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Summary: Self-exciting threshold autoregressive (SETAR) modelling has been used as an
additional tool in nonlinear analysis of EEG data recorded during typical absence sei-
zures in children suffering from childhood absence epilepsy. Firstly a SETAR model was
fitted to the data by means of a novel adaptive estimation strategy. Secondly the real
EEG data were compared with wave-forms generated from the resulting model. It was
demonstrated that impulse responses (with infinite length) of the SETAR model recon-
structed the TAS pattern with remarkable accuracy. Real and model EEG as well as their
SW-shuffled surrogate signals were compared with respect to the autocorrelation func-
tion, correlation dimension, pointwise dimension and the largest Lyapunov exponent.

1. Introduction

The autoregressive (AR) model is very popular in the analysis of time series
since its theoretical properties are thoroughly investigated and a number of
efficient estimation procedures exist. Furthermore, a transition from time-
domain to frequency-domain analysis can be easily performed by means of
a z-transformation of the model coefficients. Nevertheless, the application
of AR models to real data is limited for at least two reasons: First, such
models are only suitable for analysing stationary processes. Second, their
application is restricted to processes generated by linear systems.

The observation that linear models frequently fail to describe important
properties of time series from many fields has led to the development of
several nonlinear alternatives. At present, research interest is focused on the
investigation of four particular nonlinear models: Bilinear models, thresh-
old models, exponential autoregressive models and state-dependent models.
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Despite the fact that the latter is the most general one there are several facts

which motivate the use of SETAR models in practical applications:

* A wide class of non-linear time series which includes the exponential
autoregressive and the invertible bilinear models can be approximated
by threshold models (Petruccelli 1992).

* Compared with other non-linear models SETAR models are more easily
interpretable and tractable.

* Patterns which are characteristic of non-linear systems such as oscilla-
tions with amplitude-dependent frequencies, (asymmetric) limit cycles,
jump resonances and synchronization phenomena can be generated by
means of SETAR models (Tong 1983).

* Many systems from the real world show saturation characteristics
which can be modelled using thresholds.

Since SETAR models are especially useful to model nonlinear quasiperio-

dic oscillations it seems to be promising to apply this type of model in the

analysis of spike-wave patterns in the EEG. A distinct type of such pat-
terns occurs during typical absence seizures (TAS) in children suffering
from childhood absence epilepsy (CAE). The EEG of such children is
characterised by the sporadic emergence of clear rhythmic oscillations of
high amplitude where a spike of high frequency is followed by a slow
wave of lower frequency. Such periods of absence typically have a dura-
tion of about 10 seconds (ILEA 1981).

The aim of this study has been to get a new insight into the nonlinear
structure of these EEG patterns using this novel modelling technique. This
was mainly achieved by the comparison of the real EEG data with mod-
elled data using the real data as the target signal.

2. Methods and Materials

The model. A SETAR model is given by a collection of AR models and a
corresponding number of thresholds which define a partition of the real
axes. At each instant one AR model is chosen to be active, l.e. it is as-
sumed to generate the corresponding observation. The active regime is de-
termined by detecting the interval which covers the observation at a de-
fined time point in the past. This definition can be formalized as follows:
/
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where Y = AR(Yn) and (£9),, » o are white noise sequences, is called a SE-
TAR{, py, - . pz) process with delay parameter d.

Estimation. The estimation of the model parameters can be performed in
two steps: First, estimation of structural parameters (model order, position
of thresholds, delay parameter) and second, estimation of autoregressive
parameters. Known estimation procedures use classical approaches such as
minimization of least squared prediction errors or maximization of condi-
tional density functions (Bayes estimation). Such techniques are described
in Tsay (1989), Geweke and Terui (1993), Broemeling and Cook (1992)
and Chan (1993).

In our application we used a procedure developed by Tsay (1989), which
includes a test of threshold nonlinearity and the determination of thresh-
olds by visual inspection of various scatterplots. Estimation of the AR
order was performed by means of AIC.

The resulting structural parameters enable the identification of the regime
sequence. This makes it possible to apply techniques from the linear com-
munity to estimate the autoregressive coefficients within each regime. One
efficient approach is the adaptive estimation of coefficients via the so-called
LMS algorithm (Giinther 1983). We modified this technique in such a way
that it can be used to adaptively estimate the AR coefficients of SETAR
models if the structural parameters are known (Arnold and Giinther,
1998). This method has the advantage that it can also be efficiently applied
in time series with nonstationary characteristics.

Signal analysis. After fitting the model to the EEG data, impulse responses
of the resulting nonlinear system were used as modelled EEG. Real and
modelled EEG as well as their SW-shuffled surrogate signals were compared
with respect to the autocorrelation (ACF), correlation dimension D,, point-
wise dimension D, and the largest Lyapunov exponent LLE.

To obtain a surrogate time series the SW cycles were separated at the be-
ginning of each spike, i.e. where the rising part crossed an appropriate
threshold. Then the resulting blocks of spike-wave complexes were ran-
domly arranged.

EEG recordings. EEG raw data (Schwarzer Picker ED 24 electroencephalo-
graph, bandwidth set at 0.3-70 Hz, 19 scalp electrodes placed in standard
10/20 montage positions, referenced to average ears, impedance kept below
5kQ; data were digitised at 256 Hz) were collected from the data base of
the Department for Seizure Disorders at the Vienna University Clinic of
Neuropsychiatry for Children and Adolescents. Data were selected from re-
cordings of 5 children. The channel with the most pronounced SW rhythm
in conjunction with high-amplitude spikes was selected for detailed investi-
gation of dynamcis and as a target signal for modelling. A detailed descrip-
tion of data and signal analysis can be found in Feucht et al. (1998).
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3. Results

By means of the procedures described in section 2, a SETAR model with
5 thresholds (/=6 regimes), a delay d =2 and an order p =20 was identi-
fied. These structural parameters determine the regime sequence. The
model estimation was completed by an adaptive estimation of AR coeffi-
cients within the regimes. To obtain a better approximation the data se-
quence was processed twice where the estimates at the end of the interval
were choosen as initial values of the second run.

The resulting nonlinear system was investigated by analysing impulse re-
sponses. It turned out that the impulse response of the system recon-
structed the signal with high accuracy. Furthermore, it was interesting to
observe that a short impulse led to a neverending excitation of the system.
This way it was possible to generate SWD patterns with an infinite dura-
tion (Fig. 1).

Comparison of parameters which describe linear or nonlinear properties
for the real and modelled EEG produced the following results:

The ACFs of the EEG signal and its surrogates are considerably different.
Consequently this signal could be a realization of a nonstationary process.
This is not the case for the modelled signal.

The pointwise dimension of the EEG was 3, that of the modelled signal 2.
This can be interpreted in such a way that the EEG signal reflects three in-

Fit SETAR model _
SWD (chilqhood epilepsy)

Recursive

Identification = estimation

p=20, d=2, |=6 regimes

Reconstruction

I-l SETAR
—
model

Fig. 1. Modelling of a TAS by means of SETAR models. The two waveforms are part of the

input EEG (above) and part of the reconstruction by means of an impulse response, respec-
tively.
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dependent modes and the modelled signal only two. Maybe the third
mode is responsible for the nonstationarity which appears as a prolonga-
tion of the waves in the course of the seizure.

Investigation of LLE revealed no evidence of chaos in either signal. It was
interesting to find that the LLE of the simulated signal was clearly smaller
than the LLE of its surrogates. This indicates that the SETAR model poss-
eses some deterministic nonlinear dynamical structure which is lost after
randomization.

4. Discussion

SETAR models are useful to model systems with saturation nonlinearity
or processes with excitatory and inhibitory states. They are able to gener-
ate oscillations with typical nonlinear properties which can be frequently
observed in physiological recordings.

A crucial task in the estimation of SETAR models is the determination of
the structural parameters, i.e. delay and thresholds. Methods exist which
can be used to solve this problem but they are not practical in many situa-
tions, especially in the analysis of huge data sets. Once the structural para-
meters are identified techniques from linear modelling can be used to esti-
mate the AR coefficients within each regime. An adaptive estimation is
possible by means of a stochastic gradient procedure. This approach works
well also in situations where the data show a mild nonstationary beha-
viour.

It was demonstrated that SETAR processes can be used to model the dy-
namics of SW patterns in the EEG during TAS of children suffering from
CAE. The resulting system is able to reproduce the dynamics of this spe-
cial pattern. By means of impulse responses it was possible to generate pat-
terns with inifite duration which approximate the original waveform with
high accuracy.

Comparison of descriptive parameters of real and modelled EEG was
helpful to interprete the linear and nonlinear characteristics of the data.
The surrogate data set made it obvious that the model SW sequence in-
volves nonlinear structure (i.e. relationship over more than one SW cycle,
not represented by the ACF). This time series seems to reflect a stationary
process in the statistical and the dynamic sense. This is indicated by the in-
variance of the ACF with respect to SW shuffling and the invariance of
the spatial extent of the reconstruction set with respect to the signal
length. The estimated dimension of 2 for the modelled EEG suggest that
two oscillatory modes are necessary in order to reproduce the SW mor-
phology of the EEG adequately. Thus, a dimension of 3 is the expected re-
sult for the EEG because it additionally exhibits an organized alteration of
the patterns possibly associated to a third variable.

A A
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