexed by 7 € I1. Equations (A.6)-(A.9), 1(e) and (h), and the continuous mapping
theorem (see Pollard (1984, Thm. IV.12, p. 70)) combine to give the desired result:

(A10) VT (6(-)=8p) = —(MCYy(:IM(-)) 'M(Yy(IWT (8, -) +0,,(1)
= —(MCYy(IME)) T MYy ()GC).

To establish (A.8), we write

om(0*(mw), T
P L
mell a6
< sup o (6% (), m) _Ear_nT(G,'rr)
= rell a0’ a6’ 6=0%(m)
om(6,) i (8y, )
+sup sup (|[E——— - E——>7—
T51 mell 0 0=6%(m) 9
om(0y,m
+ sup |ETT0™) el
mell a6’

The third summand on the right-hand side of (A.11) -, 0 by 1(g). The first summand —, 0 because
Assumption 1 and Lemma A4 yield

omir(0,m) _Eamr(o,w)"_, 0
26’ 0 | ”

(A.12) sup sup
well €0,

Finally, the second summand on the right-hand side of (A.11) -, 0, because (i) by the tightness of
{r: T>1) supT>1(1/T)):1P(WT, €C)—0 as j—oo for some sequence of compact sets
{Ci:j=1}inw, (ii) for all j =1, we have

117 [om(Wy,,B,8)  om(Wy,, By,
1 LU ‘,,(;,,{::; i)
am(w,B,8)  Im(w, ﬁo,ao)"

a(p',8') WB,5) |
as (B, 8) = (B, 8,) using 1(f); and (iii) results (i) and (ii) combine to give

1I7 [om(Wry,,B,8) om(Wy,,Bo, 6

Y R X
as (B, 8) = (By, 8y). Thus, the right-hand side of (A.11) -, 0 and (A.8) is established.

(A.13) sup sup
T>1 mell

< sup
weC,
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Next, to show (A.9), let v;(m) = (1/VT)ZT™m,. Since YT m(8y,7) = (w(w),v (1Y — v (7)Y,
(A.9) follows from v;(-) = S/2B(-). To obtain the latter, we apply Lemma A4. Under 1(a)-(c), we
obtain condition (i) of Lemma A4 by Cor. 3.1 of Wooldridge and White (1988), which utilizes results
of McLeish (1977). (Note that Cor. 3.1 yields weak convergence of the standard partial sum process
in D[0, 1] with the Skorokhod metric and the Borel o-field generated by it. This can be converted
into weak convergence in D[0, 1] with the uniform metric and the o-field generated by the closed
balls under the uniform metric as follows. The result of Cor. 3.1 implies weak convergence of the
smoothed partial sum process (i.e., a'vr(m) + (Tw — [T De'myz,y .1/ VT) using the Skorokhod
metric on D[0, 1], because the difference between the standard and the smoothed partial sum
processes is < sup, c7la’m,| /YT and the latter is 0,(1) by the Lindeberg condition; see Hall and
Hyde (1980, p. 53). Since the smoothed process is in C[0, 1], the Skorokhod and uniform metrics are
equivalent for C[0, 1], and the Borel o-field and the o-field generated by the closed balls under the
uniform metric are equivalent for C[0, 1], the smoothed partial sum process converges weakly as a
sequence of random elements of C[0, 1] with the uniform metric and its Borel o-field. This yields
the desired univariate invariance principle for the standard partial sum process, a'v (), in D[0,1]
with the uniform metric and the o-field generated by the closed balls under the uniform metric,
because the difference between these two processes is less than or equal to sup, . la'm,|/ \/— =
o,(1).

g To obtain condition (ii) of Lemma A4, it suffices to show that

VT(’"'2)—VT(‘"'1)) >, N(O,((Trz_ﬂl)s 0

Vo< <m <m,<1l.
vr(mo) 0 ’"'05)) ToSTIS T

(A.15) (

By the Cramér-Wold device, the latter holds if
(A.16) ap(my) — dwr(my) +ayvp(mg) =>4 N(O, (7, — my)aiSa; + moaySay)
Va,,a, €R".

(Note that this result is not implied by &'v(:) = a'v(-) Ya €R".) To obtain (A.16), the same
central limit theorem as used above, viz. Cor. 3.1 of Wooldridge and White (1988), can be employed.
Q.E.D.

ProoF oF LEMMa A4: Conditions (i) and (ii) are sufficient because (a) tightness of {a'n(:):
T > 1} Va € R” implies tightness of {n(-): T > 1} on the v-dimensional product space, (b) asymptot-
ically independent increments plus weak convergence of np(m,) —np(mr) YOS 7, <m,<1 is
sufficient for joint convergence of all the finite dimensional distributions of {n;(:): T > 1}, and (c)
weak convergence of a'ny(+) to a'ny(-) Ya € R* implies weak convergence of a'(n7(m,) — n(7,)
to a'(ny(m,) — momy)) V0 <y <, <1 which, in turn, implies weak convergence of n(w,)—
17 ) to ngmry) — no(ary) using the Cramér-Wold device. QE.D.

PrOOF OF THEOREM 2: Assumptions 1(h) and 2 imply that M’'S~'M is nonsingular and hence
that V is well defined. By the argument of (A.11)-(A.14) and Assumption 1(d), sup,, <  IM, () —
M| -, 0. By Assumption 3, sup,, < ;7 IS,(sr) — S|l =, 0. Using Assumption 2, this gives the desired
result. Q.E.D.

The following Lemma is used in the proof of Theorem 3.
LemMma AS: Let J(1) be a nonsingular 2p + q) X 2p + q) matrix of the form

wd 0 ),
0 1sz 7212 )
13 J4 JS

where 1, and 1, are nonzero scalar constants, J € RP*P, J,€ RP*4, J,&€RI*P, J, € R7*?, and
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Js€RI%9. Let g = (g}, g5, g5 be any vector in R***9 and let H=[I,.~1,:0] € RPX@P+D) [ ot

_ 11'1] 0 _ g1 2p
J*(‘”)—[ 0 1.‘.2]], g*_(gZ €R )
and H, =[1,:~1,]. Then, HI~'(m)g = H, J5 ()8 «.

PROOF OF LEmMa AS: Let v=(,vh,vy)=J"Nw)g and o=@, 5,) =J;(m)g*. Since
J(m)v =g, we have

w0 (v, & m v, v 7y J U,y
17 - - {7 -
A1 [ 0 72]](”) (32 malovs |’ V2 2 I Uy |’ and
HI Y (m)g=vy—vy=0,— P, =H, J ' (7)8x- Q.E.D.

Proor oF THEOREM 3: Let the subscript * be a deletion operator that deletes the last g rows
and columns of (2p + q) X (2p + q) matrices, the last g rows of 2p + g-vectors and 2p +¢q) Xp
matrices, and the last g columns of p X (2p + g) matrices. Let

TM'STIM 0 TM'S™ M,
(A.18) J(m)=M(7)y(m)M(7) = 0 (A-m)M'ST'M (A-m)M'S™M; |,
TMSTIM (1-7)MS™M M8~ M,
where the second equality holds by Assumption 2. By Lemma AS, we have HI Ym)g=
H,J7(m)g, for all g€ R*7*9 (where J; X(m) =[J,(m)]™ ).

First we establish part (a) of Theorem 3. Let C=(M’'S™'M)~'M’S~1/2, By Theorem 1 and
Lemma A5, we have

(A19) VT (Bi(*)-B2("))
=HVT (6(-) - 0o) = HI'()M(-Yv(-)G(")
=H J'()IMCYy()G()]«
o Jeemsm 0 -
=[5 I"][ 0 (l—L(-))M’S“M]
M'S=1/?B(+)
| sy -Be)
=C[B(:)/:() = (B(D)-B())/(1—(- )],
where «(7r) = 7. By Theorem 2,

1

A A 1
(A20) V() +VR()/ (A=) = (ﬁ + m)V=CC’/[4(')(1 (NI

(A.19) and (A.20) and the continuous mapping theorem (see Pollard (1984, Thm. 1V.12, p. 70))
give

(A21)  Wr(-) = (B,(*) =1 )B,(1)) (B,(-) = t()B, (1) /[«(:)(1 = ()],

where B,(-)=(CC')"1/2CB(-). B,() is a p-vector of independent Brownian motions because
(CC)~12Cl(CC)~V/3CY =1,. This establishes the first result of part (a). The second and third
results of part (a) follow from the first using the continuous mapping theorem. The same is true for
parts (b) and (c), so it suffices to establish the first result in parts (b) and (c).
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Next we establish part (b). By Theorem 2, 17,(17-) =V+o0,,(1). In addition, we show below that
(A22)  sup |[VTmp(6(m),7) | =0,(1).
mell
Hence, it suffices to show that LM{(-) = Q,(-), where

(A23)  LMY(m)=cQ(mY(V/m+V/(1-m)) 'c(r) and

—(M'S My I mst 0
e (m)=[1,:-1, Al 1 .
0 T (MSTIM) T Ms
VT (§(r), m)
= H, J3 (m) [ M(x Y y(e WTTr(6(m),7)]
Using Lemma A5, we obtain
(A24) () =HI" (m)M(mYy(wWTmr(6(m), 7).
Equations (A.7)-(A.9) with 6(-) replaced by 6(-) yield
(A25)  VTmp(b(m), ) =VTmp(8g,7) + M(mWT (6() - 6y) +0,,(1).
This result and (A.24) give
(A.26) () =HIT'(YM(Yy(- WT (8o, ) + HVT (6() = 65) + 0,,(1)
=HJ"'()M(-Yv(-)G(")
=C[B()/(:) = (B(1) = B(-))/(1 = u(-))]

using the last three equalities of (A.19) and the fact that Hf(w) = H8, = 0. Equations (A.23) and
(A.26) combine to give the desired result LMJ(+) = Q,(*) in the same way that (A.19) and (A.20)
yield (A.21).

For part (b), it remains to show (A.22). This follows from (A.25), since (i) sup,, « ;1 VT (0, Il
=, sup, e 7 IG(7)ll (< as.) by (A.9) and the continuous mapping theorem,

(i) sup., < ;7 |M ()|l < 0, and (iii) VT (6 — 6,) = O,(1) because 6 is consistent by 1(d) and, given
consistency, is asymptotically normal by standard arguments given the remainder of Assumption 1.

Next, we consider part (c). For brevity, we only give a sketch of its proof. First, by element by
element mean value expansions, one obtains

amr(8,m)WT (6 - 6)
30’
amr(6,m)WT (6 -6)

26’
. ,[a iz (6, w)] Y(,,)"’“T(é’")(é‘é)

(A27)  VTwp(0,7)=VTmp(0,7)+ +0,,(1) and

(A28)  LRp(m)=2Tmp(8,7)9(w)

+ T(0 ) Y Yy +0,.(1)

= VT (6—6) M(xYy(m)M(mWT (6 - 8) +0,,(1),

where the second equality uses (A.6). Let 6(x) be the restricted PS-GMM estimator that minimizes
(0, 7Y y(mw)m (6, ) over @y ={0 € @: § = (B, B',8'Y). The first-order conditions for 0(11') ) yield
" [0m(8(ar), w) /80’ Y ()i (6(r), ) = H'A for some p-vector of Lagrange multipliers A (= A(wr)).
Under Assumption 2, the full sample GMM estimator 6 can be shown to satisfy the same first-order
conditions up to o,,(1/ VT). This result, premultiplication of (A.27) by [omi(0,7)/36'Y $(mr),
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rearrangement of (A.27), and application of (A.6) give

- A om é,fr ! _
(A29)  VT(E-0) =r1(w)[——i},;—)] YW (5, + 0pn()

=VTJ Y (m)H'A +0,,(1) and
(A30)  LRy(m)=VTNHI~\(m)H'(HJ~'(m)H') VT HI~}(w)H'A + 0, (1).

By Lemma A5 and the definitions of A and c¢3(r), we have

1-m

V and
g ) an

(A31) HJ W(w)H'=H,J;'\(w)H, = (% + ;)(M’S‘IM)_1= (% +
(A32)  VTHI Y (m)H'X=HJ Y (m)M(w)y (e WTp(8,7) + 0pr(1) = () + 0,,(1).

Combining (A.30)-(A.32) gives LR(m) = LMX(m) + 0,,(1) and the desired result follows from
the proof above that LMJ(-) = Q (). Q.E.D.

PrROOF oF CoROLLARY 1: The process BB(-) = B,(-) — «()B,(+), which appears in the definition
of Q,(+), is a p-vector of independent Brownian bridge processes on [0, 1]. An alternative method of
defining such a process is via a p-vector BM(+) of independent Brownian motion processes on [0, «).
In particular, we have

(A33) {BB(w): m€[0,1]} = {(1 —m)BM(mw/(1 —m)): m€[0,1]},
where = denotes equality in distribution. Hence, we have

(A34) P( sup Qp('rr)<c)

melm,m,]

ol (2 (i) [(75) <

melm,m;]
mys Y s s
=P sup BM BM <c
sell, 1 —m) /(1 —my)] 1= 1-m 1-m
=P( sup BM(sYBM(s) /s <c)

sell,my(1—m)/(m (1 —m)))]
for all 0 <; <7, <1 and ¢ > 0, where the second equality holds by change of variables with

172
1l-my\ = TS ™
() e 2 ()
T 1-= 1-mm 1-m

by definition, and BM(:) is also a Brownian motion on [0, ) (by direct verification).
The result of Corollary 1 is now obtained as follows:

(A35) im P( sup WT(‘n-)<c)< lim lim P( sup WT(ﬂ-)<c)

1
Tow mel0,1] e—0 T mele,1—¢]

EP( sup Qp(fr)<c)

e—0 mele,1—¢l

lim P( sup BM(s)'BM(s)/s<c)
e—=0 sell,(1—¢)?/6?]
=P( sup BM(s)YBM(s)/s <c) =0,
s€[1,)

where the first equality holds by Theorem 3, the second by (A.34), and the last by well known
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properties of Brownian motion (i.e., the law of the iterated logarithm). The proof is identical for
LM () and LRy(m). Q.E.D.

Proor oF THEOREM 4: Part (a) holds by the proof of Theorem 1, noting that (A.9) holds with
G(-) replaced by G(-)+ u(-), since \/TﬁT(ﬂo, )= ﬁ(m,(eo, )—Emp(6y, )+ ﬁErT;T(OO, -)
= G(-) + p(-) under Assumption 1-LP. Part (b) holds by the proof of Theorem 2.

Parts (c)-(e) hold using the proof of Theorem 3 with references to Theorems 1 and 2 replaced by
references to Theorem 4(a) and (b), respectively, with G(-) replaced by G(-)+ u(-), with the
right-hand side of (A.19) replaced by

(A36)  C[B(-)/«(")=(B(1)=B())/(1-u())
=SV, /() + STV 20,1 ) /(1= (D],
and with the right-hand side of (A.21) and (A.26) changed accordingly. Q.E.D.

Proor oF CoroLLARY 2: By Theorem 4(c)—(e) and the nonsingularity of AS~!/2M in (5.4), it
suffices for Corollary 2 to show that

12 1/2
(A37) (l—ﬂz) fo"n(s)ds= (1;;) ’ fﬂln(s)ds Vrell
does not hold. Note that (A.37) holds if and only if
™ 1
(A.38) fo i(s)ds =n/0 ni(s)ds Vwell, Vj=1,...,p,
where n(7) = (n(7),...,n,(7)). Thus, it suffices to show that (A.38) does not hold.

Suppose (A.38) holds. ﬁlen, since wfol'qj(s)ds is twice differentiable in = V7 €int(IT), Vj =
1,..., p, so must be [§n,(s)ds, where int(IT) denotes the interior of II. In particular, we must have

d T 1 dz L
(A.39) Efo nj(s)ds=j;)nj(s)ds and E?fo n;(s)ds=0

Vo eint(IT), Vj=1,...,p.
This implies that ;= c; almost everywhere (Lebesgue) on II for some constant ¢; Vj=1,..., p,
which is a contradiction. Q.E.D.
ProoF oF THEOREM 5: Let u, =c./? and t, = ¢!/2. We will show that
(A.40) U, —t,—>0 as a—0.

Then, using Theorem 4, we have

(A41) lim inf inf lim [Pn( sup Wp(m)> ca) —P,(Wp(7)>¢,)
mell

a—0 neE well Tow

lim inf sup [Pn( sup Q;(,.,)l/2>ua) —P,,(Q;(,.-,)l/2>t,,)]
mell

a-0 n€X zeq1

lim inf  sup [2(Q3(5)*>u,) - (23 () > 1,)]

a—0 n€E ze
=0,

where the last equality uses (A.40) and the fact that Q7 (#) is a noncentral chi-square rv and the
density of the square root of a noncentral chi-square rv is bounded above uniformly over all possible
values of its noncentrality parameter.

To show (A.40) we use an argument similar to that of van Zwet and Oosterhoff (1967,
p. 675). Let w;=inf{r€ll} >0, let m,=sup{wmell}<1, and let v, be such that
P(SUP, e, my) Q¥(m)'/?> y,) = a. Since t, <u, <v,, to establish (A.40) it suffices to show that
Vo—t,—>0as a—0.

\Y%
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By a result of James, James, and Siegmund (1987, eqn. (26), p. 78), we have
(A42) P( [sup ] 0,(m)/*> va) =K, vr %exp(—v2/2){(v2—p)logA +4+0o(1)}
m&€lm,m,

as @ >0, where Q,(+) is as in Theorem 3, K, is a constant that depends only on the dimension p

of the Brownian bridge vector that underlies Q,(-), and A =7,(1 -7 )/[m (1 —7,)]. Taking
=1, =1 in (A.42) yields log A = 0 and

(A43)  P(Q,(7)/*>1,) =K, 12 2exp(~12/2) {4 +0(1)} asa—0.

The left-hand side of (A.42) and (A.43) each equal a. Thus, the logs of the right-hand side of
(A.42) and (A.43) can be equated to yield

(A.44) (p—2)logv, —v2/2+log{(v2—p)logA +4+0(1)}

=(p-2)logt, —t2/2+log{4 +0(1)} and

t2
(A45) y, -2
Vl!

2
= ;—[(p—Z)logva——(p—Z)logta

+log {(vf ~p)logA +4+ 0(1)} —log {4 + o(l)}]

=o(1)
as @ — 0, using the fact that t, > as @ >0 and ¢, <v,. Since |v, —t,| <v,—t2/v,, (A45)
implies that v, — ¢, > 0 as a = 0. Q.E.D.
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