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LOCAL LINEAR KERNEL REGRESSION WITH
LONG-RANGE DEPENDENT ERRORS

VO ANHL, RODNEY WOLFFL, JiTl GAO*l AND QUANG TIENG!
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Summary

This paper considers the use of a local linear kernel regression method to test whether
the mean function of a sequence of long-range dependent processes has discontinuities or
change-points. It proposes a non-parametric estimation procedure and then establishes an
asymptotic theory for the estimation procedure. Examples, simulated and real, illustrate
the estimation procedure.
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spectral density.

1. Introduction

Recent developments in non-parametric regression focus on the estimation of continuous
non-parametric regression functions with independent and identically distributed (iid) errors
(see e.g. Fan & Gijbels, 1996), the estimation of continuous time series regression functions
(see e.g. Gyrfi et al., 1989), the estimation of continuous regression functions with long-
range dependentRD) errors (see e.g. Robinson, 1997), and the estimation of discontinuous
regression functions with iid errors (see e.dilMr, 1992). Asindicated by recent studies (see
Miller, 1992; Robinson, 1997), there is evidence of both discontinuity and non-stationarity in
the mean function of some data. In a set of data for the Nile River, for exampléemMdug-
gests that the mean function has a discontinuity (change-point) while the research of Robinson
(1997) indicates evidence of non-stationarity in the mean function. Thus, the estimation of
discontinuous regression functions witRD errors is an important issue both in theory and
in practice.

We apply the local linearL{) kernel estimation method of Fan & Gijbels (1996) to
test whether the mean function of a sequenceRI processes has change-points, and we
construct non-parametric estimates both for the locations of change-points and for the corre-
sponding jump sizes. We establish asymptotic distributions of the constructed estimates. We
compare our estimation procedure with the Gasséttdvimethod and demonstrate how to
implement our estimation procedure through simulated and real examples. This paper extends
some results of Hall & Hart (1990), Mler (1991, 1992) and Gao, Pettitt & Wolff (1998).

Section 2 states the main results of the paper. Computational aspects are given in Sec-
tion 3, and the paper concludes with a discussion in Section 4. Mathematical assumptions and
proofs are given in the Appendix.
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2. A Nonparametric Estimation Procedure

2.1. Estimation Based on a Regression Model

In this paper, we mainly consider the non-parametric regression of the form
Yi=m(x;)+e (L<i<n), (2.1)

wherex; =i/n, m has a change-pointat 0 < z < 1, ande; is a strictly stationary error
process with k; = 0, Eel.2 =02 <00 and Heie1+;) = r(j), inwhich r is the covariance

function satisfying
()~ =
r ~oTo
L1
where O0< o < 1 and O< ¢, < oo are constants, anet indicates that the ratio of the
left-hand side and the right-hand side tends to J as oc.

To establish the main results of this paper, we introduce an assumption.

Assumption 2.1. Assume that the long-range dependent errors e, have the form
-1 d
o
€ = Zlbt—sESv bs ~ W_T)/zs (2.2)
§=

where 0 < d, < oo is a constant, etz is uniformly integrable, and for t > 1
E(e | Fi-) =0, E(€2|F-)=1 as.,

in which F; is the o -field of events generated by {e;:1 < s < t}.

Remark 2.1. Assumption 2.1 is similar to Robinson (1997 Assumption 2). Equation (2.2) is
analogous to Koul & Surgailis (1997 equation (2.14)), who establish asymptotic results for
some partial sums. Lemma A.5 establishes the asymptotic normality of a weighted sum based
on equation (2.2).

We consider only the case whene has a single jump (discontinuity) at Let 8 =
B(t) = ma(r) —m1(r) be the jump size at, wherema(r) = limy . m(x) andmy(r) =
lim x4, m(x). Without loss of generality, we assume tifat- 0. The case8 = 0 corresponds
to the non-existence of a change-pointat

To construct estimates far and 8 we first construct estimates fm,(-), £ = 1, 2}.

ThelLL estimatorr,(x) of m,(x) is defined by

R 1
mg(x)zﬁgm,@(x,xj)yj (x €0, 1], (2.3

where

So,(X) — 8., (x)(x; — x) X —X
Kne(x,xj) = 2 (=)

520 (0050, (0) = 57,02 ¢

1< X, —Xx
500 = =3 K(=) o -0 =012 £=12),
j=1

and{K,, ¢ = 1, 2} are kernel functions and is a bandwidth parameter.
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In the case where (E]?) = Uz(xj), i, can be replaced by a weighted estimaioy;
1 " Kne(x, x;)
- J
ny(x) = — _
(0 =—=3%

j=1

P (xj) Y;, 2.9

where

R 18 n R R n
6e(x)% = — Z Kne(x, x;)(Y; —mi(xi))zforﬁ =12, and 6%(x) = 3(62(x)+6£(x)).
i=1

(2.5)
As in Milller & Stadtnilller (1987 Lemma 5.1), sypé2(x) — o?(x)| = 0,(n~Y3log(n)).
Thus,&(xj) in (2.4) and (2.5) can be replaced byxj) in the large sample situation.
In this paper, we consider only the case wherg is estimated by theL-basedr, .
The local linear smoothing method is one of the most efficient smoothing methods in non-
parametric statistics; see Fan & Gijbels (1996) for more details.

2.2. Asymptotic Distributions of Unknown Location Estimators

Define the following estimator
B(x) = ry(x) —mqy(x) for x € (0, 1). (2.6)
Let C c (0, 1) be a closed interval such thate C. Define the estimators

# =inf {c € C: B(c) = supB(x)} and B(%) 2.7

xeC

for the location of the discontinuity pointand for the jump sizg. We apply a functional limit
theorem for the stochastic procesglefined below to establish the asymptotic distributions
for the estimatorg and 8(7). Let

B(t 4 hy) = iiiy(t 4+ hy) — i (x + hy)  for —oo <y < o0,

and define for some & U < oo, —U < u < U, the stochastic process
10 = el (32 + (1)) - fo).
We now state the main results of this section; see the Appendix for proofs and for defi-
nitions of the quantities involved in Theorems 2.1 and 2.2.
Theorem 2.1. Under Assumptions 2.1 and A.1-A.3 listed in the Appendix,

n\12 _ d 2¢q Via
2 - N(o, .
(h) -7 ( ﬂzKé(O)ch(Kz)Z) as =00

Theorem 2.2. Under the conditions of Theorem 2.1,

)2 (B(#) — B(1)) > N(0, 2¢4Va) @S 1 — o0

(© Australian Statistical Publishing Association Inc. 1999
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Remark 2.2. Theorem 2.2 not only establishes the asymptotic normalitg§ bt also pro-
vides a test statistic for testinggHg = 0. Under H,

haAAZ
Fl(f)=%—d>xlz asn — oo,
o

where X12 denotes the chi-squared distribution with one degree of freedom. Thus, the data-
basedFi(7) can be used to demonstrate asymptotically whether the non-parametric regression
function has a discontinuity point at In practice, we need to replaceby a consistent esti-
mator if o is unknown.

2.3. Asymptotic Distributions of Known Location Estimators

Section 2.2 only gives the asymptotic distributions for the estimatof the unknown
locationt € (0, 1) and the estimatoﬁ(f) of the jump sizeg.

As in Miller (1991), we can show that the estimataérg(x) at x = 0 and,(x) at
x = 1 are not asymptotically unbiased. Thus, we need to construct new estimators for the
case where botlh = 0 andx = 1 are viewed as change-points.

Based on the new kernel functiorts, (-, ¢g) that satisfy Assumption A.5, we define
nm,(x,q) for £ = 1,2 as follows:

. 1y
e q) = — 3 Ko, x;59)Y;  (x €[0,1)
j=1

where

L Spp (X, q) — 54, (x, q)(xj —X) X —x
Kne(x, %1 q) = S0 (X, 4)Sgp(x) — 59, (x)2 ¢ ( b q),

1 & X, —Xx
st ) = =Y Ke(L—q)oy - =012 t=12,
j=1

whereb is a bandwidth parameter satisfying Assumption A.6 below.

For g, € [0, 1], we definerm,(¢,b, q,) as the estimator ofi(¢,b); for g, € [0, 1], we
definem,(1—q,b, q,) as the estimator ofi(1 — g,b). We now state the main results of this
section; proofs are given in the Appendix.

Theorem 2.3. If Assumptions 2.1 and A.1-A.3, A.5-A.6 hold, then as n — o0,

(nb)*/?

V¢aVou (K2, 611)

(nb)*/?
\ CD( VlO{(Klv ‘14)

Theorem 2.4. Under the conditions of Theorem 2.3, as n — 00,

N 7 d
(15(q1b, q1) — m(gyb) — $m" (q1b)b%) = N(O, 1),

~ d
(71 (1 — q4b. q4) — m(1 — qb) — 3m” (1 — q,b)b?) > N(O, 1).

caVou(K2,q7)  m"(g,b)?>D1(q)?

Elfiy(qqb, q1) — m(q1b)]? ~ b*,

(nb)* 4
7 caVia(K1,q5)  m"(1— q,b)?D2(q,)?
Elmy (1 — q4b, qq) — m(1— q4b)]2 . Ca . 4 44 44
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Remark 2.3. Theorems 2.3 and 2.4 provide some asymptotic properties of the proposed es-
timates. Theorem 2.3 corresponds to Theorem 2.2 for the unknown location case. Theorem
2.4 not only extends some related results @filgr (1991) to the case where the error process

is LRD but also provides a theoretical selection for the bandwidth

Remark 2.4. In practice, an important problem is how to select the bandwidth paramieters
andb. For the iid case, Gaer al. (1998) adopt the plug-in method used by Sheather & Jones
(1991), Fan & Gijbels (1995), and Ruppert, Sheather & Wand (1995). For the case where
the error process i5RD and the regression function is continuous, Hall, Lahiri & Polzehl
(1995) consider the selection of a bandwidth parameter involved in a kernel regression and
Gao & Anh (1999) suggest using a generalized cross-validation selection criterion to select
a truncation parameter involved in a finite series approximation to the continuous regression
function. See also Gao (1998). By combining the results of &ab (1998) and Gao & Anh
(1999), we can select the bandwidth parameteend b for the LRD case. The details are
technical and we report them elsewhere.

Remark 2.5. To construct a consistent estimator tar we define a new estimate for,

m(x,7) =m(x, T;b)
= nA12(x, ql)I[O,b] (x) + ”A’l(x)l(b,f—b] (x) + rﬁl(x, C]z(f))l(f—h,f] (x)
+ ity (x, g3(D)) Iz 516 (X) + 1) L4 1-) (X) + 1711 (X, g4) T1—p, 1) (X),

wherem is as defined in (2.3) witlk replaced byb and K; replaced byK satisfying As-
sumption A.4 belowg, = x/b, q,(7) = ( —x)/b, q5(T) = (x—1)/b, andg, = (1—x)/b.

Define the following objective function

)»1_0(

1< ;
Mu@6) == { log(24~%) + JTIM()\j)}, (2.8)
j=1

wherexr; =2mj/n, 1< j<m, m/n— 0asn — 0o, I,(Aj) = | S 1_; use%|2/(2rn),
andu; = Yy — m(x,, T) depends on.
Define the estimator ofx, 6) by

(&@,0) = argmin Ty(a,6),
0eRT, ae®12

provided that the estimator exists, whe®g, is an interval. Under an additional condition,
we can show thatr is a consistent estimator @f. Details are similar to those of Gao &
Anh (1999 Assumption 2.7 and Theorem 2.5); see also Robinson (1997 Section 4). When
calculatinga for practical purposes, it is preferable to exclude a neighbourhood arbund
although a single discontinuity as in (2.1) does not disturb the asymptotic consistedcy of

3. Examples and Implementations

This section provides a small sample study to support the asymptotic results presented
in Theorems 2.1-2.2.

(© Australian Statistical Publishing Association Inc. 1999



468 VO ANH, RODNEY WOLFF, JITIGAO AND QUANG TIENG

Example 3.1.Consider the model (2.1) where

m(x) = x* 4 Ij0.5,11(x), 3.1
-1

er = th—xem bj = j_1/3, 3.2
=1

ande; is a sequence of iid {0, 1) random variables.

It follows from (3.1) that the location of the jump pointis= 0.5 and the corresponding
size of the jump value ig = 1.
For calculating (2.6) and (2.7), we choose

Koe) = {6(1—x)(1—2x) if0<x <1,

otherwise,
K1(x) = Ko(—x) for x € [-1,0], andk = (nlogn)~Y/3 as suggested by dMler (1992),
wheren is the number of observations. The conditions of Theorems 2.1 and 2.2 hold.

To demonstrate the superiority of the local linear kernel estimation method, we compare
the estimatorn ; in (2.3) with the Gasser—Mler (GM) estimator defined by

() =Y Kyjx.x)Y;  (j=12),
i=1

» 1 s; X —z
Kn,-(x,x,-)=5/s K (=) dz.

i—

wheresq =0, s; = 3(x; +x,,) for 1 <i <n—1ands, =1
Define B(x) = my(x) —mq(x) for x € (0,1). Choose a closed interval C (0, 1),
and define the estimators

T =inf{c € C, B(c) = supB(x)} and B(). (3.3)

xeC

which correspond td and (%) defined in (2.7).

Now we investigate the practical implications of Theorems 2.1 and 2.2; we choose the
sample mean squared errdgE) to see whether Theorems 2.1 and 2.2 work well numerically.
By using theSPLUSfunctions including themsfunction (see Chambers & Hastie, 1992),
the sampleMSEs of 7, 7, A(f) and () denoted byMSE(?), MSE(%), MSE(B(%)) and
MSE(A (%)), respectively, were calculated 1000 times and the means are given in Table 3.1.
Four plots forn = 100 are given in Fig. 1: Fig. 1(a) gives a time plot of the détgenerated
from (2.1) and (3.1)—(3.2); theL estimates ofmm, (dashed) andni (solid) are given in
Fig. 1(b); theLL estimate ofmy — m1 is given in Fig. 1(c); Fig. 1(d) presents estimates of
my — m1 based on théL method (dotted) and theM method (solid), respectively. Both
Fig. 1(c) and Fig. 1(d) show that the estimatdor » = 100 is close tor = 0.5.

As the value ofi (second column) decreases, the performance of baihd 7 is im-
proved (third and fourth columns). The results in the third and fourth columns also show that
for each value of:, the value ofMSE(7) is smaller than that of MSE&). This supports the

(© Australian Statistical Publishing Association Inc. 1999
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25 T T T T T T T T T 2

(c) (d)
Fig. 1. (a) A time plot of the datd&;; (b) the fitted values ofn, (dashed) andny (solid); (c)
the fitted values ofnp, — m1; (d) theLL-based fitted values ofi, — m; (dotted) and th&M-based

fitted values ofm, — mj (solid), showing that theL method and th&M method are identical on the
interval [1Q 90] approximately; thec-axes show the time poinis= 1, ..., n, wheren = 100

TABLE 3.1

Numbers of observations (n), Valugs of h, atzd sample mean squared
errors of T, T, B(t) and B(7)

n h MSE(?) MSE(F)  MSEB(F)  MSEQB(E)

100 0.1295  0.0684 0.0688 0.0867 0.0869

500 0.0685  0.0397 0.0403 0.0858 0.0867
1000 0.0525  0.0079 0.0083 0.0797 0.0805
1500 0.0450  0.0074 0.0078 0.0773 0.0778
2000 0.0404 0.00032  0.00032 0.0684 0.0693

asymptotic theory that the variance of the local polynomial estimator is smaller than that of
the GM estimator (see Fan & Gijbels, 1996 Chap. 2). This is one of the properties which
demonstrate that the local polynomial estimator is superior t&Mestimator. The perfor-
mance ofﬁ(f) and (%) can be discussed in a similar way. In this example, all the simulation
results depend on the theoretical choicé& oHowever, as mentioned in Remark 2.4, a critical
problem is how to seledt in practice.

(© Australian Statistical Publishing Association Inc. 1999



470 VO ANH, RODNEY WOLFF, JITIGAO AND QUANG TIENG

A complete discussion of the bandwidth parameteiand b is extremely technical, so
we do not detail the small sample study of Theorems 2.3 and 2.4 in this paper.

Example 3.2. This example illustrates the estimation methods, using data on the annual vol-
ume of the Nile Riverfrom 187110 1970. Adiscussion of various approaches to non-parametric
change-point modelling is given in iller (1992). The question is whether and when there
occurred an abrupt change in rainfall activity near the turn of the last centufjeMduggests

that a change occurred in the year 1898.

To compute (2.6) and (2.7), we choke= (100 log 100~Y/2 = 0.1295

6(1—x)(1—2x) ifO<x<l,
Ko (x) = { .

0 otherwise,
and calculated defined in (2.7) and defined in (3.3). The estimated jump size€) and
B(%) were also calculatedt = 1898 A(7) = 26492, 7 = 1898 and(7) = 26585 were
obtained. Both theL method and th&M estimator indicate that an abrupt change in rainfall
activity occurred in the year 1898, although the estimated jump sizes were slightly different.

As in Robinson (1997 equation (4.12)), we replacein (2.8) by Y, and determine

whether the set of dataiRD, based on the estimator. Our research suggests that the spectral
density of Y; has the form

fx) ~ as x — 0, where 9 = 0.073 and « = 0.2066

xl—a

see Fig. 3(a). Our estimation procedure also shows that the set of data is actually long-range
dependent. Figure 2(a) gives a time plot of the dgtaThe LL-based fitted values ofi»
(dashed) anah1 (solid) are given in Fig. 2(b). Figure 2(c) presentsithebased fitted values

of m1 — m2 (dotted) and th&M-based fitted values ofiy — m2 (solid). Figure 2(c) shows
thattheLL method and th&M method are identical on the interval 1885—-1955 approximately;
(see also Miller, 1992 Fig. 5).

Example 3.3.In this example, we illustrate our estimation procedure using the Nile River
data listed in Beran (1994 Sect. 12.2.1). These data consist of readings of annual minimum
levels at the Roda Gorge near Cairo, commencing in the year 622; often only the first 663
observations are used because missing observations occur after the year 1284.

Robinson (1997) suggests that application of his methods to the Nile series between
622 and 1284 provides evidence of non-stationarity in the mean function. In this example,
we apply equations (2.6) and (2.7) with= (663 1og 66313 = 0.0615 to check whether
there is evidence of discontinuity in the mean function. We find that 868 A(7) =
17893 7 = 868 andB(f) = 17898. Both theLL andGM estimators indicate that an abrupt
change in rainfall activity occurred in the year 868, which means that the mean function has
a discontinuity. We also apply (2.8) to find that the spectral densify; dfas the form

fx) ~ as x — 0, where § =0.077 and o« = 0.1994

xl—a

see Fig. 3(b). The results are similar to those of Robinson (1997). Figure 4(a) gives a time
plot of the dataY;. TheLL-based fitted values ofi, (dashed) andr; (solid) are given in
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(b) (c)

Fig. 2. (a) A time plot of the Nile River data given in Example 3.2; (b) the fitted values
of my (dashed) andn1 (solid); (c) theLL-based fitted values ofi; — m» (dotted) and
the GM-based fitted values ofi; — m» (solid)

. . .
10" 10° 10 10" 10° 10°

@ (b)

Fig. 3. (a) The periodogram (dotted) in the log-logform of the data given in Example 3.2;
(b) the periodogram (dotted) in the log-logform of the data given in Example 3.3;
the solid lines are the corresponding estimates based on the rfiedet 9x*—1
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Fig. 4. (a) A time plot of the Nile River data given in Example 3.3; (b) the fitted
values ofmy (dashed) anduq (solid); (c) theLL-based fitted values ofiy — m»

Fig. 4(b). Figure 4(c) presents th-based fitted values of:; — m2. Both Fig. 2(c) and
Fig. 4(c) show that the estimatdrof 7 is found as the maximum of the functioin, — s,
because in this case the jump is from lower to higher levels.

4. Discussion

This paper considers only the case where the spectral density bRthverror has the
form

d .
fx) ~ ﬁ asx — 0, where d, > 0 is an unknown parameter
X

A more general concept @RD processes was suggested in Gray, Zhang & Woodward (1989),
formalizing the initial work of Hosking (1981, 1984). Here, the spectral density is allowed to
have the form

¢ (x)

— 1
f(x)—m 0 <B<3),

wheret € (—mn, ) is regarded as an unknown parameter @nd a slowly varying function
in —7 < x < m. In other words, the singularity of may occur at a frequency @ t < &
or — < t < 0; and the model can be used to desctiB® periodicities of the data. More

(© Australian Statistical Publishing Association Inc. 1999
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recently, Robinson (1997) discusses a general class of spectral densities and proposes con-
sistent estimates for the parameters involved in the class. As a result of his researgh, both
andn = ¢(0) can be estimated. However, the estimation dfas not been considered in the
literature to date. The main difficulty in estimatingis that both f (x) and

log f(x) =log¢(x) — 28 log|x — 7|

are just continuous imr and the first derivative of lagf (x)) with respect tor does not exist.

For this case, a fundamental problem is how to construct a sequence of independent random
errors and then derive a consistent estimatorftwased on either the Gaussian—Whittle con-
trast function (see Robinson, 1997 equation (4.9)) or anon-linear regression approach. Details
for this case will be reported elsewhere.

Appendix

Assumption A.1.
(i) The kernel function K1 has the support interval [—1, 0] and satisfies K1(—1) = K1(0) =
0 and | [°, w' K1(u)/ du| < oo fori =0,1,2 and j = 1, 2.
(i) The first derivative, K(l), of K1 is continuous on [—1, 0] and K{l) 0) <O.
(iii) The kernel function K> defined by K2(x) = K1(—x) satisfies the corresponding condi-
tions.

Assumption A.2.
(i) h — 0 and nh — o0 as n — oo.
(i) 1im, oo nh®=0.

Assumption A.3.

(i) m has two continuous derivatives at each x € (0, 1) — {t}.

(i) m (@) =lim, m{’(x) and m$ (x) = lim |, m$ (x) exist for i = 0,1, 2.
Assumption A.4.

(i) K is a symmetric kernel function with support [—1, 1], and K(—1) = K(1) = 0.
(i) The first derivative KD of K is continuous on [—1, 1].
(i) [, K)2du < oo and [y u'K(u)du < oo for & =1,2.

Assumption A.5.
(i) The kernel function K1(x, q) has the support interval [—1, q] and satisfies K1(—1, q) =
Ki(q.q)=0and| [? u'K1(u,q)’ du| < oo for0<q <1, i=0,1,2andj =12
(i) There exist absolute constants C1 and C such that sup, |K1(x, q;) — K1(x, q,)| <
C1lgy — 45| and sup, |K1(xy. 9) — K1(xp. )] < Calxy — 3.
(iii) The kernel function Ko(x, q) defined by K2(x,q) = Ki(—x, q) satisfies the corre-
sponding conditions.

Assumption A.6.

() b— 0 and nb?> - oo as n — .
(i) nhb? - 0asn — oo.
(i) limsup,_, . (nb)*b* < .

Remark A.1. The kernel functionX1(x, ¢) and K»(x, ¢) that satisfy Assumption A.5 can
be constructed based on a sequence of orthonormal polynomials. iflee (#991) for more
details.
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Notation
Forj=12 r=0,12 0<g <1,

1
@,:/ W Kjwydu, — Lj=tatjo— L7,
-1

£22 o [
Ci1(K2) = L, C2(K1) = LZZ/ [£10v — €11]°K1(v)? dv,
K K
Vig =L, / [€20u — €21][€20v — £ ﬂLzlo(lv) dudv,
v
K K
Voo = //[522 — ul][€22 — vt ﬂvaliv) dudv,

1

Alr(q)=/lK1(v,q)v’dv, Azr(q)=/ Ka(v, q)v" dv,
- —-q

Bi(q) = A12(6])A10(61) A11(9)%,  Ba(g) = A22(q)A20(q) — A21(q)?,

Diq) = 5 ( )/ [A22(9) — vA2(@)]v*K2(v, ) dv,
Date) = - [ [A220) = vAn@]?Katv, ) o
Cs(K2.9) = (q)Z/ [A22(q) — vA21(9)]*K2(v, ¢) dv,
Ca(K1.9) = e )2/ [A12(q) — vAL(@)]*K1(v, ) dv,

Vja(K~,q):/ [Aja(@u — Ajpp(PI[Aja(@v — Aj2(9)] Kj(u, )K;(v, q) dudv.

Bj(q)? lu —v|*
whereK1(v, g) and K2(v, g) are as defined in Assumption A.5.

Lemmas for the Proofs of Theorems 2.1-2.4

Lemma A.1. Under Assumptions 2.1 and A.1-A.3, the process 1] converges weakly to n on
C[-U, U], where n is a continuous Gaussian process with moment structure

E(nw)) = —-ﬂusz(O)Cl(Kz) cov(n(u1), n(uz)) = 2uiuocy Vig. (A1)

The proof of Lemma A.1 follows from Billingsley (1968 Theorems 8.1 and 12.3), Hall
& Heyde (1980 Theorems 4.1-4.4), and the following Lemmas A.2—A.7.

Lemma A.2.
(i) Under Assumption 2.1, for £ = 1, 2,

E(, (x) — Eriy(x))% ~ co(nh) ™ Vag. (A.2)
(i) Under Assumption 2.3, for £ = 1, 2,
EG,(x, q) — Erity(x, ) ~ ca(nh) ™ Ve (K¢, ). (A3
Proof. Here we need only prove (A.2) far= 1.
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Let a,; = (1/nh)K,1(x, x;). The proof follows from Assumption 2.1, the definition of
K,1 in(2.3) and

n noon
E(iy (1) —Eliny (1)])° = E(Zaniei)z =YY anianjEleie))
i=1 i=1j=1

~ Ca(nh)_“Lz_zf [€12 — L1au][€12 — £110] K1 () K1 (v)|[u — v| ™% du dv

~ o (nh) % Vpq,.
Lemma A.3. Under the conditions of Lemma A.1, as n — 00,

E(i(u) = —3Bu’K3(0)C1(K2) + o(D).

Proof. The proof is the same as that of Gaal. (1998 Lemma A.2).

Lemma A.4. Under the conditions of Lemma A. 1,

cov(ij(u1), H(u2)) = 2u1uacy Vig + O((nh)~%/?). (A.4)
Proof. Define
) = @) 02 iy c + (0)2) — g(0)] = [y + (()72) g1}

To approximate)(«), we first define the estimatoﬁ}(r) of m}(‘r) by

. 1 < =T
i = 2 LK ()

whereK]?*(u) = Lj‘l(zjou —£;1)K;(u) and j = 1, 2. Details about the estimators of deriva-
tives can be found in Fan & Gijbels (1996 Section 3.2).

We now obtain

) = (nh) &2 (1) — ,;,&(T)](E)l/zu n 0p(h2(nh)(°‘_1)/2)

= W zn: [Kék(xi ; T) _ K:T(%):IY!' + Op(hz(nh)(afl)/z)
i=1

= 7* () + Op (K*(ni)*~V72).
Thus,

i) — El* )] = u(nh)“/z‘lg[@(x" —) = Ki (%) Jer

This implies that as — oo,

cov (i* (u), ii* (u2))

n

= Gt s Z [k(75 )~ ki ()[R (F) - K1 (P ) [Eceren

i=1j=1
= 2uquacy Vig + O(rfl).

Before establishing the asymptotic normality;afwe need the following result.
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Proposition. Let {p,;:i > 1} be a sequence of real numbers. If Assumption 2.1 holds and if
Gpi = D i—iv1bj—ipnj is such that

n
qul. — %2 and rp>alx|qm| -0 as n — 0o,
i=1 -

then
n—1

d
me'ei 5 N(@,02)  asn— oo
i=1

Proof. The proof is similar to (3.18) and (3.19) of Gao & Liang (1995). See also Robinson
(1997 Lemma 1).

Lemma A.5. Under the conditions of Lemma A. 1, for fixed u € [-U, U],

R R d
) — E(A)) = N(O, 2ucq Via). (A.5)
Proof. Let
_ 1 of(Xi—T (X~ T
bni = (nh)(1*°’>/2[K2< h ) - Kl( h )]
n n—1 n
and 7" (u) — E[M* )] = u aniei = Z Uni€i,  Wherev,; = Z bpjbj_;.
i=1 i=1 j=i+1

To prove (A.5), noting Assumption 2.1 and applying the above Proposition, it suffices to
show that as: — oo,

n
Z vfi — 2u’cq Vig (A.6)
i=1
max|v,;| — 0. (A7)
i>1

In the following, we only check whether (A.7) holds. The proof of (A.6) follows similarly
from (A.2).
For 8, = nh, we have

1/2
2 2

maxju, | < (Y 2b% Y 67) "+ maxibul Y Ibyl
= i>1 J>dn == J=<én

As n — o0,

- 2 uz " wf%Xi — T wfXi— T 2
= e 2 (k3(*5) ~xi(%5)
, 1

W
(nh)l_"‘
> b7 =o0(D). (A.8)

J>0n

1
LEZ/ [€200 — €21]%K2(v)2dv + O(n™ 1),
-1
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Analogously,
max|byi| = O ((nh)*/*7) (A.9)
1>
3 1ol = o855 ?). (A.10)
J=<8n

Equations (A.8)—(A.10) imply

max|vy| = o(mn) @ V72 + o(nh)™"?) -0 asn — oo.
1=

Lemma A.6. Under the conditions of Lemma A. 1, for fixed (u1, ..., uy) and u; € [-U, U],

(fiww) — E(i@). ... iwe) — E(iwo) ) > N, 2,

where ¥ = (Uij)lsi,jg/é and Ojj = 2uiujcaV1a.

Lemma A.7. Under the conditions of Lemma A.1, the sequence 1n(-) = n(-) — E(5(-)) is
tight.

Proof. To prove the tightness, it suffices to show that there exists a constanth that, for
n large enough,

E(ii(u1) — i1(u2))® < Clug — uzl?,

which follows from (A.4).

Proofs of Theorems 2.1-2.4

Proof of Theorem 2.1.Since the Gaussian limit procegsis determined by its first and
second moments, according to (A.1), it can be written equivalently as

@) = —1BuKHO0)C1(K2) + Zu,  whereZ £ N(0, 2cq Via).

Under Assumption A.1y is seen to have a unique maximum at

. VA
BKL(0)C1(K2)'
Let U, be the location of the maximum @f. By construction, we have
h)1/2

f=T+Un(ﬁ

By applying results from Whitt (1970) and Eddy (1980), we can show thattonverges
weakly toU* asn — oo. This concludes the proof of Theorem 2.1.
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Proof of Theorem 2.2. As in the proofs of (A.2) and (A.5), as — oo,
(nh)*E(i; (1) — Elri; ()])% = caVau,
(nh)*/2(11; (2) — Ei; (0)]) > N(O, o Va),
(nh)*/2(B () — E[B(0)]) > N(O, 2¢4 Vaa). (A.11)

As in the proof of Lemma A.3, by applying Taylor expansions and using Assumptions
A.1-A.3, we have, ag — 00,

(nh)**E[B(1)] — B)
1 1
= (nh)*/?h?[mYy(t) — m{ (O] (1 + 0(1))L51/ / wo(u, v)v°dudv — 0, (A.12)
0o JoO

(nh)*PIBE) — BD)] = )*/*(E — D) (1+ 0o(D))[my(x) —mi()] -, 0. (A.13)
Therefore, Assumption A.2 and equations (A.11)—(A.13) imply

(nh)*2(B(2) — B) > N(O, 2¢4 Vag).

Proof of Theorem 2.3.We provide only an outline for the proof of Theorem 2.3. By Taylor
expansions and using Assumptions A.3, A.5 and A.6, we obtain ferxO< b,
Elmy(x, q1)] — m(x)
1 1
32(611) —q;
~ gm" (x) Da(q)b?.

[A22(q1) — vA21(qD)]K2(v, g )[m(x + vb) — m(x)] dv

Let D2 =311 2, cni = (nb) /2K ,2(x, x;; q,), andd,; = ci/ D,. Then we can write
n n—1
(nb)*/?(1iy(x, q1) — Elfip(x, qp]) = ) duiei = ) wpici,
i—1 i—1

n
wherew,; =371 bnjbj—i.

As in the proof of (A.5), it suffices to show that, as— oo,

n
> wai = caVau(K2.qy), (A.14)
i=1
max|wy;| — O. (A.15
i>1
The proofs of (A.14) and (A.15) are similar to those of (A.6) and (A.7), respectively.
Proof of Theorem 2.4.We prove the first equation. The second one follows similarly:

Eli,(x, g1) — m(0)]? = E(ri(x, g1) — Elip(x, gp)])° + (Elity(x, g1)] — m(x))?

C,
~ ﬁvzamz, q1) + 2m” (x)%D1(qy)*b*.

This completes the proof.

(© Australian Statistical Publishing Association Inc. 1999



LOCAL LINEAR KERNEL REGRESSION WITH LONG-RANGE DEPENDENT ERRORS 479

References

BERAN, J. (1994) Statistics for Long-Memory Processes. London: Chapman and Hall.

BILLINGSLEY, P. (1968).Convergence of Probability Measures. New York: Wiley.

CHAMBERS, J.M. & HASTIE, T.J. (1992) Statistical Models in S. New York: Chapman & Hall.

EDDY, W.F. (1980). Optimum kernel estimates of the maden. Statist. 8, 870—882.

FAN, J. & GIJBELS, I. (1995). Data-driven bandwidth selection in local polynomial fitting: variable bandwidth
and spatial adaptiod. Roy. Statist. Soc. Ser. B 57, 371-394.

— & — (1996). Local Polynomial Modelling and Its Applications. Chapman and Hall.

GAO, J. (1998). Semiparametric regression modelling of nonlinear time s8ti@gi. J. Statist. 25, 521-539.

— & ANH, V. (1999). Semiparametric regression with long-range dependent ekrStatist. Plann. Inference
80, 37-57.

—&LIANG, H. (1995). Asymptotic normality of pseudo-LS estimator for partially linear autoregressive models.
Statist. Probab. Lett. 23, 27-34.

—, PETTITT, A. & WOLFF, R. (1998). Local linear kernel estimation and change-points probl€onsn. Statist.
A — Theory Methods 27, 2871-2894.

GRAY, H.L., ZHANG, N.F. & WooDWARD, W.A. (1989). On generalized fractional procesde%ime Ser. Anal.
10, 233-257.

GYORF, L., HARDLE, W., SARDA, P. & VIEU, P. (1989).Nonparametric Curve Estimation from Time Series.
Lecture Notes in Statistid®®0. New York: Springer.

HALL, P. & HART, J. (1990). Nonparametric regression with long-range depend8&ncéastic Process. Appl.
36, 339-351.

— & HEYDE, C.C. (1980)Martingale Limit Theory and Its Applications. New York: Academic Press.

HALL, P., LAHIRI, S.N. & PoLzEHL, J. (1995). On bandwidth choice in nonparametric regression with both
short- and long-range dependent erretsn. Statist. 23, 1921-1936.

HOSKING, J.R. (1981). Fractional differencinBiometrika 68, 165-176.

— (1984). Modelling persistence in hydrological time series using fractional differen@agr Resources
Res. 20, 1898-1908.

KouL, H. & SURGAILIS, D. (1997). Asymptotic expansion bf-estimates with long memory errosun. Statist.
25, 818-850.

MULLER, H. (1991). Smooth optimum kernel estimates near endpdiitgaetrika 78, 521-530.

— (1992). Change-points in nonparametric regression analysis.Statist. 20, 737—761.

— & STADTMULLER, U. (1987). Estimation of heteroscedasticity in regression analysis. Statist. 15,
610-625.

ROBINSON, P.M. (1997). Large-smaple inference for nonparametric regression with dependent &ntors.
Statist. 25, 2054—2083.

RUPPERT, D., SHEATHER, S.J. & WAND, M.P. (1995). An effective bandwidth selector for local least squares
regressionJ. Amer. Statist. Assoc. 90, 1257-1270.

SHEATHER, S.J. & DNES M.C. (1991). A reliable data-based bandwidth selection method for kernel density
estimationJ. Roy. Statist. Soc. Ser. B 53, 68—690.

WHITT, W. (1970). Weak convergence of probability measures on the $pg6ecc]). Ann. Math. Statist. 41,
939-949.

(© Australian Statistical Publishing Association Inc. 1999



