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LOCAL LINEAR KERNEL REGRESSION WITH
LONG-RANGE DEPENDENT ERRORS

VO ANH1, RODNEY WOLFF1, JITI GAO∗1 AND QUANG TIENG1

Queensland University of Technology

Summary

This paper considers the use of a local linear kernel regression method to test whether
the mean function of a sequence of long-range dependent processes has discontinuities or
change-points. It proposes a non-parametric estimation procedure and then establishes an
asymptotic theory for the estimation procedure. Examples, simulated and real, illustrate
the estimation procedure.

Key words: change-point; discontinuity; local linear kernel regression; long-range dependence;
spectral density.

1. Introduction

Recent developments in non-parametric regression focus on the estimation of continuous
non-parametric regression functions with independent and identically distributed (iid) errors
(see e.g. Fan & Gijbels, 1996), the estimation of continuous time series regression functions
(see e.g. Gÿorfi et al., 1989), the estimation of continuous regression functions with long-
range dependent (LRD) errors (see e.g. Robinson, 1997), and the estimation of discontinuous
regression functions with iid errors (see e.g. Müller, 1992). As indicated by recent studies (see
Müller, 1992; Robinson, 1997), there is evidence of both discontinuity and non-stationarity in
the mean function of some data. In a set of data for the Nile River, for example, Müller sug-
gests that the mean function has a discontinuity (change-point) while the research of Robinson
(1997) indicates evidence of non-stationarity in the mean function. Thus, the estimation of
discontinuous regression functions withLRD errors is an important issue both in theory and
in practice.

We apply the local linear (LL) kernel estimation method of Fan & Gijbels (1996) to
test whether the mean function of a sequence ofLRD processes has change-points, and we
construct non-parametric estimates both for the locations of change-points and for the corre-
sponding jump sizes. We establish asymptotic distributions of the constructed estimates. We
compare our estimation procedure with the Gasser–Müller method and demonstrate how to
implement our estimation procedure through simulated and real examples. This paper extends
some results of Hall & Hart (1990), M̈uller (1991, 1992) and Gao, Pettitt & Wolff (1998).

Section 2 states the main results of the paper. Computational aspects are given in Sec-
tion 3, and the paper concludes with a discussion in Section 4. Mathematical assumptions and
proofs are given in the Appendix.
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2. A Nonparametric Estimation Procedure

2.1. Estimation Based on a Regression Model

In this paper, we mainly consider the non-parametric regression of the form

Yi = m(xi) + ei (1 ≤ i ≤ n), (2.1)

wherexi = i/n, m has a change-point atτ, 0 < τ < 1, andei is a strictly stationary error
process with Eei = 0, Ee2

i = σ 2 < ∞ and E(e1e1+j ) = r(j), in which r is the covariance
function satisfying

r(j) ∼ cα

|j |α ,

where 0< α < 1 and 0< cα < ∞ are constants, and∼ indicates that the ratio of the
left-hand side and the right-hand side tends to 1 asj → ∞.

To establish the main results of this paper, we introduce an assumption.

Assumption 2.1.Assume that the long-range dependent errors et have the form

et =
t−1∑
s=1

bt−sεs, bs ∼ dα

|s|(1+α)/2
, (2.2)

where 0 < dα < ∞ is a constant, ε2
t is uniformly integrable, and for t ≥ 1

E(εt | Ft−1) = 0, E(ε2
t | Ft−1) = 1 a.s.,

in which Ft is the σ -field of events generated by {εs : 1 ≤ s ≤ t}.
Remark 2.1. Assumption 2.1 is similar to Robinson (1997 Assumption 2). Equation (2.2) is
analogous to Koul & Surgailis (1997 equation (2.14)), who establish asymptotic results for
some partial sums. Lemma A.5 establishes the asymptotic normality of a weighted sum based
on equation (2.2).

We consider only the case wherem has a single jump (discontinuity) atτ. Let β =
β(τ) = m2(τ ) − m1(τ ) be the jump size atτ, wherem2(τ ) = limx↓τ m(x) and m1(τ ) =
limx↑τ m(x). Without loss of generality, we assume thatβ > 0. The caseβ = 0 corresponds
to the non-existence of a change-point atτ.

To construct estimates forτ andβ we first construct estimates for{m`(·), ` = 1, 2}.
TheLL estimatorm̂`(x) of m`(x) is defined by

m̂`(x) = 1

nh

n∑
j=1

Kn`(x, xj )Yj (x ∈ [0, 1]), (2.3)

where

Kn`(x, xj ) =
s2`(x) − s1`(x)(xj − x)

s2`(x)s0`(x) − s1`(x)2
K`

(xj − x

h

)
,

sr`(x) = 1

nh

n∑
j=1

K`

(xj − x

h

)
(xj − x)r (r = 0, 1, 2, ` = 1, 2),

and {K`, ` = 1, 2} are kernel functions andh is a bandwidth parameter.
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In the case where E(e2
j ) = σ 2(xj ), m̂` can be replaced by a weighted estimatorm̄`,

m̄`(x) = 1

nh

n∑
j=1

Kn`(x, xj )

σ̂ (xj )
Yj , (2.4)

where

σ̂`(x)2 = 1

nh

n∑
i=1

Kn`(x, xi)
(
Yi −m̂`(xi)

)2 for ` = 1, 2, and σ̂ 2(x) = 1
2

(
σ̂ 2

2 (x)+σ̂ 2
1 (x)

)
.

(2.5)

As in Müller & Stadtm̈uller (1987 Lemma 5.1), supx |σ̂ 2(x) − σ 2(x)| = Op(n−1/3 log(n)).

Thus, σ̂ (xj ) in (2.4) and (2.5) can be replaced byσ(xj ) in the large sample situation.
In this paper, we consider only the case wherem` is estimated by theLL-basedm̂`.

The local linear smoothing method is one of the most efficient smoothing methods in non-
parametric statistics; see Fan & Gijbels (1996) for more details.

2.2. Asymptotic Distributions of Unknown Location Estimators

Define the following estimator

β̂(x) = m̂2(x) − m̂1(x) for x ∈ (0, 1). (2.6)

Let C ⊂ (0, 1) be a closed interval such thatτ ∈ C. Define the estimators

τ̂ = inf
{
c ∈ C: β̂(c) = sup

x∈C

β̂(x)
}

and β̂(τ̂ ) (2.7)

for the location of the discontinuity pointτ and for the jump sizeβ. We apply a functional limit
theorem for the stochastic processη̂ defined below to establish the asymptotic distributions
for the estimatorŝτ and β̂(τ̂ ). Let

β̂(τ + hy) = m̂2(τ + hy) − m̂1(τ + hy) for − ∞ < y < ∞,

and define for some 0< U < ∞, −U ≤ u ≤ U, the stochastic process

η̂(u) = (nh)(1+α)/2
(
β̂
(
τ + (h

n
)1/2

u
)

− β̂(τ )
)
.

We now state the main results of this section; see the Appendix for proofs and for defi-
nitions of the quantities involved in Theorems 2.1 and 2.2.

Theorem 2.1.Under Assumptions 2.1 and A.1–A.3 listed in the Appendix,

(n

h

)1/2
(τ̂ − τ)

d→ N
(
0,

2cαV1α

β2K ′
2(0)2C1(K2)2

)
as n → ∞.

Theorem 2.2.Under the conditions of Theorem 2.1,

(nh)α/2(β̂(τ̂ ) − β(τ)
) d→ N(0, 2cαV2α) as n → ∞.
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Remark 2.2. Theorem 2.2 not only establishes the asymptotic normality ofβ̂ but also pro-
vides a test statistic for testing H0: β = 0. Under H0,

F1(τ̂ ) = (nh)αβ̂(τ̂ )2

2cαV2α

d→ χ2
1 as n → ∞,

whereχ2
1 denotes the chi-squared distribution with one degree of freedom. Thus, the data-

basedF1(τ̂ ) can be used to demonstrate asymptotically whether the non-parametric regression
function has a discontinuity point atτ. In practice, we need to replaceα by a consistent esti-
mator if α is unknown.

2.3. Asymptotic Distributions of Known Location Estimators

Section 2.2 only gives the asymptotic distributions for the estimatorτ̂ of the unknown
locationτ ∈ (0, 1) and the estimator̂β(τ̂ ) of the jump sizeβ.

As in Müller (1991), we can show that the estimatorsm̂2(x) at x = 0 and m̂1(x) at
x = 1 are not asymptotically unbiased. Thus, we need to construct new estimators for the
case where bothx = 0 andx = 1 are viewed as change-points.

Based on the new kernel functionsK`( · , q) that satisfy Assumption A.5, we define
m̂`(x, q) for ` = 1, 2 as follows:

m̂`(x, q) = 1

nb

n∑
j=1

Kn`(x, xj ; q)Yj (x ∈ [0, 1])

where

Kn`(x, xj ; q) =
s2`(x, q) − s1`(x, q)(xj − x)

s2`(x, q)s0`(x) − s1`(x)2
K`

(xj − x

b
, q

)
,

sr`(x, q) = 1

nb

n∑
j=1

K`

(xj − x

b
, q

)
(xj − x)r (r = 0, 1, 2, ` = 1, 2),

whereb is a bandwidth parameter satisfying Assumption A.6 below.
For q1 ∈ [0, 1], we definem̂2(q1b, q1) as the estimator ofm(q1b); for q4 ∈ [0, 1], we

definem̂1(1− q4b, q4) as the estimator ofm(1− q4b). We now state the main results of this
section; proofs are given in the Appendix.

Theorem 2.3. If Assumptions 2.1 and A.1–A.3, A.5–A.6 hold, then as n → ∞,

(nb)α/2√
cαV2α(K2, q1)

(
m̂2(q1b, q1) − m(q1b) − 1

2m′′(q1b)b2) d→ N(0, 1),

(nb)α/2√
cαV1α(K1, q4)

(
m̂1(1 − q4b, q4) − m(1 − q4b) − 1

2m′′(1 − q4b)b2) d→ N(0, 1).

Theorem 2.4.Under the conditions of Theorem 2.3, as n → ∞,

E[m̂2(q1b, q1) − m(q1b)]2 ∼ cαV2α(K2, q1)

(nb)α
+ m′′(q1b)2D1(q1)

2

4
b4,

E[m̂1(1 − q4b, q4) − m(1 − q4b)]2 ∼ cαV1α(K1, q4)

(nb)α
+ m′′(1 − q4b)2D2(q4)

2

4
b4.
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Remark 2.3. Theorems 2.3 and 2.4 provide some asymptotic properties of the proposed es-
timates. Theorem 2.3 corresponds to Theorem 2.2 for the unknown location case. Theorem
2.4 not only extends some related results of Müller (1991) to the case where the error process
is LRD but also provides a theoretical selection for the bandwidthb.

Remark 2.4. In practice, an important problem is how to select the bandwidth parametersh

andb. For the iid case, Gaoet al. (1998) adopt the plug-in method used by Sheather & Jones
(1991), Fan & Gijbels (1995), and Ruppert, Sheather & Wand (1995). For the case where
the error process isLRD and the regression function is continuous, Hall, Lahiri & Polzehl
(1995) consider the selection of a bandwidth parameter involved in a kernel regression and
Gao & Anh (1999) suggest using a generalized cross-validation selection criterion to select
a truncation parameter involved in a finite series approximation to the continuous regression
function. See also Gao (1998). By combining the results of Gaoet al. (1998) and Gao & Anh
(1999), we can select the bandwidth parametersh and b for theLRD case. The details are
technical and we report them elsewhere.

Remark 2.5. To construct a consistent estimator forα, we define a new estimate form,

m̃(x, τ̂ ) = m̃(x, τ̂ ; b)

= m̂2(x, q1)I[0,b](x) + m̂(x)I(b,τ̂−b](x) + m̂1

(
x, q2(τ̂ )

)
I(τ̂−b,τ̂ ](x)

+ m̂2

(
x, q3(τ̂ )

)
I(τ̂ ,τ̂+b](x) + m̂(x)I(τ̂+b,1−b](x) + m̂1(x, q4)I(1−b,1](x),

wherem̂ is as defined in (2.3) withh replaced byb and Kj replaced byK satisfying As-
sumption A.4 below,q1 = x/b, q2(τ̂ ) = (τ̂ −x)/b, q3(τ̂ ) = (x− τ̂ )/b, andq4 = (1−x)/b.

Define the following objective function

0u(α, θ) = 1

τ

m∑
j=1

{
log(θλα−1

j ) +
λ1−α
j

θ
Iu(λj )

}
, (2.8)

whereλj = 2πj/n, 1 ≤ j ≤ m, m/n → 0 asn → ∞, Iu(λj ) = |∑n
s=1 use

isλj |2/(2πn),

andus = Ys − m̃(xs, τ̂ ) depends onα.

Define the estimator of(α, θ) by

(α̂, θ̂ ) = arg min
θ∈R+, α∈212

0u(α, θ),

provided that the estimator exists, where212 is an interval. Under an additional condition,
we can show that̂α is a consistent estimator ofα. Details are similar to those of Gao &
Anh (1999 Assumption 2.7 and Theorem 2.5); see also Robinson (1997 Section 4). When
calculatingα̂ for practical purposes, it is preferable to exclude a neighbourhood aroundτ̂ ,

although a single discontinuity as in (2.1) does not disturb the asymptotic consistency ofα̂.

3. Examples and Implementations

This section provides a small sample study to support the asymptotic results presented
in Theorems 2.1–2.2.
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Example 3.1.Consider the model (2.1) where

m(x) = x4 + I[0.5,1](x), (3.1)

et =
t−1∑
s=1

bt−sεs, bj = j−1/3, (3.2)

andεs is a sequence of iid N(0, 1) random variables.

It follows from (3.1) that the location of the jump point isτ = 0.5 and the corresponding
size of the jump value isβ = 1.

For calculating (2.6) and (2.7), we choose

K2(x) =
{

6(1 − x)(1 − 2x) if 0 ≤ x ≤ 1,

0 otherwise,

K1(x) = K2(−x) for x ∈ [−1, 0], and h = (n logn)−1/3 as suggested by M̈uller (1992),
wheren is the number of observations. The conditions of Theorems 2.1 and 2.2 hold.

To demonstrate the superiority of the local linear kernel estimation method, we compare
the estimatorm̂j in (2.3) with the Gasser–M̈uller (GM) estimator defined by

m̃j (x) =
n∑

i=1

K̃nj (x, xi)Yi (j = 1, 2),

K̃nj (x, xi) = 1

h

∫ s
i

s
i−1

Kj

(x − z

h

)
dz,

wheres0 = 0, si = 1
2(xi + xi+1) for 1 ≤ i ≤ n − 1 andsn = 1.

Define β̃(x) = m̃2(x) − m̃1(x) for x ∈ (0, 1). Choose a closed intervalC ⊂ (0, 1),

and define the estimators

τ̃ = inf
{
c ∈ C, β̃(c) = sup

x∈C

β̃(x)
}

and β̃(τ̃ ). (3.3)

which correspond tôτ and β̂(τ̂ ) defined in (2.7).
Now we investigate the practical implications of Theorems 2.1 and 2.2; we choose the

sample mean squared error (MSE) to see whether Theorems 2.1 and 2.2 work well numerically.
By using theSPLUSfunctions including thems function (see Chambers & Hastie, 1992),
the sampleMSEs of τ̂ , τ̃ , β̂(τ̂ ) and β̃(τ̃ ) denoted byMSE(τ̂ ), MSE(τ̃ ), MSE(β̂(τ̂ )) and
MSE(β̃(τ̃ )), respectively, were calculated 1000 times and the means are given in Table 3.1.
Four plots forn = 100 are given in Fig. 1: Fig. 1(a) gives a time plot of the dataYi generated
from (2.1) and (3.1)–(3.2); theLL estimates ofm2 (dashed) andm1 (solid) are given in
Fig. 1(b); theLL estimate ofm2 − m1 is given in Fig. 1(c); Fig. 1(d) presents estimates of
m2 − m1 based on theLL method (dotted) and theGM method (solid), respectively. Both
Fig. 1(c) and Fig. 1(d) show that the estimateτ̂ for n = 100 is close toτ = 0.5.

As the value ofh (second column) decreases, the performance of bothτ̂ and τ̃ is im-
proved (third and fourth columns). The results in the third and fourth columns also show that
for each value ofh, the value ofMSE(τ̂ ) is smaller than that of MSE(τ̃ ). This supports the

c© Australian Statistical Publishing Association Inc. 1999
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Fig. 1. (a) A time plot of the dataYi; (b) the fitted values ofm2 (dashed) andm1 (solid); (c)
the fitted values ofm2 − m1; (d) theLL-based fitted values ofm2 − m1 (dotted) and theGM-based
fitted values ofm2 − m1 (solid), showing that theLL method and theGM method are identical on the

interval [10, 90] approximately; thex-axes show the time pointsi = 1, . . . , n, wheren = 100

TABLE 3.1

Numbers of observations (n), values of h, and sample mean squared
errors of τ̂ , τ̃ , β̂(τ̂ ) and β̃(τ̃ )

n h MSE(τ̂ ) MSE(τ̃ ) MSE(β̂(τ̂ )) MSE(β̃(τ̃ ))

100 0.1295 0.0684 0.0688 0.0867 0.0869
500 0.0685 0.0397 0.0403 0.0858 0.0867

1000 0.0525 0.0079 0.0083 0.0797 0.0805
1500 0.0450 0.0074 0.0078 0.0773 0.0778
2000 0.0404 0.00032 0.00032 0.0684 0.0693

asymptotic theory that the variance of the local polynomial estimator is smaller than that of
the GM estimator (see Fan & Gijbels, 1996 Chap. 2). This is one of the properties which
demonstrate that the local polynomial estimator is superior to theGM estimator. The perfor-
mance ofβ̂(τ̂ ) andβ̃(τ̃ ) can be discussed in a similar way. In this example, all the simulation
results depend on the theoretical choice ofh. However, as mentioned in Remark 2.4, a critical
problem is how to selecth in practice.
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A complete discussion of the bandwidth parametersh andb is extremely technical, so
we do not detail the small sample study of Theorems 2.3 and 2.4 in this paper.

Example 3.2.This example illustrates the estimation methods, using data on the annual vol-
ume of the Nile River from 1871 to 1970. A discussion of various approaches to non-parametric
change-point modelling is given in M̈uller (1992). The question is whether and when there
occurred an abrupt change in rainfall activity near the turn of the last century. Müller suggests
that a change occurred in the year 1898.

To compute (2.6) and (2.7), we choseh = (100 log 100)−1/3 = 0.1295,

K2(x) =
{

6(1 − x)(1 − 2x) if 0 ≤ x ≤ 1,

0 otherwise,

and calculated̂τ defined in (2.7) and̃τ defined in (3.3). The estimated jump sizesβ̂(τ̂ ) and
β̃(τ̃ ) were also calculated:̂τ = 1898, β̂(τ̂ ) = 264.92, τ̃ = 1898, and β̃(τ̃ ) = 265.85 were
obtained. Both theLL method and theGM estimator indicate that an abrupt change in rainfall
activity occurred in the year 1898, although the estimated jump sizes were slightly different.

As in Robinson (1997 equation (4.12)), we replaceus in (2.8) by Ys and determine
whether the set of data isLRD, based on the estimator. Our research suggests that the spectral
density ofYs has the form

f (x) ∼ θ

x1−α
as x → 0, where θ = 0.073 and α = 0.2066;

see Fig. 3(a). Our estimation procedure also shows that the set of data is actually long-range
dependent. Figure 2(a) gives a time plot of the dataYi. The LL-based fitted values ofm2

(dashed) andm1 (solid) are given in Fig. 2(b). Figure 2(c) presents theLL-based fitted values
of m1 − m2 (dotted) and theGM-based fitted values ofm1 − m2 (solid). Figure 2(c) shows
that theLL method and theGM method are identical on the interval 1885–1955 approximately;
(see also M̈uller, 1992 Fig. 5).

Example 3.3. In this example, we illustrate our estimation procedure using the Nile River
data listed in Beran (1994 Sect. 12.2.1). These data consist of readings of annual minimum
levels at the Roda Gorge near Cairo, commencing in the year 622; often only the first 663
observations are used because missing observations occur after the year 1284.

Robinson (1997) suggests that application of his methods to the Nile series between
622 and 1284 provides evidence of non-stationarity in the mean function. In this example,
we apply equations (2.6) and (2.7) withh = (663 log 663)−1/3 = 0.0615 to check whether
there is evidence of discontinuity in the mean function. We find thatτ̂ = 868, β̂(τ̂ ) =
178.93, τ̃ = 868 andβ̃(τ̃ ) = 178.98. Both theLL andGM estimators indicate that an abrupt
change in rainfall activity occurred in the year 868, which means that the mean function has
a discontinuity. We also apply (2.8) to find that the spectral density ofYs has the form

f (x) ∼ θ

x1−α
as x → 0, where θ = 0.077 and α = 0.1994;

see Fig. 3(b). The results are similar to those of Robinson (1997). Figure 4(a) gives a time
plot of the dataYi. The LL-based fitted values ofm2 (dashed) andm1 (solid) are given in
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Fig. 2. (a) A time plot of the Nile River data given in Example 3.2; (b) the fitted values
of m2 (dashed) andm1 (solid); (c) theLL-based fitted values ofm1 − m2 (dotted) and

theGM-based fitted values ofm1 − m2 (solid)
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Fig. 3. (a) The periodogram (dotted) in the log-logform of the data given in Example 3.2;
(b) the periodogram (dotted) in the log-logform of the data given in Example 3.3;

the solid lines are the corresponding estimates based on the modelf (x) ∼ θxα−1
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Fig. 4. (a) A time plot of the Nile River data given in Example 3.3; (b) the fitted
values ofm2 (dashed) andm1 (solid); (c) theLL-based fitted values ofm1 − m2

Fig. 4(b). Figure 4(c) presents theLL-based fitted values ofm1 − m2. Both Fig. 2(c) and
Fig. 4(c) show that the estimatorτ̂ of τ is found as the maximum of the function̂m1 − m̂2,

because in this case the jump is from lower to higher levels.

4. Discussion

This paper considers only the case where the spectral density of theLRD error has the
form

f (x) ∼ dα

x1−α
asx → 0, where dα > 0 is an unknown parameter.

A more general concept ofLRD processes was suggested in Gray, Zhang & Woodward (1989),
formalizing the initial work of Hosking (1981, 1984). Here, the spectral density is allowed to
have the form

f (x) = φ(x)

|x − τ |2β
(0 < β < 1

2),

whereτ ∈ (−π, π) is regarded as an unknown parameter andφ is a slowly varying function
in −π < x ≤ π. In other words, the singularity off may occur at a frequency 0< τ < π

or −π < τ < 0; and the model can be used to describeLRD periodicities of the data. More
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recently, Robinson (1997) discusses a general class of spectral densities and proposes con-
sistent estimates for the parameters involved in the class. As a result of his research, bothβ

andη = φ(0) can be estimated. However, the estimation ofτ has not been considered in the
literature to date. The main difficulty in estimatingτ is that bothf (x) and

logf (x) = logφ(x) − 2β log |x − τ |
are just continuous inτ and the first derivative of log(f (x)) with respect toτ does not exist.
For this case, a fundamental problem is how to construct a sequence of independent random
errors and then derive a consistent estimator forτ based on either the Gaussian–Whittle con-
trast function (see Robinson, 1997 equation (4.9)) or a non-linear regression approach. Details
for this case will be reported elsewhere.

Appendix

Assumption A.1.
(i) The kernel function K1 has the support interval [−1, 0] and satisfies K1(−1) = K1(0) =

0 and | ∫ 0
−1 uiK1(u)j du| < ∞ for i = 0, 1, 2 and j = 1, 2.

(ii) The first derivative, K
(1)
1 , of K1 is continuous on [−1, 0] and K

(1)
1 (0) < 0.

(iii) The kernel function K2 defined by K2(x) = K1(−x) satisfies the corresponding condi-
tions.

Assumption A.2.
(i) h → 0 and nh → ∞ as n → ∞.

(ii) lim n→∞ nh3 = 0.

Assumption A.3.
(i) m has two continuous derivatives at each x ∈ (0, 1) − {τ }.

(ii) m
(i)
1 (τ ) = limx↑τ m

(i)
1 (x) and m

(i)
2 (τ ) = limx↓τ m

(i)
2 (x) exist for i = 0, 1, 2.

Assumption A.4.
(i) K is a symmetric kernel function with support [−1, 1], and K(−1) = K(1) = 0.

(ii) The first derivative K(1) of K is continuous on [−1, 1].
(iii)

∫ 1
−1 K(u)2 du < ∞ and

∫ 1
0 u`K(u) du < ∞ for ` = 1, 2.

Assumption A.5.
(i) The kernel function K1(x, q) has the support interval [−1, q] and satisfies K1(−1, q) =

K1(q, q) = 0 and | ∫ q

−1 uiK1(u, q)j du| < ∞ for 0 ≤ q ≤ 1, i = 0, 1, 2 and j = 1, 2.

(ii) There exist absolute constants C1 and C2 such that supx |K1(x, q1) − K1(x, q2)| ≤
C1|q1 − q2| and supq |K1(x1, q) − K1(x2, q)| ≤ C2|x1 − x2|.

(iii) The kernel function K2(x, q) defined by K2(x, q) = K1(−x, q) satisfies the corre-
sponding conditions.

Assumption A.6.
(i) b → 0 and nb2 → ∞ as n → ∞.

(ii) nhb2 → 0 as n → ∞.

(iii) lim supn→∞(nb)αb4 < ∞.

Remark A.1. The kernel functionsK1(x, q) andK2(x, q) that satisfy Assumption A.5 can
be constructed based on a sequence of orthonormal polynomials. See Müller (1991) for more
details.
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Notation

For j = 1, 2, r = 0, 1, 2, 0 ≤ q ≤ 1,

j̀ r =
∫ 1

−1
urKj (u) du, Lj = j̀2 j̀0 − `2

j1,

C1(K2) = `22

L2
, C2(K1) = L−2

2

∫ 0

−1
[`10v − `11]

2K1(v)2 dv,

V1α = L−2
2

∫ ∫
[`20u − `21][`20v − `21]

K2(u)K2(v)

|u − v|α du dv,

V2α = L−2
2

∫ ∫
[`22 − u`21][`22 − v`21]

K2(u)K2(v)

|u − v|α du dv,

A1r (q) =
∫ q

−1
K1(v, q)vr dv, A2r (q) =

∫ 1

−q

K2(v, q)vr dv,

B1(q) = A12(q)A10(q) − A11(q)2, B2(q) = A22(q)A20(q) − A21(q)2,

D1(q) = 1

B2(q)

∫ 1

−q

[A22(q) − vA21(q)]v2K2(v, q) dv,

D2(q) = 1

B1(q)

∫ q

−1
[A12(q) − vA11(q)]v2K1(v, q) dv,

C3(K2, q) = 1

B2(q)2

∫ 1

−q

[A22(q) − vA21(q)]2K2(v, q)2 dv,

C4(K1, q) = 1

B1(q)2

∫ q

−1
[A12(q) − vA11(q)]2K1(v, q)2 dv,

Vjα(Kj , q) =
∫ ∫

[Aj1(q)u − Aj2(q)][Aj1(q)v − Aj2(q)]

Bj (q)2

Kj(u, q)Kj (v, q)

|u − v|α du dv,

whereK1(v, q) andK2(v, q) are as defined in Assumption A.5.

Lemmas for the Proofs of Theorems 2.1–2.4

Lemma A.1. Under Assumptions 2.1 and A.1–A.3, the process η̂ converges weakly to η on
C[−U, U ], where η is a continuous Gaussian process with moment structure

E(η(u)) = −1
2βu2K ′

2(0)C1(K2), cov(η(u1), η(u2)) = 2u1u2cαV1α. (A.1)

The proof of Lemma A.1 follows from Billingsley (1968 Theorems 8.1 and 12.3), Hall
& Heyde (1980 Theorems 4.1–4.4), and the following Lemmas A.2–A.7.

Lemma A.2.
(i) Under Assumption 2.1, for ` = 1, 2,

E
(
m̂`(x) − E m̂`(x)

)2 ∼ cα(nh)−αV2α. (A.2)

(ii) Under Assumption 2.3, for ` = 1, 2,

E(m̂`(x, q) − E m̂`(x, q))2 ∼ cα(nh)−αV`α(K`, q). (A.3)

Proof. Here we need only prove (A.2) for̀= 1.
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Let ani = (1/nh)Kn1(x, xi). The proof follows from Assumption 2.1, the definition of
Kn1 in (2.3) and

E
(
m̂1(x)−E[m̂1(x)]

)2 = E
( n∑

i=1

aniei

)2 =
n∑

i=1

n∑
j=1

anianj E(eiej )

∼ cα(nh)−αL−2
2

∫ ∫
[`12 − `11u][`12 − `11v]K1(u)K1(v)|u − v|−α du dv

∼ cα(nh)−αV2α.

Lemma A.3. Under the conditions of Lemma A.1, as n → ∞,

E(η̂(u)) = −1
2βu2K ′

2(0)C1(K2) + o(1).

Proof. The proof is the same as that of Gaoet al. (1998 Lemma A.2).

Lemma A.4. Under the conditions of Lemma A.1,

cov(η̂(u1), η̂(u2)) = 2u1u2cαV1α + O((nh)−α/2). (A.4)

Proof. Define

η̂(u) = (nh)(1+α)/2
{[

m̂2

(
τ + (h

n
)1/2

u
) − m̂2(τ )

] − [
m̂1

(
τ + (h

n
)1/2

u
) − m̂1(τ )

]}
.

To approximateη̂(u), we first define the estimator̂m′
j (τ ) of m′

j (τ ) by

m̂′
j (τ ) = 1

nh2

n∑
i=1

K∗
j

(xi − τ

h

)
Yi,

whereK∗
j (u) = L−1

j ( j̀0u − j̀1)Kj (u) andj = 1, 2. Details about the estimators of deriva-
tives can be found in Fan & Gijbels (1996 Section 3.2).

We now obtain

η̂(u) = (nh)(1+α)/2[m̂′
2(τ ) − m̂′

1(τ )]
(h
n
)1/2

u + Op

(
h2(nh)(α−1)/2)

= u

(nh)(1−α)/2

n∑
i=1

[
K∗

2

(xi − τ

h

)
− K∗

1

(xi − τ

h

)]
Yi + Op

(
h2(nh)(α−1)/2)

≡ η̃∗(u) + Op

(
h2(nh)(α−1)/2).

Thus,

η̃∗(u) − E[η̃∗(u)] = u(nh)α/2−1
n∑

i=1

[
K∗

2

(xi − τ

h

)
− K∗

1

(xi − τ

h

)]
ei .

This implies that asn → ∞,

cov
(
η̃∗(u1), η̃

∗(u2)
)

= u1u2

(nh)2−α

n∑
i=1

n∑
j=1

[
K∗

2

(xi − τ

h

)
− K∗

1

(xi − τ

h

)][
K∗

2

(xi − τ

h

)
− K∗

1

(xi − τ

h

)]
E(eiej )

= 2u1u2cαV1α + O(n−1).

Before establishing the asymptotic normality ofη̂, we need the following result.
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Proposition. Let {pni : i ≥ 1} be a sequence of real numbers. If Assumption 2.1 holds and if
qni = ∑n

j=i+1 bj−ipnj is such that

n∑
i=1

q2
ni → σ 2

q and max
i≥1

|qni | → 0 as n → ∞,

then
n−1∑
i=1

pniei
d→ N(0, σ 2

q ) as n → ∞.

Proof. The proof is similar to (3.18) and (3.19) of Gao & Liang (1995). See also Robinson
(1997 Lemma 1).

Lemma A.5. Under the conditions of Lemma A.1, for fixed u ∈ [−U, U ],

η̂(u) − E
(
η̂(u)

) d→ N(0, 2u2cαV1α). (A.5)

Proof. Let

bni = 1

(nh)(1−α)/2

[
K∗

2

(xi − τ

h

)
− K∗

1

(xi − τ

h

)]
,

and η̃∗(u) − E[η̃∗(u)] = u

n∑
i=1

bniei =
n−1∑
i=1

vniεi, where vni =
n∑

j=i+1

bnjbj−i .

To prove (A.5), noting Assumption 2.1 and applying the above Proposition, it suffices to
show that asn → ∞,

n∑
i=1

v2
ni → 2u2cαV1α , (A.6)

max
i≥1

|vni | → 0. (A.7)

In the following, we only check whether (A.7) holds. The proof of (A.6) follows similarly
from (A.2).

For δn = nh, we have

max
i≥1

|vni | ≤
( ∑

i≥1

b2
ni

∑
j>δn

b2
j

)1/2 + max
1≤i≤n

|bni |
∑
j≤δn

|bj |.

As n → ∞,

n∑
i=1

b2
ni = u2

(nh)2−α

n∑
i=1

(
K∗

2

(xi − τ

h

)
− K∗

1

(xi − τ

h

))2

= 2u2 1

(nh)1−α
L−2

2

∫ 1

−1
[`20v − `21]

2K2(v)2 dv + O(n−1),

∑
j>δn

b2
j = o(1). (A.8)
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Analogously,

max
i≥1

|bni | = O
(
(nh)α/2−1) (A.9)

∑
j≤δn

|bj | = O
(
δ
(1−α)/2
n

)
. (A.10)

Equations (A.8)–(A.10) imply

max
i≥1

|vni | = O
(
(nh)(α−1)/2) + O

(
(nh)−1/2) → 0 as n → ∞.

Lemma A.6. Under the conditions of Lemma A.1, for fixed (u1, . . . , u`) and ui ∈ [−U, U ],

(
η̂(u1) − E

(
η̂(u1)

)
, . . . , η̂(u`) − E

(
η̂(u`)

)) d→ N(0, 6),

where 6 = (σij )1≤i,j≤` and σij = 2uiuj cαV1α.

Lemma A.7. Under the conditions of Lemma A.1, the sequence η̄(·) = η̃(·) − E(η̃(·)) is
tight.

Proof. To prove the tightness, it suffices to show that there exists a constantC such that, for
n large enough,

E
(
η̄(u1) − η̄(u2)

)2 ≤ C|u1 − u2|2,
which follows from (A.4).

Proofs of Theorems 2.1–2.4

Proof of Theorem 2.1.Since the Gaussian limit processη is determined by its first and
second moments, according to (A.1), it can be written equivalently as

η(u) = −1
2βu2K ′

2(0)C1(K2) + Zu, whereZ
d= N(0, 2cαV1α).

Under Assumption A.1,η is seen to have a unique maximum at

U∗ = Z

βK ′
2(0)C1(K2)

.

Let Un be the location of the maximum of̂η. By construction, we have

τ̂ = τ + Un

(h
n

)1/2
.

By applying results from Whitt (1970) and Eddy (1980), we can show thatUn converges
weakly toU∗ asn → ∞. This concludes the proof of Theorem 2.1.
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Proof of Theorem 2.2.As in the proofs of (A.2) and (A.5), asn → ∞,

(nh)αE
(
m̂j (τ ) − E[m̂j (τ )]

)2 → cαV2α,

(nh)α/2(m̂j (τ ) − E[m̂j (τ )]
) d→ N(0, cαV2α),

(nh)α/2(β̂(τ ) − E[β̂(τ )]
) d→ N(0, 2cαV2α). (A.11)

As in the proof of Lemma A.3, by applying Taylor expansions and using Assumptions
A.1–A.3, we have, asn → ∞,

(nh)α/2(E[β̂(τ )] − β)

= (nh)α/2h2[m′′
2(τ ) − m′′

1(τ )]
(
1 + o(1)

)
L−1

2

∫ 1

0

∫ 1

0
π2(u, v)v2 du dv → 0, (A.12)

(nh)α/2[β̂(τ̂ ) − β̂(τ )] = (nh)α/2(τ̂ − τ)
(
1 + o(1)

)
[m′

2(τ ) − m′
1(τ )] →p 0. (A.13)

Therefore, Assumption A.2 and equations (A.11)–(A.13) imply

(nh)α/2(β̂(τ̂ ) − β)
d→ N(0, 2cαV2α).

Proof of Theorem 2.3.We provide only an outline for the proof of Theorem 2.3. By Taylor
expansions and using Assumptions A.3, A.5 and A.6, we obtain for 0< x < b,

E[m̃2(x, q1)] − m(x)

∼ 1

B2(q1)

∫ 1

−q1

[A22(q1) − vA21(q1)]K2(v, q1)[m(x + vb) − m(x)] dv

∼ 1
2m′′(x)D2(q1)b

2.

Let D2
n = ∑n

i=1 c2
ni, cni = (nb)−α/2Kn2(x, xi; q1), anddni = cni/Dn. Then we can write

(nb)α/2(m̂2(x, q1) − E[m̂2(x, q1)]
) =

n∑
i=1

dniei ≡
n−1∑
i=1

wniεi,

wherewni = ∑n
j=i+1 bnjbj−i .

As in the proof of (A.5), it suffices to show that, asn → ∞,

n∑
i=1

wni → cαV2α(K2, q1), (A.14)

max
i≥1

|wni | → 0. (A.15)

The proofs of (A.14) and (A.15) are similar to those of (A.6) and (A.7), respectively.

Proof of Theorem 2.4.We prove the first equation. The second one follows similarly:

E[m̂2(x, q1) − m(x)]2 = E
(
m̂2(x, q1) − E[m̂2(x, q1)]

)2 + (
E[m̂2(x, q1)] − m(x)

)2

∼ cα

(nb)α
V2α(K2, q1) + 1

4m′′(x)2D1(q1)
2b4.

This completes the proof.
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