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In each of two experiments, subjects were presented with randomly gener-
ated sequences of binary information. At some point during each sequence, a
change 1n the probabilities of the events occurred; the task was to detect this
change Late detections resulted in a loss proportional to the number of events
between the occurrence of the change and detection, while false alarms were
penalized a constant amount. Experiment I used two levels of task difficulty
and two payoff conditions; Experiment II employed a single level of task
difficulty and five payoff conditions. Subjects’ detections were affected by
payoffs in the appropriate direction, but not to as great a degree as was the
optimal Bayesian model. Two parameter-free descriptive models of behavior
were examined: a fixed sample size model, which postulated that subjects
observe a predetermined number of items, was rejected; a critical odds model,
assuming that subjects use as a criterion the probability that change has oc-
curred, received some support, except for a slight tendency for subjects to
relax therr criterion as sample size increased. A simple heuristic model of
performance in the task was examined, and implications of alternative utility
assumptions were explored.

Experiments in risky decision making can be classified according to
whether stationary or nonstationary probabilities govern various experi-
mental events. In the stationary task, events are generated by prob-
abilities that remain fixed over time; the familiar bookbag and poker chip
experiment, in which subjects make inferences about populations with
fixed characteristics, is an example. On the other hand, the nonstationary
task involves probabilities that may change over time; it closely parallels
many situations that confront decision makers in real-world settings, but
has received relatively little attention. The paradigm of the present study
could, in theory, be extended to model the task of, say, a clinician at-
tempting to detect personality changes on the basis of periodic observa-
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tions of behavior. Since the human perceptual system appears to be cop.!

structed to detect changes more easily than identify steady states, it is'

worth studying the detection of change at the cognitive level also.

Prior studies have yielded mixed results concerning performance iy
nonstationary tasks. Some have concluded that subjects deal quite effec. -
tively with nonstationarity (Rapoport, 1964; Robinson, 1964; Pitz, 1966;
Chinnis & Peterson, 1970). However, Theios, Brelsford, and Ryan (1971)
concluded that their subjects performed poorly when required to estimate
transition points of binary sequences in which the two generating prob.
abilities differed only slightly. And, Brown and Bane (1975), in g
nonstationary probability estimation task, found systematic overestima-
tion of increasing probabilities and underestimation of decreasing ones,
Burkheimer and Rapoport (1971) have presented a thorough treatment of
detection of change from a normative point of view, and their paper
contains a detailed discussion of the important parameters in such a task.

In the present study, a decision maker is presented with a sequence of
binary information, whose elements we arbitrarily term R (red) and B
(blue). Initially, the probability of an R item is fixed at some value Py;
sometime during the course of the sequence, this probability changes to a
new value P;. The decision maker’s task is to detect the shift on the basis

of the sequence of items he has seen; the sequence continues until a

detection response occurs. As an example of the detection of change task,
consider a quality-control inspector who must examine the output of a
manufacturing device. He knows that the machine’s normal output results
in, say, a 20% rate of defective items (P, = .20). At some point in time,
the defective rate shifts to 60% (P, = .60), remaining there until a stopping
decision is made. Assuming that the inspector must base his decisions on
samples of the machine’s output taken at regular intervals, under what
conditions should he halt production so that the machine can be checked?
In order to answer this question, a payoff structure must be imposed on
the task. We note that two types of errors are possible: first, the change
may not yet have taken place when stopping occurs (false alarm); in this
case, the decision maker is penalized a constant amount F. On the other
hand, he may stop after the change has occurred (late detection); here, the
penalty is proportional to the number of observations between the change
and the decision to stop; i.e., the penalty for a late detection is w(T — 1),
where T is the number of observations taken before stopping, ¢ is the
number of observations prior to the occurrence of the change, and w is a
payoff parameter representing the penalty per post-change observation.
It is also necessary to specify a probability distribution that governs the
time of occurrence of the change. A geometric distribution was chosen for
this purpose; it has the advantage of providing a conceptually random
distribution of change times, in that the probability of the change occur-
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ring before the next observation, if it has not yet occurred, is a constant.
The geometric distribution is characterized by a single parameter, «, rep-
resenting this probability. Hence, the probability of the change occurring
immediately before observation » is given by:

Pn=a(l— a7, (D
and the probability of the change occurring at some time prior to observa-
tion # is:

P,=1-(1 - o)y 2

Finally, the probabilities of an R item both before and after the change (P,
and P,) must be specified; the respective probabilities of a B item are then

\(1—P0)and(1—P1).

Once the five parameters above (F, w, «, Py, P;) are known, one can
find the optimal strategy, i.e., the rule prescribing that point at which the
decision maker must stop if he wishes to minimize his expected losses.
The strategy employs Bayes’ Theorem to calculate, after each observa-
tion, a revised probability that the change has occurred. This posterior
probability depends only on the parameters a, Py, and P;, and the se-
quence of R and B items that have been observed; i.e., the posterior
probability is independent of any payoff considerations.

Pollock (1967) has shown that there exists a critical probability, g,
having the following property: whenever the Bayesian posterior probabil-
ity favoring change equals or exceeds g, it is optimal to make a stopping
decision; as long as the posterior probability is less than g, more observa-
tions should be taken. The value of g depends, of course, on the values of
all five parameters noted above. When there is no constraint upon the
total number of observations that can be taken, g is constant for any fixed
set of parameters, i.e., does not vary as a function of the number of
observations. Pollock (1967) has also provided an algorithm for deter-
mining the value of ¢, employing the techniques of dynamic programming
(see Bellman, 1957).

Given an optimal strategy for the detection of change, several questions
present themselves. What is the relationship between the prescriptions of
the optimal model and the decision behavior exhibited by subjects? Do
the critical parameters affect subjects in the same way that they affect the
model, and to the same degree? If not, is it possible to construct a model
that can describe behavior? The experiments reported here were designed
to examine the effects of two parameters upon performance, and to test
models of decision strategies for the detection of change task.

Several studies of decision making in stationary environments have
noted a failure of subjects to respond appropriately to modification of the
payoffs. When payoffs have been manipulated so as to favor particular
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decision alternatives, strategies have shifted in the correct direction, by
not to the extent required by an optimal model (Pitz & Downing, 1967; -
Pitz & Reinhold, 1968; Ulehla, 1966). In other words, performance has -

been more optimal when payoffs induced no bias, and responses could be
made on the basis of the posterior probabilities alone. For the detection of
change task, it is not clear exactly what might constitute an unbiased set
of payoffs, since there is no symmetry between the two kinds of costs
incurred,

General descriptive models of subjects’ strategies in a dynamic decision
task may be tested. The models and the tests of their adequacy are based
on two descriptive models for a deferred decision making task, proposed
by Pitz, Reinhold, and Geller (1969), and are concerned with the general
form of strategies that subjects may adopt. The critical odds model states
that the decision to stop occurs when the odds favoring change (equiv-
alently, the probability favoring change) reaches some predetermined
cutoff level, which may itself vary from trial to trial. The optimal strategy
1s a special case of the critical odds model, in which the critical odds is

determined by the optimal stopping probability g. Thus, a subject could”

perform in accordance with the critical odds model without necessarily
performing optimally.

The second model tested was a fixed sample size model, which
specifies that subjects base their decisions to stop solely on the number of
observations that have been taken. While Pitz ef al. (1969) found that a
modification of the fixed sample size model approximated behavior in a
stationary information-purchase task, we did not view the fixed sample
size model as a serious candidate for a descriptive model in the present
nonstationary task. Rather, it was included in order to demonstrate that
an implausible model can indeed be rejected via the analytic techniques
we employed.

Next, a simple heuristic model requiring two parameter estimates per
subject was examined, and finally, the effects of (1) a risk-averse utility
assumption and (2) a utility for being correct assumption, were explored.

EXPERIMENT |
Method

Design and subjects. Two determinants of the optimal strategy, task
difficulty and penalty for a false alarm, were varied in a between-subjects
factorial design. Task difficulty is inversely related to the difference be-
tween the pre- and postchange probabilities, P, and P;. Under the easier
condition, these values were 0.2 and 0.6, respectively; under the more
difficult condition they were 0.4 and 0.6. The penalties for a false alarm
(F) were $7 and $14, in token money. For all groups, the probability of
change conditional on its having not yet occurred (o) was 0.1, and the
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penalty per observation for a late detection (w) was $1. Forty male stu-
dents enrolled in an introductory psychology course served as subjects in
partial fulfillment of a course requirement. Each subject was randqmly
assigned to one of the four conditions, and served in a 50-min session.
Subjects were told that their payment would depend upon how well they
performed in terms of the token money; actual payments averaged ap-
proximately $1.70.

Apparatus. The stimuli consisted of two lamps, one red and one blue,
mounted on a control panel in front of the subject. He began each se-
quence by pressing a start button, whereupon the stimuli were presented
at the rate of approximately 40 per min; when he wished to indicate that
the change had occurred, he pressed a stop button. There was no limit on
the number of observations that might be taken. At the end of a sequence
one of two state indicators lighted, informing the subject whether the
change had in fact taken place. The amount lost for that decision was
displayed on a counter, and another counter displayed the total amount
lost thus far. A third meter displayed the total number of stopping deci-
sions that had been made. A card mounted on the panel listed the values
of Py, P1, F, and w. Stimuli and occurrences of the change were generated
randomly, according to the specified parameters, by a solid state proba-
bility unit. All events were automatically recorded on punched paper
tape.

Procedure. At the beginning of the experimental session, the subject
was given a booklet of instructions, which served to acquaint him with the
concept of probabilistic information and its relevance to the detection of
change task. He was instructed to imagine himself in the position of a
quality control inspector whose job was to decide whether or not a man-
ufacturing device was functioning properly, with emphasis on the fact that
his job was to minimize the amount of token money lost for each stopping
decision made. The various parameters involved were explained in the
context of this situation, and the functions of the control panel were
explained. Any questions he had about the task were answered, and sev-
eral practice trials were run before the experiment proper began. Each
subject was then run for 25 min; the number of sequences averaged about
80. Subjects were told how long the sessions would last, and that their
payment would depend only upon the average token money loss per stop-
ping decision; this was done to eliminate inappropriate strategies such as
performing slowly in order to minimize total amount lost, or performing
quickly in order to leave the session early.

Data analysis. The probability favoring change at the time each deci-
sion was made and the number of information items observed for each
decision were obtained. For purposes of comparison, the same measures
were obtained for the performance of the optimal model. When actual
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behavior is compared with optimal, a problem arises if the subject decides
to stop earlier than the optimal model would; since the sequence is termi.
nated, the outcome of the model’s decision is unknown. To evaluate the
model’s behavior in this situation, a Monte Carlo technique was
employed; each time the subject stopped before the model, the sequence
was later continued via computer simulation until the model specified that
stopping should occur. The values of the probability favoring change
when stopping occurred were transformed into log odds (log () measures
according to: )

P
logQ=log(1 e

where P is the probability favoring change.

Results

The mean log () for the subjects’ decisions was compared with mean log
() for the optimal model’s decisions, for the same sequences of informa-
tion as seen by the subjects. A repeated measures comparison of the
difference between observed and optimal mean log stopping odds was
significant, F(1,39) = 12.82; the likelihood ratio, L, in favor of the null
hypothesis (Jeffreys, 1961) was .0062, indicating a clear discrepancy be-
tween observed and optimal stopping points.! Table 1 shows group means
for the four conditions; generally, subjects tended to wait too long before
stopping, although in one condition (P, = .2, F = $14) their decisions
tended to come too early. An analysis of variance, restricted to the left
half of Table 1, indicated a significant effect due to Task Difficulty,
F(1,36) = 6.95, L = .343, The effect due to False Alarm Penalty was not
significant, nor was the Difficulty by Penalty interaction.

Next, the fixed sample size and critical odds models were examined
(see Pitz et al., 1969, for a discussion of a similar technique for evaluating
the two models in an information seeking task). According to the fixed
sample size model, subjects base their decisions to stop only upon the
number of items seen since the beginning of a sequence. If the model were
correct, the actual value of the criterion (i.e., number of items before
stopping occurs) would vary from subject to subject, and might fluctuate
within individuals as well; a test of the model must allow for such vari-
ability. If subjects do employ a fixed sample size strategy, then the termi-
nal value of log ) becomes a random variable, with expected value and
variance that depend only on .

Expected values of log ) conditional on n[E(log Q|n)] were estimated

! The likelihood ratio is the ratio of the probability of the data given the null hypothesis to
the probability of the data given all alternatives to the null. Values less than 1.0 indicate
evidence against the null hypothesis.

,%
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TABLE 1
OBSERVED AND OPTIMAL VALUES OF MEAN LoG ) As A FUNCTION OF TASK DIFFICULTY
AND PENALTY FOR A FALSE ALARM

Observed Optimal

Py=.2 Py= 4 Py,=.2 P, = .4

F=9%7 572 414 F =§7 351 .002
F=3%14 575 459 F = $14 .694 .340

by 2000 Monte Carlo simulations for each value of n from 1 thl:ough 25.
These are compared with observed means, pooled across subjects and
across payoff conditions, in Fig. 1. The dotted lines in Fig. 1 represent
95% confidence intervals around E(log Q|n) and were calculated on the
basis of the number of decisions made for the given value of n. Note that,
if the model is correct, all values of log ) are independent of each other,
even within the data for a single subject. Means are plotted for those
values of n at which 10 or more individual decisions were made; means
based on less than 10 decisions were considered too unstable for inclu-
sion. It can be seen that the trend of observed mean log stopping odds is
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- * Experiment 1
o Experiment 2
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LOG STOPPING 0ODDS
FiG. 2. Comparison between expected mean sample sizes assuming a critical odds mode]
(solid line), and actual mean sample sizes exhibited by subjects (dots). Broken lines indicate
95% confidence limits about the means obtained via simulation.

not in accordance with the predictions of the fixed sample size model. The
conclusion is that subjects were not solely influenced (if they were infly-
enced at all) by the number of items appearing in a sequence.

A similar test was carried out for the critical odds model, which predicts

that subjects decide to stop when log Q (or, equivalently, probability

favoring change) reaches or exceeds some predetermined level. If this
model is correct, then n becomes a random variable, with expected value
and variance that depend only upon the value of log Q. Thus, for each
value of log (1, the critical odds model predicts a value for mean terminal
n. Figure 2 shows the predictions of the critical odds model. Observed
values of log (2 were grouped into intervals in order to simplify analysis;
the abscissa values in Fig. 2 are the midpoints of those intervals, which
ranged from —0.35 to 1.85 in steps of 0.1 log Q units. The dotted lines
again represent 95% confidence intervals. As before, the data were pooled
across subjects and across payoffs, and means for intervals containing
less than 10 individual decisions were omitted.

It can be seen that the critical odds model can serve at least as a
reasonable first approximation to observed behavior. Subjects, on the
average, did base their decisions on the probability that change had oc-
curred. Distortions that did occur consist mainly of increased sample
sizes at smaller values of log Q.

Discussion

The fact that subjects in general tended to take too many observations
might be accounted for in part by the nature of the task itself. A stopping
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decision required an active response, namely, pressing the stop button. A
decision to continue, on the other hand, was a passive one, in that no
overt response was required. The tendency might not have been observed
if both “‘stop’” and ‘‘continue’’ decisions required an active response.

The results indicate that subjects’ decisions were influenced by task
difficulty; however, as can be seen in Table 1, this parameter did not
affect behavior to as great a degree as it affected the optimal model. Also,
it is somewhat surprising that, within each of the two difficulty conditions,
there was essentially no effect due to false alarm penalty.

The fixed sample size model did not provide a satisfactory description
of behavior in the present experiment; subjects were clearly basing their
decisions on something other than the number of items in the sequence.
This result was expected; the fixed sample size model does not take the
actual values (R or B) of information items into account. The predictions
of the critical odds model were generally in accord with observed be-
havior; however, some discrepancies did occur. The discrepancies seen in
Fig. 2 indicate a slight tendency among subjects to relax their stopping
criterion (i.e., reduce the critical probability) as sample size increased.
This result is indicated by subjects stopping too often at small values of
log Q following longer sequences, with the result that average n was too
large for these smaller stopping odds.

EXPERIMENT li

Method

The apparatus and procedure were the same as in Experiment 1. Fifty
male students enrollel in introductory psychology served as subjects in
partial fulfillment of a course requirement. Each subject was randomly
assigned to one of five payoff conditions; none of the subjects had partici-
pated in Experiment 1. Again, subjects were told that. their payment would
depend upon how well they performed, and were paid an average of
around $1.70.

Five levels of F, the penalty for a false alarm, were employed in a
between-subjects design: $4, $6, $10, $18, and $28. Task difficulty in-all
five groups was the same as in the easier condition of Experiment I; Py =
.2, P, = .6. The values of @ and w were, respectively, .1 and $1, as in
Experiment 1.

Results

A comparison of observed and optimal mean log stopping odds indi-
cated, as before, that the optimal model itself did not describe subjects’
performance, F(1,49) = 21.45, L = .0014. Figure 3 illustrates this com-
parison, and also suggests the existence of some payoff effects that were
not apparent in Experiment I. First of all, it can be seen that subjects
tended to stop at higher log } values for higher values of F, as is appropri-
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F1G. 3. Mean log stopping odds for each payoff group in Experiment I and II and predic-
tions of a UC (utility for being correct) model.

ate. Figure 3 also illustrates, however, that payoffs did not affect subjects’
decisions as much as they affected those of the optimal model. That is, the
observed log Q values did not rise as quickly as the eptimal stopping
values. A test of the simple main effects of payoffs, restricted to subjects’
decisions, was also significant, F(4,45) = 13.54, indicating that payoffs in
Experiment II did indeed affect subjects’ stopping decisions. And finally,
the Subjects vs Optimal by Payoffs interaction was also significant,
F(4,90) = 13.71, supporting the interpretation that payoffs affected sub-
jects differently from their effect on the optimal model.

The fixed sample size and critical odds models were tested as in Ex-
periment I. The fit of the critical odds model for Experiment II is shown in
Fig. 2. The data for the fixed sample size model are not shown, being very
similar to those in Fig. 1. Again, the critical odds model was superior to
the fixed sample size model, and the deviations from the predictions of the
former were similar to those in Experiment 1.

The reasonably good fit of the critical odds model does not, of course,
imply that subjects actually calculated posterior odds in the manner of a
mathematical model. We next examined a simple heuristic? that seemed
well within human information processing limits: *“‘Stop as soon as k of the
n most recent information items have been red.”” The model allows for
individual differences in memory capacity (r) and stopping criterion (k);

perhaps the model’s strongest assumption is that for a given subject, k and :

n remain fixed throughout the experimental session. Given values of k and

n, the model specifies the exact point at which stopping will occur. For &

% We are grateful to a referee for suggesting the k/n model and for comments that led to our 3\

examination of a risk-averse utility explanation of the results, described later.
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More precisely, suppose that subjects adopted the following risk-averge
disutility function:

d(F) =F', Y >1, 3

which implies that, for example, a loss of $2F is more than twice ag
serious as a loss of $F. The reason for the d function’s inability to explaip
the present results can most easily be seen by referring to Fig. 3. Since
abscissa values are logarithmically spaced, it can be seen that optimal log
) is very nearly linear in log F(r = .997); in fact, the relationship remaing
linear through the highest F value we examined for this purpose (F =
2000). Thus, at least for 4 < F < 2000, we have a close approximation tg
the optimal model’s stopping behavior as a function of log F:

logQ =alogF + b for some a,b.

If subjects were behav‘i'ng optimally but minimizing disutility rather thag
dollar loss in accordance with Eq. (3), then the functional relationship
between log F and log Q would be given by:

log Q = a log [d(F)]
a log F¥
aY log F.

i

Il

But since @ > 0 and Y > 1, it follows that subjects acting in accordance
with Eq. (3) would yield a log Q function with slope greater than that of
the optimal function in Fig. 3; this was clearly not the case.
Alternatively, one can postulate a utility for being correct (UC),
suggested by Pitz and Downing (1967). The UC hypothesis received mild
support from Pitz and Reinhold (1968) and Ullrich (1969) in decision
making and information seeking situations, respectively. In the detection
of change situation, the UC hypothesis would say, in effect, that subjects
place some value on demonstrating an ability to detect the change when it
occurs, independent of the monetary costs associated with their deci-
sions; the effects of monetary rewards would thus be diminished.
Predictions of a UC model are shown in Fig. 3, and were obtained by
adding the Constant 3 (estimated graphically) to each of the F values, and
then determining optimal values of log Q for the resulting increased
penalties. The (post hoc) predictions of the UC model are clearly better
approximations of behavior than those of the optimal model. However,
the UC model predicts that log Q will never be less than optimal, while for

two conditions (F = $14 in Experiment I and F = $28 in Experiment II);
this appears to be untrue. '

GENERAL DISCUSSION

In view of the results of Experiment II, the comment made earlier
regarding subjects’ tendencies to wait too long before stopping requires

adip
“r

J
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some modification. In the $4, $6, and $10 groups, such a tendency was
again observed, but in the $28 group, the reverse was true, i.e., subjects
enerally stopped too early; observed and optimal log stopping odds
sgreed rather closely in the $18 condition. These results tend to make the
wactive Vs passive response’’ hypothesis less tenable, and suggest instead
that the excess observations taken in Experiment I can be accounted for
py an under-reaction to the payoff (false alarm penalty) factor. Similar
piased payoff effects have been found in decision making (Pitz & Down-
ing, 1967; Pitz & Reinhold, 1968) and perceptual judgment tasks (Ulehla,
1966). In each of these studies, behavior was affected by payoffs, but not
1o the extent that an optimal model would prescribe. Experiment II indi-
cates that an analogous effect is present in the detection of change task.

Both experiments demonstrated the superiority of the critical odds
model with respect to the fixed sample size model. The Pitz ez al. (1969)
study of information seeking reported a marked decrease in stopping odds
as a function of sample size; the critical odds model, in that it predicts a
constant critical odds that is independent of sample size, was inadequate.
Such an effect apparently did occur in the present experiments, but to a
much smaller degree. This difference presumably reflects inherent differ-
ences between the two tasks. When no possibility of change is present, as
in the Pitz et al. information seeking study, all information items pre-
sented to subjects have equal status, regardless of the order in which they
are presented. For example, the sequence RRRBBB is equivalent to the
sequence BBBRRR in terms of the optimal decision rule. For the detec-
tion of change task, however, recent items carry more weight than earlier
ones; of the two sequences above, the latter is more indicative of change
than the former if P, is less than P,. Subjects presumably have an aware-
ness of the relatively greater importance of recent items, and in fact may
ignore entirely those items seen early in a long sequence. If this is the
case, there is less reason to expect a decreasing critical odds phenome-
non. Regardless of the number of items seen, a decision may be based
only upon the most recent items. In contrast to the information seeking
case, subjects in a nonstationary situation might thus ignore the length of
a sequence, so that no effect of the number of items observed would be
found.

The k/n model is attractive for at least two reasons. First, it specifies,
for any given information sequence, the exact point at which stopping will
occur, thus permitting precise measures of the model’s accuracy. Second,
its two parameters, reflecting a stopping criterion (k) and memory capac-
ity (n), are easily interpreted; the latter, in fact, can be estimated outside
the detection of change context, thus providing a link to other areas of
cognition. An apparent shortcoming of the k/n model was the absence of
any discernable relationship between payoff condition and best-fitting k/n
parameters (see Table 2).
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The results did not support a risk-averse utility interpretation. How.

ever, the utility for being correct (UC) hypothesis received mild support, -

and accounted in part for the diminishing effects of false alarm penalty,
For example, in the F = $4 condition, the optimal model requires a poste.
rior probability of change of only .364 or greater before a stopping decj.
sion is indicated. While this strategy does minimize expected cost, it also
yields a large proportion of false alarms (.507 as determined by Monte
Carlo techniques, in contrast to an observed proportion of .299 for sub.
jects). Subjects may consider false alarms undesirable, perhaps feeling
somewhat foolish for consistently maintaining that the change has takep
place when in fact it often has not. The optimal model, of course, has no
such reservations.

The critical odds model, then, may serve as a general starting point for g
descriptive model in the detection of change situation. That is, subjects do
tend to behave as if they were stopping when the probability favoring
change reaches some predetermined cutoff value. Exactly why their
strategies approximate this appropriate way of responding in the
nonstationary task, but not in a stationary task, needs to be explored more
fully. Finally, implicit payoffs, such as utility for being correct, may also

be important considerations in formulating a descriptive model for the

detection of change.
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