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Abstract

The critical values for various tests for changes in location model are obtained through the use of permutation tests
principle. Theoretical results show that in the limit these new “permutation tests” behave in the same way as the “classical
tests” stemming from both maximum likelihood and Bayes principles. However, the results of the simulation study show
that the permutation tests behave considerably better than the corresponding classical tests if measured by the critical
values attained. c© 2001 Elsevier Science B.V. All rights reserved
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1. Introduction

For simplicity, consider the location model with a change after an unknown time point m, i.e.

Xi = � + �nI{i¿m}+ ei; i = 1; : : : ; n; (1.1)

where 16 m6 n; � and �n �= 0 are unknown parameters and I{A} denotes the indicator of a set A. Assume,
moreover, that

e1; : : : ; en are independent identically distributed random variables (iid rvs)
with E ei = 0; 0¡ var ei ¡∞ and E |ei|2+� ¡∞ with some �¿ 0: (1.2)

We are interested in the testing problem

H0 :m= n against H1 :m¡n: (1.3)
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A number of test procedures for this problem using various principles has been developed; for recent
references see, the book of CsJorgő and Horv"ath (1997) or the survey paper of Antoch et al. (2000). It is well
known that one of the main problems in the change point analysis is to Lnd reasonable approximations for
the critical values. Typically, approximations based on the limit behavior of the test statistics under the null
hypothesis are used. However, the convergence to the limit distributions of the test statistics for the change
point problem is rather slow. Therefore, these limit approximations are reasonable only for very large sample
sizes and lead to conservative tests otherwise. Gombay and Horv"ath (1996), cf. also CsJorgő and Horv"ath
(1997), among others, pointed out this fact and proposed an improvement based on asymptotic arguments
combined with a proper trimming.
In this paper, it is shown that the permutation tests can also be used to get asymptotically correct ap-

proximations for critical values. The simulation study shows that the permutation tests provide reasonable
approximations to the critical values even in the case of small and moderate sample sizes. Basic information
on general principles of permutation tests can be found, e.g., in Lehmann (1991) and Good (2000).
From a computational point of view, one needs a reasonable computer because the test statistic has to be

calculated for a large number of permutations. On the other hand, the implementation of the basic idea is
quite easy and straightforward.
The permutation test suggested below motivated us to develop along the same lines a variety of permutation

tests related to other test statistics used in change point analysis. This means that the same principle can be
applied to other test statistics (including M -tests) for the testing problem (1.3) in the model (1.1) as well
as to the case of multiple changes in location models. The crucial point is that the test statistic must be
expressible through the partial sums of residuals and that under H0 these residuals are exchangeable random
variables.
Asymptotic properties of our permutation test are investigated in Section 2. Section 3 deals with the tests

for a change in location and=or in scale. The problem of how to evaluate the permutation distribution is
discussed in Section 4. Here, we also summarize the outcome of a simulation study which supports the idea
of the permutation based simulation. In the appendix, we collect some results on the asymptotics of rank
statistics used in the proofs.

2. Permutation tests and their properties

We apply the permutation arguments to the test based on the statistic

Tn1 = max
1¡k¡n

{√
n

k(n− k)
1
�̂n

∣∣∣∣∣
k∑

i=1

(Xi − PX n)

∣∣∣∣∣
}

; (2.1)

where

�̂2
n =

1
n

n∑
i=1

(Xi − PX n)2: (2.2)

This test statistic is closely related to the likelihood ratio test when the error terms eis have normal distribution.
The large values indicate that the null hypothesis is not true and therefore the null hypothesis H0 is rejected
for large values of Tn1.
The permutation distribution of Tn1 can be described as the conditional distribution (given X1; : : : ; Xn) of

Tn1(R) = max
1¡k¡n

{√
n

k(n− k)
1
�̂n
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k∑
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(XRi − PX n)
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}

; (2.3)
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where R=(R1; : : : ; Rn) is a random permutation of (1; : : : ; n). This permutation distribution, denoted FP(x;Tn1),
can be expressed as

FP(x;Tn1) =
1
n!
#{r ∈ Rn;Tn1(r)6 x}; (2.4)

where Rn is the set of all permutations of {1; : : : ; n} and #{A} denotes the cardinality of set A. Denote by
x1−�;n the 100(1 − �)% quantile of the permutation distribution FP(:;Tn1). Then the critical region with the
level � of the permutation test based on Tn1 has the form

Tn1 ¿ x1−�;n: (2.5)

The permutation test can be described as follows:

(1) we calculate Tn1 according to (2.1) and the quantile x1−�;n;
(2) the null hypothesis is rejected if (2.5) holds true.

Now we will study the permutation distribution function of Tn1; more precisely, we derive the conditional
limit distribution of Tn1(R) given X1; : : : ; Xn. It is important to realize that Tn1(R) given X1; : : : ; Xn can be
viewed as a functional of a simple linear rank statistic and theorems on rank statistics for change point can
be applied. The main assertion of this section states:

Theorem 2.1. Let the observations X1; : : : ; Xn follow the model (1:1); the assumptions (1:2) be satis8ed and
let |�n|6 D0 with some D0 ¿ 0: If n → ∞; then for all −∞¡y¡∞ we have

P(
√
2 log log nTn1(R)6 y + 2 log log n+ 1

2 log log log n− 1
2 log � |X1; : : : ; Xn)

→ exp {−2 exp {−y}}; [P]-a:s:

Proof. We apply Theorem A.1 with an1(i) = Xi; i = 1; : : : ; n. Towards this, we have to check whether the
assumptions of Theorem A.1 are satisLed. In other words, it is suXcient to check whether (A.2) and (A.3)
are satisLed in our case. Clearly,

1
n

n∑
i=1

(Xi − PX n)2 =
1
n

n∑
i=1

(ei − Pen)2 + 2�n
1
n

n∑
i=m+1

(ei − Pen) + �2n
m(n− m)

n2
·

The classical strong law of large numbers implies that

lim inf
n→∞

1
n

n∑
i=1

(Xi − PX n)2 ¿ var e1; [P]-a:s:

Similarly, we Lnd that

lim sup
n→∞

1
n

n∑
i=1

|Xi − PX n|2+� 6 D1(E|X1|2+� + D2+�
0 ); [P]-a:s:;

with some D1 ¿ 0. These relations ensure that the assumptions of Theorem A.1 are satisLed and the assertion
of our theorem follows.
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Remark 2.1. Notice that the assumptions of Theorem 2.1 cover H0 and local as well as Lxed alternatives.
Moreover, the conditional limit distribution does not depend on X1; : : : ; Xn, so that the conditional and uncon-
ditional limit distribution of Tn1(R) is the same, both under the null hypothesis and Lxed alternative. One
should recall that under H0 the distributions of Tn1 and Tn1(R) coincide.

Remark 2.2. Checking the proof, one can easily Lnd that the assertion of Theorem 2.1 remains true even if
there are more than one but Lnite number of changes.

Remark 2.3. The important issue is that the permutation distribution provides the exact critical values (x1−�;n)
for our testing problem under the null hypothesis. Moreover, under certain conditions on �n (cf. CsJorgő and
Horv"ath, 1997) the statistics Tn1 tends to inLnity so fast that we will reject H0 with probability one under the
alternative if the critical value x1−�;n is used.

The permutation tests principle can be straightforwardly applied to other test statistics for the testing problem
H0 versus H1. Namely, it can be applied to the test statistics based on various functionals of the partial sums∑k

i=1(Xi − PX n); k =1; : : : ; n; for survey of these test statistics see, e.g., CsJorgő and Horv"ath (1997). Here are
just two examples, i.e.

Tn2(q) = max
1¡k¡n


 1

q(k=n)
|∑k

i=1(Xi − PX n)|√∑n
i=1(Xi − PX n)2




and

Tn3(w) =
n∑

k=1


 1

w(k=n)

∣∣∣∑k
i=1(Xi − PX n)

∣∣∣√∑n
i=1(Xi − PX n)2




2

;

where q(:) and w(:) are properly chosen weight functions. However, we should remark that the explicit form
of the corresponding limit distributions is known only for some particular choices of the weight functions
q(:) and w(:), e.g., q(t) = 1; t ∈ (0; 1) and w(t) = (t(1 − t))3=2; t ∈ (0; 1). For details, see again CsJorgő and
Horv"ath (1997), p. 82. Therefore, it is highly desirable to have an approach on how to get approximations of
the critical values for more complicated test statistics.
Another possibility is a generalization to the M -test statistics relevant to our problem. To recall, the M -test

counterparts of Tn1 can be obtained through replacing the partial sums of residuals
∑k

i=1(Xi− PX n); k=1; : : : ; n,
and the sums of the squared residuals

∑n
i=1(Xi − PX n)2 by their M -counterparts, i.e. by

∑k
i=1  (Xi − �̂( ));

k = 1; : : : ; n, and
∑n

i=1  
2(Xi − �̂( )), respectively, where  is a score function and �̂( ) is the M -estimator

of � corresponding to the model (1.1) with m= n. For these permutation tests, one can prove similar results
as those stated in Theorem 2.1 using the results of Hu(skov"a (1997b, c). In other words, the limit distribution
of the permutation variant of the robust M -test statistics is the same as the limit of the original test statistic
under the null hypothesis.

3. Tests for a change in location and=or in scale

Here, we shortly discuss the permutation version of a test for a change in location and=or in scale. More
precisely, we consider the location model with a change after an unknown time point m in location and=or



J. Antoch, M. Hu,skov-a / Statistics & Probability Letters 53 (2001) 37–46 41

in scale, i.e.

Xi = � + �nI{i¿m}+ (1 + #nI{i¿m})ei; i = 1; : : : ; n; (3.1)

where m(6 n); � and (�n; #n)′ �= (0; 0)′ are unknown parameters. Assume, moreover, that

e1; : : : ; en are iid rvs with symmetric distribution function;

0¡ var e1 ¡∞; E|e1|4+� ¡∞ with some �¿ 0; (3.2)

and

lim
n→∞�n → 0; lim sup

n→∞
#2n 6 D2 (3.3)

with some D2 ¿ 0.
As a test statistic for the testing problem (1.3), we consider the max type test statistics of the form

Tn4 = max
1¡k¡n

√
n2

k(n− k)


 [

∑k
i=1(Xi − PX n)]2∑n
i=1(Xi − PX n)2

+
[
∑k

i=1 [(Xi − PX n)2 − 1
n

∑n
j=1(Xj − PX n)2]]2∑n

i=1 [(Xi − PX n)2 − 1
n

∑n
j=1

(
Xj − PX n

)2
]2




1=2

:

The corresponding permutation distribution of Tn4 can be described as the conditional distribution, given
X1; : : : ; Xn, of

Tn4(R) = max
1¡k¡n

√
n2

k(n− k)




[
∑k

i=1(XRi − PX n)]2∑n
i=1(Xi − PX n)2

+
[
∑k

i=1 [(XRi − PX n)2 − 1
n

∑n
j=1(Xj − PX n)2]]2∑n

i=1

[
(Xi − PX n)2 − 1

n

∑n
j=1(Xj − PX n)2

]2



1=2

;

where R=(R1; : : : ; Rn) is a random permutation of (1; : : : ; n). Notice that given X1; : : : ; Xn statistic, Tn4(R) can
be expressed as

max
1¡k¡n

√
n2

k(n− k)

√
[
∑k

i=1(an1(Ri)− Pan1)]2∑n
i=1(an1(i)− Pan1)2

+
[
∑k

i=1(an2(Ri)− Pan2)]2∑n
i=1(an2(i)− Pan2)2

;

where

an1(i) = Xi and an2(i) = (Xi − PX n)2; i = 1; : : : ; n:

With this choice of scores, one has

var

{
k∑

i=1

an1(Ri) |X1; : : : ; Xn

}
=

k(n− k)
n(n− 1)

n∑
i=1

(Xi − PX n)2;

var

{
k∑

i=1

an2(Ri) |X1; : : : ; Xn

}
=

k(n− k)
n(n− 1)

n∑
i=1


(Xi − PX n)2 − 1

n

n∑
j=1

(Xj − PX n)2



2
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and

cov

{(
k∑

i=1

an1(Ri);
k∑

i=1

an2(Ri)

)∣∣∣∣∣X1; : : : ; Xn

}
=

k(n− k)
n(n− 1)

[
n∑

i=1

(Xi − PX n)3
]
;

where var {: |X1; : : : ; Xn} and cov{(:; :) |X1; : : : ; Xn} denote conditional variance and covariance, respectively.
It can be easily checked that under the assumptions in (3.1)–(3.3), as n → ∞,

lim sup
n→∞

1
n− 1

n∑
i=1

∣∣∣∣∣∣(Xi − PX n)2 − 1
n

n∑
j=1

(Xj − PX n)2

∣∣∣∣∣∣
2+�=2

6 D3E|X1|4+� + D4; [P]-a:s:;

lim inf
n→∞

1
n− 1

n∑
i=1


(Xi − PX n)2 − 1

n

n∑
j=1

(Xj − PX n)2



2

¿ var {e21}; [P]-a:s:

and

1
n− 1

[
n∑

i=1

(Xi − PX n)3
]
→ 0; [P]-a:s:

with some D3 ¿ 0; D4 ¿ 0.
Thus, if we combine these facts with Theorem A.2 we obtain the following result on the limit permutation

distribution after a few standard steps.

Theorem 3.1. Let the observations X1; : : : ; Xn follow the model (3:1) and the assumptions (1:2) and (3:2)
and (3:3) be satis8ed. Then; as n → ∞;∀y ∈ R1

P(
√
2 log log n Tn4(R)6 y + 2 log log n+ log log log n|X1; : : : ; Xn)

→ exp{−2 exp {−y}}; [P]-a:s:

4. Simulations

To compare the behavior of the above described procedures, i.e. empirical distribution of statistics Tn1 and
Tn1(R), we prepared (among others) the simulation experiment in which we generated data from the model
(1:1), where we used:

• n= 80; 120; 200;
• m= n=4; n=2 and 3n=4;
• �n = 0; 1; 2; 3; 4; 5;
• normally and Laplace distributed errors with the variance equal to one.

This resulted in 108 combinations of the above parameters. Note that the choice �n = 0 corresponds to the
situation under the null hypothesis H0, i.e. no change.
For each combination (e.g. n= 80; m= n=2 and �n = 5, and normally distributed errors) we proceeded as

follows:
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Table 1
Empirical critical values for diCerent setups of the simulation

Normally distributed errors Laplace distributed errors

n m � 10% 5% 2.5% 1% 10% 5% 2.5% 1%

80 20 0 2.765 2.966 3.179 3.417 2.842 3.217 3.343 3.530
80 20 1 2.726 2.966 3.173 3.438 2.844 3.220 3.242 3.481
80 20 2 2.740 2.988 3.213 3.482 2.824 3.002 3.231 3.510
80 20 3 2.747 3.012 3.251 3.511 2.756 3.001 3.247 3.522
80 20 4 2.760 3.027 3.261 3.528 2.761 3.015 3.267 3.537
80 20 5 2.770 3.035 3.271 3.535 2.768 3.024 3.268 3.552

80 40 1 2.723 2.952 3.178 3.406 2.838 3.197 3.349 3.501
80 40 2 2.714 2.949 3.162 3.398 2.810 2.965 3.172 3.419
80 40 3 2.692 2.930 3.136 3.376 2.703 2.924 3.139 3.373
80 40 4 2.682 2.910 3.123 3.366 2.681 2.908 3.120 3.367
80 40 5 2.670 2.903 3.113 3.366 2.672 2.900 3.111 3.361

80 60 1 2.728 2.947 3.161 3.400 2.843 2.995 3.226 3.521
80 60 2 2.713 2.958 3.172 3.413 2.808 2.975 3.208 3.495
80 60 3 2.721 2.968 3.192 3.436 2.810 2.990 3.206 3.490
80 60 4 2.732 2.984 3.203 3.473 2.744 2.998 3.229 3.504
80 60 5 2.746 2.996 3.219 3.492 2.749 3.004 3.244 3.521

120 30 0 2.840 3.059 3.261 3.503 2.972 3.339 3.610 3.680

120 30 1 2.847 3.107 3.253 3.532 2.968 3.245 3.682 3.847
120 30 2 2.799 3.046 3.265 3.512 2.870 3.192 3.627 3.637
120 30 3 2.803 3.051 3.273 3.541 2.851 3.181 3.337 3.604
120 30 4 2.807 3.067 3.295 3.569 2.855 3.091 3.322 3.607
120 30 5 2.813 3.074 3.306 3.589 2.863 3.078 3.324 3.601

120 60 1 2.849 3.125 3.254 3.517 2.962 3.299 3.529 3.646
120 60 2 2.816 3.017 3.226 3.462 2.883 3.059 3.267 3.527
120 60 3 2.758 2.992 3.194 3.446 2.770 3.003 3.207 3.450
120 60 4 2.743 2.974 3.179 3.436 2.750 2.974 3.183 3.431
120 60 5 2.735 2.966 3.172 3.430 2.735 2.965 3.170 3.430

120 90 1 2.848 3.158 3.486 3.542 2.961 3.237 3.435 3.660
120 90 2 2.840 3.157 3.446 3.575 2.879 3.192 3.314 3.630
120 90 3 2.841 3.162 3.293 3.565 2.874 3.080 3.314 3.616
120 90 4 2.850 3.064 3.301 3.564 2.829 3.081 3.317 3.602
120 90 5 2.857 3.071 3.318 3.566 2.827 3.089 3.316 3.603

200 50 0 2.896 3.116 3.340 3.615 2.953 3.142 3.371 3.652

200 50 1 2.898 3.118 3.350 3.598 2.997 3.280 3.406 3.669
200 50 2 2.871 3.116 3.341 3.620 2.946 3.284 3.389 3.651
200 50 3 2.875 3.121 3.354 3.623 2.930 3.203 3.375 3.656
200 50 4 2.877 3.127 3.356 3.637 2.933 3.142 3.376 3.676
200 50 5 2.881 3.131 3.368 3.641 2.873 3.141 3.375 3.675

200 100 1 2.895 3.113 3.329 3.601 2.982 3.206 3.368 3.632
200 100 2 2.848 3.084 3.303 3.557 2.922 3.099 3.324 3.581
200 100 3 2.825 3.057 3.273 3.537 2.833 3.072 3.284 3.539
200 100 4 2.808 3.044 3.258 3.522 2.813 3.050 3.265 3.521
200 100 5 2.801 3.036 3.249 3.515 2.801 3.038 3.254 3.511

200 150 1 2.904 3.117 3.346 3.633 2.914 3.121 3.346 3.615
200 150 2 2.899 3.133 3.371 3.650 2.853 3.097 3.322 3.575
200 150 3 2.905 3.137 3.384 3.674 2.849 3.091 3.312 3.582
200 150 4 2.880 3.149 3.382 3.677 2.850 3.096 3.319 3.605
200 150 5 2.885 3.157 3.382 3.680 2.857 3.106 3.331 3.628
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(1) “original” observations X1; : : : ; Xn are simulated using chosen (Lxed) combination of parameters;
(2) a random permutation r = (r1; : : : ; rn) of (1; : : : ; n) is generated;
(3) Tn1(R) with R= r is calculated and its value stored;
(4) steps (2) and (3) are repeated 105 times;
(5) empirical distribution function corresponding to these 105 values of Tn1(R) is formed;
(6) empirical quantiles related to the above empirical distribution function are computed and used as the

estimators of the “true quantiles” x1−�;n.

Recall that in order to get the “complete” permutation distribution of Tn1(R), it would be necessary to
calculate Tn1(r) for all n! permutations r being unfeasible. 3 Instead, Tn1(r) was calculated for a large number
(105) of randomly simulated permutations. In spite of the fact that 105�n! for n = 80; 120 and 200, the
results of our simulations show that the values of empirical quantiles stabilized already for smaller number of
repetitions of the permutation step than used in our simulations.More precisely, empirical quantiles calculated
for 2× 104 permutation cycles are already very close to those presented in Table 1.
It is also important to note that we considered two versions of the basic situation for our simulations, i.e.:

(i) we used the same stream of errors for diCerent values of � when values of n; m and the type of the
errors were Lxed, i.e. we used same seed for the random numbers generator;

(ii) for each setup of n; m; � and the type of the errors we used diCerent stream of errors, i.e. we used diCerent
seeds for the random numbers generator in each of 108 simulations.

In Table 1, the results for the Lrst situation are presented. However, the situation for the second approach is
quite close to the Lrst one.
Selected empirical quantiles, i.e. 90%, 95%, 97.5% and 99%, of the permutation distribution of Tn1(R)

corresponding to 10%, 5%, 2.5% and 1% empirical critical values, are summarized in Table 1. From this
table it is evident that:

(i) Values of the empirical quantiles obtained through the permutation principle are very stable when the
value of the jump is increased from �n = 0 corresponding to the null hypothesis of no change to �n = 5,
corresponding to the evident change. Practically, this means that the procedure is very stable.

(ii) Values of the empirical quantiles obtained through the permutation principle are slightly larger for the
Laplace distributed errors, however, the diCerence is practically negligible due to the fact that the diCer-
ence between the corresponding quantiles is typically smaller than 0:1 for n= 80 and smaller than 0:05
for n= 120 and n= 200.

(iii) There is no inYuence of the location of the true change point m, at least in our setting.

For comparison, we calculated also the asymptotic quantiles according to the Theorem 2.1 and summarized
them in Table 2. It is evident that these asymptotic critical values are very conservative contrary to the
permutation test procedure.

Table 2
Asymptotic critical values

n 10% 5% 2.5% 1%

80 3.212 3.631 4.041 4.579
120 3.236 3.643 4.042 4.564
200 3.265 3.659 4.045 4.551

3 It is important to realize that for computers it will forever hold that 2100 =∞.
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For the simulation, we used Matlab v.5.3 running on 300 MHz Pentium II-powered notebook with 160 MB
memory. The time necessary for one simulation experiment was between 400 and 1200 seconds including
the calculation and drawing ten (10) complicated PostScript Lgures describing the results graphically, i.e.
histograms, empirical distribution functions etc. We have analogous experience for the more complicated
models, too. This demonstrates that the procedure is practically usable.
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Appendix A. Results on rank statistics

Consider the vector of the simple linear rank statistics

Sk = (Sk1; Sk2)′; Skj =
k∑

i=1

(anj(Ri)− Panj); k = 1; : : : ; n; j = 1; 2; (A.1)

where (R1; : : : ; Rn) is a random permutation of (1; : : : ; n); anj(i); i = 1; : : : ; n; j = 1; 2; are scores and Panj =
n−1∑n

i=1 anj(i); j=1; 2. Note that the random permutation (R1; : : : ; Rn) can be viewed as the vector of ranks
corresponding to a random sample (U1; : : : ; Un) from the uniform distribution on (0,1).
We consider two sets of conditions imposed on the scores. The Lrst set concerns only anj(i); i = 1; : : : ; n;

and the other one concerns an(i) = (an1(i); an2(i))′; i = 1; : : : ; n. We assume that anj(i) satisLes j = 1; 2,

lim inf
n→∞

1
n

n∑
i=1

(anj(Ri)− Panj)2 ¿ D5 (A.2)

and

lim sup
n→∞

1
n

n∑
i=1

|anj(Ri)− Panj|2+�1 6 D6 (A.3)

with some positive D5; D6 and �1.
The assumptions on the scores anj(i) are slightly stronger, namely, we assume that

lim inf
n→∞ min

d �=0

d ′�nd
d ′d

¿ D7 (A.4)

and

lim sup
n→∞

1
n

n∑
i=1

‖an(i)− Pan‖2+�2 6 D8 (A.5)

with some positive D7; D8 and �2. Here, ‖:‖ denotes the Euclidean norm,

�n =
1

n− 1

n∑
i=1

(an(i)− Pan)(an(i)− Pan)′

and

�2
nj =

1
n− 1

n∑
i=1

(anj(i)− Panj)2; j = 1; 2:
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Theorem A.1. Let (R1; : : : ; Rn) be the the random permutations of (1; : : : ; n) and let assumptions (A:2) and
(A:3) for j = 1; 2; be satis8ed. Then; as n → ∞; it holds ∀y ∈ R1 and j = 1; 2 that

P
(√

2 log log n max
16k¡n

{√
n

k(n− k)
�−1
nj |Skj|

}
6 y + 2log log n+ 1

2 log log log n− 1
2 log �

)
→ exp{−2 exp{−y}}:

Proof. The assertion follows from the Theorem 1 in Hu(skov"a (1997a).

We also need an analog of Theorem A.1 concerning the behavior of quadratic forms of Sk , which is
formulated next:

Theorem A.2. Let (R1; : : : ; Rn) be the random permutations of (1; : : : ; n) and let assumptions (A:4) and (A:5)
be satis8ed. Then; as n → ∞; it holds ∀y ∈ R1 that

P
(√

2 log log n max
16k¡n

√
n

k(n− k)
S ′
k�

−1
n Sk 6 y + 2 log log n+ log log log n

)
→ exp{−2 exp{−y}}:

Proof. Can be found in Hu(skov"a (1997b).
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