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Detecting Changes in Signals and Systems—A
Survey*
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The problems of detection, estimation and diagnosis of changes in
dynamical properties of signals or systems are addressed, with particular
emphasis on statistical methods for detection, to provide a general
framework for change detection in signals and systems.
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Abstract—The purpose of this paper is the presentation of a
tentative general framework for change detection in signals
and systems. It is based upon a non-exhaustive survey of
available methods. The main emphasis is placed upon
statistical (parametric) methods for detection, which are
presented according to the increasing order of complexity of
the change problem. Another noticeable feature is the joint
presentation of two commonly disconnected aspects, namely
the generation of the signals to be monitored and the design
of statistical decision rules.

1. PROBLEMS STATEMENT AND
APPLICATION EXAMPLES

1.1. Introduction

Tue pROBLEM of detecting changes in dynamical
properties of signals and systems has received
growing attention during the last 15 years, as can
be seen from the survey papers (Willsky, 1976;
Mironovski, 1980; Basseville, 1982; Kligene and
Telksnys, 1983; Isermann, 1984) and the books
(Himmelblau, 1978; Pau, 1981; Nikiforov, 1983;
Basseville and Benveniste (Eds), 1986; Telksnys
(Ed.), 1986). Taking into account abrupt
changes in statistical models appears as a natural
complement of most of the adaptative tech-
niques which track only slow variations of
parameters. The analysis of the non-stationary
behavior of many signals (see examples below)
and the investigation of some exceptional
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phenomena in dynamical systems (e.g. sensors
and actuators failures) show that a reasonable
approach in such situations consists of using
statistical parametric models in which one or
several parameters may abruptly change.
Actually, the problem of change detection arises
in many areas of automatic control and signal
processing, which may be classified as follows.

(1) Segmentation of signals and images for the
purpose of recognition, and also for
monitoring dynamical systems; in that case,
the problems of interest are the detection
of the changes and the estimation of the
places (time or space) where the changes
occur. This segmentation is a possible first
step for recognition or monitoring.

(2) Failure detection in controlled systems; a
short delay for detection is often of crucial
importance, in view of the reconfiguration
of the control law, for example.

(3) Gains updating in adaptive algorithms, for
tracking quick variations of the parameters;
the detection of abrupt changes in the
characteristics of the analyzed system and
the estimation of the change time and
magnitude may allow a convenient updat-
ing of the gains of the algorithm.

Many applied fields have already been
concerned with change detection: edge detection
(Basseville et al., 1981); continuous speech
recognition (André-Obrecht, 1988); geophysical
(Basseville and Benveniste, 1983a) and seismic
(Nikiforov and Tikhonov, 1986) signals segmen-
tation; biomedical signals processing (Gustavson
et al., 1978a,b; Sanderson and Segen, 1980; Ishii
et al., 1980; Appel and Brandt, 1983; Mottl et
al., 1983; Corge and Puech, 1986); aeronautics
(Deckert et al., 1977; Kerr, 1985); chemical
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FIG. 1. Segmentation of continuous speech signal (the vertical lines indicate the detected jumps).

(Himmelblau, 1978) and nuclear (Desai and
Ray, 1984) industries; vibration monitoring
(Basseville er al., 1987); incidents detection on
freeways (Willsky et al., 1980); leak detection
for pipelines (Isermann, 1984); control of air
conditioning systems (Usoro et gl., 1985);
prediction of municipal water demand (Sastri,
1987); and econometry (Shaban, 1980).

The interested reader is referred to Perriot-
Mathonna (1984) and to Favier and Smolders
(1984) for two examples of the use of change
detection algorithms for solving a problem of
type (3). Let us now investigate two typical
problems of class (1) and one example of class
(2).

1.1.1. Example 1: segmentation of continuous
speech signals. A possible approach to automatic
recognition of continuous speech consists of
using an automatic segmentation of the signal as
the first processing step (André-Obrecht, 1988).
Without using any phonetic information, this
segmentation results in a decomposition of the
signal into units which are then labelled and
processed at the second step called acoustic-
phonetic decoding. An example of such an
automatic segmentation can be seen on Fig. 1.
The algorithm which is used will be discussed
below. Let us just briefly mention that on-line
detection of abrupt changes in the spectral
characteristics of the signal (y,) is performed via
the comparison between a long term model M,
identified in a growing window and a short term
model M; identified in a sliding window of fixed
length. The models which are used are
autoregressive (AR) models excited by Gaussian

white noises, namely:

Yn = i AYn—i T &, 1)

i=1

where (&,) has variance o2

The distance measure between the two
estimated models is Kullback’s divergence
between the conditional probability laws of the
signal with respect to these models. The key
point which has to be kept in mind is that the
vector parameter:

62 (a,- - - a,0)" @

is monitored on-line, using a sophisticated ¢
function of the innovations of the two models M, ur:
and M,.

L.1.2. Example 2: vibration monitoring of of
structures under natural excitation. Monitoring corm
mor

changes in the vibrating characteristics of a
complex structure, such as an offshore platform T

subject to the swell, results in fatigue analysis. cxal
The main difficulties of such a monitoring lie in app
the highly non-stationary behavior of the sign
unknown excitation, and furthermore finite exXp
elements model updating is impracticable when pur]
only a few measurements (from accelerometers) key
are available. A recent original solution consists estl
of two steps (Basseville ef al., 1987), as follows.

(a) On site identification of a modal signature, 12
namely of the vibrating frequencies and .I
modes of the structure which is described
by: gor

MX+CX+KX=E 3) gg:
where M, C, K are the matrices of mass, foll
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" damping and stiffness coefficients and E is

the unknown excitation. This signature is
obtained with the aid of a parametric
identification method based on ARMA
modelling.

(b) Validation of this signature on subsequent
records of signals. This test can monitor the
structure globally, or focus the monitoring
into particular subspaces and thus give
information for diagnosis; i.e. identification
and localization of the origin of the change.

The key point here is that we have to detect
changes in the AR part of a vector auto
regressive moving average (ARMA) process,
with unknown and time-varying MA coefficients
which thus have to be considered as nuisance
parameters. The main feature of the solution is
to transform this complex problem into the
simpler problem of detecting a change in the
mean value of a conveniently chosen random
variable.

1.1.3. Example 3: failure detection in air
conditioning systems. Fault detection and diag-
nosis in the heating, ventilation and air
conditioning (HVAC) system of a building is of
crucial importance for reducing energy use. A
possible solution to that problem has been
recently proposed by Usoro et al. (1985). It
consists of using a continuous-time non-linear
state space model for the air handler unit
together with an extended Kalman filter for
estimating its state. The various faults are
detected by monitoring convenient functions of
the innovations of this filter—sum of squares,
likelihood functions, ..., —and they are pos-
sibly estimated and located using a pre-
established classification of the values of these
functions for different failure types.

As in the previous example, the main feature
of this application is the transformation of the
complex initial problem into the problem of
monitoring convenient residuals.

The sophisticated algorithms used in the
examples above and the numerous fields of
application which we mentioned show that a
significant amount of methodological tools and
experimental results is available now. The
purpose of this paper is the presentation of some
key solutions to the underlying detection,
estimation and diagnosis problems.

1.2. A twofold possible approach

In designing change detection/estimation al-
gorithms, it may be useful to distinguish two
types of tasks generalizing the philosophy
developed in Chow and Willisky (1980), as
follows.

(i) Generation of “residuals” or change
indicating signals: these artificial measure-
ments are designed in order to reflect
possible changes of interest in the analyzed
signal or system. They are, for example,
ideally close to zero when no change
occurs, or, more generally, their mean
value or their spectral properties change
when the analyzed system is changing.

(i) Design of decision rules based upon these
residuals: this task consists of designing the
convenient detector which monitors the
changes as reflected by the “residuals”.

Both deterministic and stochastic approaches
have been used in the literature for solving these
two tasks. In this paper, we will mainly
concentrate on parametric Sstatistical methods,
especially for task (ii). Our experience and
conviction are that a useful and powerful
approach for solving change detection problems
consists of the following.

First, transforming the possibly non-stochastic
initial problem into a stochastic change
detection problem such as the problem
precisely stated below. This step is the
generalized task (i) mentioned above. A
non-standard example of such a problem
transformation may be found in Bouthemy
(1987).

Second, using sophisticated statistical tools for
solving the resulting stochastic problem,
namely task (ii).

We insist upon the fact that, as will be seen
below, there exists a general statistical approach
for change detection, namely the likelihood ratio
approach, which leads most of the time to very
powerful algorithms. Whenever such a solution
can be used, i.e. when there are no constraints
on algorithm complexity and no nuisance
parameters, this likelihood approach should be
implemented directly on the initial system or
signal without considering step (i). The discussion
about the detection of changes in spectral
properties or eigenstructure will clarify this
point. But we also emphasize that the solution of
task (i) may be of key importance in complex
systems, for example, in order to reduce the size
and/or simplify the structure of the model to be
monitored, or in order to get rid of nuisance
parameters. In Section 8 will be found
deterministic and stochastic solutions to this
task.

1.3. Problems statement
According to the above discussion, from now
on and until Section 7 included, we assume that
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our change detection problem has been trans-
formed into the following stochastic problem.
Let us consider a stochastic process (Y,), with
conditional  distribution  pe(y, | y,_s, ..., yo).
Given a record ( Y)o=i=n), decide between the
two hypothesis:

Ho: 0 =6, )
M, : there exists an instant 1 < r <n such that:

{0=8(') for O0st<r—1

6=0, for r<sr<n.

()

As will be seen in the subsequent sections, the
case 0= 6, will often be considered for on-line
approaches.

If H, is decided, further questions are to
estimate the change time r, possibly to estimate
6y and 6,, and in some cases to diagnose which
type of change actually occurs in the process. Of
course, the relative importance of these sub-
sequent questions depends upon the applica-
tions. Both off-line (n fixed) and on-line (n
growing) procedures can be designed for solving
such types of problems. We only recall that an
off-line point of view may be useful to design an
algorithm which will be implemented on-line and
we refer the reader to Basseville and Benveniste
(Eds, 1986, Chapter 4) for a complete
discussion. We also refer to Benvensite et al.
(1987) for the connection between change
detection and model validation.

Finally, as is obvious in (5), we will consider
only single change point alternatives. From an
off-line point of view, multiple changes may be
found by global search; from an on-line
viewpoint, the changes are assumed to be
detected one after the other.

1.4. Choice of criteria

The standard performance index for on-line
change detection algorithms is the delay for
detection, which has to be minimized for a fixed
false alarm rate (Page, 1954; Shiryaev, 1963;
Moustakides, 1986a). Lorden (1971) and Nikifo-
rov (1983) use a slightly different definition of
the delay. For other types of criteria used for
deriving optimal stopping times for change
detection, see Bojdecki and Hosza (1984) and
Pelkowitz (1987). For off-line procedures, this
question is more tricky, because change
detection problems are multiple hypotheses
testing problems for which there exists no
optimum test, in the classical sense of test’s
power. Therefore asymptotic analyses have to be
used, which may also be useful for designing
tests, as we shall see later. Further discussions
may be found in Basseville and Benveniste (Eds,
1986, Chapter 4).

Apart from the tradeoff between the mean
time between false alarms and the delay for
detection—both increasing when the sensitivity
of the detector to high frequencies decreases—
there exists another tradeoff to be kept in mind
which is closely related to the first one: efficiency
vs complexity. Actually, when the designed
monitoring system involves at each alarm a
complex time consuming processing and/or a
reconfiguration of the control law, false alarms
are more dramatic than in the simpler case of
over-segmentation in signal recognition. Fur-
thermore, it has to be noticed that the
complexity of a change detection system is not
only of a computational type but also of a
technological nature: some failure detection
procedures explicitly use the redundancy in the
information given by several identical sensors,
and reducing such a complexity without degrad-
ing the performance of the detector may be of
interest. Other comments on these questions
may be found in Willsky (1976) and in the
discussion concerning open problems presented
in the conclusion. Finally, model and sample
sizes required by the designed change detection
technique are of importance for application to
real signals or systems.

1.5. Organization of the paper

As already mentioned, Sections 2-7 are
mainly devoted to the design of parametric
statistical solutions for task (ii), while both
deterministic and stochastic solutions to task (i)
are reported in Section 8. More precisely, we
first investigate in Section 2 the simplest change
detection problem—ijump in the mean—for
which we introduce the likelihood ratio and the
cumulative sum tests. Section 3 is devoted to the
extension of these tests to the detection of
additive changes in linear systems. Then changes
in spectral properties are considered in Section 4,
where the so-called two-model approach is
presented together with exact and approximate
likelihood ratio tests for that situation. In
Section 5, the likelihood approach is presented
in a general framework. The (statistical) local
approach is described in Section 6, where
cumulative sum type algorithms are built for
solving problems of changes in spectral prop-
erties or eigenstructure with a lower complexity
cost than likelihood tests. In Section 7, we
exhibit a counter-example for which none of the
general solutions presented in Sections 5 and 6
can be used, because of nuisance parameters. We
give another general solution for designing
change detection algorithms in such cases; it still
uses the local approach but no longer the
likelihood function.

Th
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Afterwards, in Section 8, we investigate the
problem of the choice of the signals to be
monitored in order to perform change detection
and diagnosis. Both redundancy approaches and
filtering methods are described, and we discuss
the question of problem transformation we
mentioned above in Section 1.2. Then in Section
9 we discuss the diagnosis problem, namely the
problem of deciding which type of change
actually occurred and where—sometimes called
the failure isolation problem—for which we give
three types of solutions.

Finally some open problems and conclusions
are given in Section 10.

Before going more deeply into technical
details, two remarks have to be made. First, as
far as the design of decision rules is concerned,
we intentionally leave out the voting strategies
which are often used for highly physically
redundant systems, and we refer the interested
reader to Willsky (1976), Kerr (1985) and to
Desii and Ray (1984) for an extension to
degrees of consistency among residuals and/or
measurements. Second, most of the parametric
statistical detection rules presented below are
based upon the likelihood ratio, with or without
bayesian framework. It is of key importance to
keep in mind that, for this type of decision rule,
the independence hypothesis, which is often
implicitty used for writing the likelihood
function as a product, is only justified when the
“residuals” or change indicating signals which
are managed are the innovations of a Kalman
filter, but generally not for the instantaneous or
temporal redundancy relations. This point will
be further investigated in Section 8.

2. DETECTING JUMPS IN THE MEAN

We begin this series of sections devoted to the
design of statistical decision rules by investigat-
ing the simplest change detection problem,
namely the problem of a change in the mean of
independent identically distributed random vari-
ables. We introduce two basic tests—the
likelihood ratio test and the Page-Hinkley
stopping rule—and discuss their theoretical
properties.

Let (g,), be a white noise sequence with
variance o2, and let (y,), be the sequence of
observations (possibly the “residuals” of Section
8) such that:

Yn=Hnt &,
where:
o if nsr-—-1
= 6
Hn {ul if n=r ©)

The problem is to detect the change in the mean

u,, to estimate the change time r and possibly
the mean values o and p, before and after the
jump. We first investigate the case where o and
u, are known, and then the case where only f, is
known—which is of interest in practice for
on-line detection.

2.1. Known means before and after the jump
The detection problem consists of testing
between the no change hypothesis:

Ho:r>n
and the change hypothesis:
Hy:r=n.

The likelihood ratio between these two hypoth-
eses is:

1 PaYi)
k=rp0(yk) (7)

where p; is the Gaussian probability density with
mean g; (i =0, 1). Its logarithm is thus:

—_ n +
MO=B S (-8

1 n
== S (o, v)
where
; j v
Swn=v3(n-u-3)  ®
k=i
and

V=0~ Uo

is the magnitude of the jump.

Replacing the unknown jump time r by its
maximum likelihood estimate (MLE) under H;,
namely:

r—1 n
f, = arg max U:IOPO()’k) I_I Pl(Yk)]

1sr=n

= arg max S7(, V) ©)

I<r=n
we get the following change detector:

H,
gn é An(fn) = max S’rI(MO) V) 2 A (10)

0

where A is a threshold. In other words, decide H;
whenever g, exceeds A, and H, otherwise. The
detection is not very sensitive to the choice of
the threshold A; see further comments at the end
of this section.

This detector may be described as follows:
detect a jump in the mean at the first time n at
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FiG. 2. Scheme for the Page-Hinkley stopping rule.

which:
8n = ST (1o, v) — 1r<nku<1 S¥(uo, v)>1. (11)

This is called the Page-Hinkley stopping rule
(Page, 1954) or cumulative sum algorithm; and
may be computed in the following recursive
manner:

v +

8n = (gn—1+yn _MO—'E) .

See Basseville and Benveniste (Eds, 1986,
Chapter 1) for more details.

Its behavior is depicted on Fig. 2. It may be
used more generally for detecting any change
between two known probability laws pg, and py, .
In this case, compute:

S(pay pa) = 3 105220 (1)
k=i Peo( k)

The theoretical properties of the test (11) have
been investigated for a long time from both
on-line and off-line points of view. The most
significant works in that direction are Shiryaev
(1963), Lorden, (1971), Hinkley (1971), Basse-
ville (1981), and recently Moustakides (1986a).
This last result is the only non-asymptotic one:
the stopping rule (11) minimizes the mean delay
for detection for a fixed (and not going to zero)
false alarm rate. Further discussions may be
found in Basseville and Benveniste (Eds, 1986,
Chapter 1).

Another optimal stopping rule was obtained
by Bojdecki and Hosza (1984) for a different
criterion still in the general case of two known
probability laws. Finally, recent results obtained
by Yashchin (1985) should improve performance
evaluation for the above-described cumulative
sum algorithms.

2.2. Unknown jump magnitude

We now consider the more realistic case where
the jump magnitude v is unknown. From an
on-line point of view, we may assume that y, is
known, but not u;. Two approaches may be
used in such a case.

The first one consists of running two tests (11)
in parallel, corresponding to an a priori chosen
minimum jump magnitude v,, and to two
possible directions (increase or decrease in the
mean). The corresponding stopping rules are as
follows: for a decrease:

4 7;)= 0
n Vm
=3 (n-w+2) @)
< k=1
M, = max T,
O=<k=n
Lalarm when M, —T,> A

and for an increase:

| alarm  when U, —m, > A.

The decision which is taken corresponds to the
rule which stops first, and the estimate of the
jump time r is the last maximum (respectively
minimum) time before detection. This approach
was used in Basseville er al. (1981) for
line-by-line edge detection in digital pictures.

The second approach in the case of unknown
jump magnitude v consists of replacing it by its
MLE. The likelihood ratio test is then:

H,
max max 87 (o, v) = A (15)
0
Because of (8), we have:
9(r) £ arg max §7(uo, v) = —— P Z (Yie— o)

and thus the double maximization in (15) is
actually only a single one.

We shall see in the next section that this
property is still valid in a more general situation,
and leads to an efficient change detection
algorithm with reasonable computing cost.

Finally, let us mention that other algorithms—
both on-line and off-line— for detecting changes
in the mean are surveyed in Basseville (1982).
The robustness and the superiority of the
Page—Hinkley stopping rule (11) with respect to

Gan
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the classical “filtered derivatives” detectors are
investigated in Basseville (1981) and Basseville
and Benveniste (1983a).

3. ADDITIVE CHANGES IN LINEAR SYSTEMS

In this section we consider the problem of
detecting additive changes in linear dynamical
systems described in state space representation
as follows:

{X,,+1 =FX, + GU, + V,(+ v,6,,)
Y, =HX,+W, (+v,6,.,)

where & is the Kronecker symbol, (V,), and
(W,), are two independent Gaussian white
noises, and where the change of “‘magnitude” v,
or v, may occur either on the state transition
equation or on the observation equation.

(16)

3.1. Generalized likelihood ratio test

A rather old intuitive approach consists of
monitoring the innovations (g,), of a Kalman
filter, for example (Mehra and Peschon, 1971).
Actually, because of the linear property of the
system and because of the additive effect of the
change on the system, it may easily be shown
(Willsky and Jones, 1976) that the effect of the
change on the innovation &, is also additive.
Moreover, the Gaussian characteristic of the
state and observation noises in (16) ensures that
the property of explicit solution in v for the
likelihood ratio test (15) is still valid in the
present general situation of additive changes in
linear systems. These points were exploited by
Willsky and Jones (1976), who derived a
recursive algorithm for the so-called generalized
likelihood ratio (GLR) test (15) computed for
the innovations &, of the Kalman filter designed
under the no change hypothesis.

More precisely, because the distribution of
these innovations is given by the conditional
distribution of the observation with respect to its
past values, the cumulative sum to be computed
instead of (12) in the present case is:

i
. pB(Y;c‘Yk—l)'-~;YO)
Si(Poy> Po,) = X, log =2

o0 Po) = a8 b (V) Yeor, -, Yo)

where pg, reflects the change of “magnitude” v
in (16). The GLR test is then:

(17)

H,
max max S$7(pe,, Pe,) E A. (18)

1<sr<n 6,
0

As mentioned above, the maximization over 6,

(or v) is explicit, because of the assumptions of

Gaussian white noises and additive changes.
Moreover, the computation of S¥ and 7, are

recursive. The only non-recursive computation is
the discrete maximization over the change time
r. In order to limit the computing time, Willsky
and Jones (1976) decided to constrain the search
in a window of fixed size M, namely to compute:

H,
max  S¥(pe,, ps,) = A (19)
H

k—M+1=<r<k
0

The key point is that (19) is not a finite horizon
technique because (17) is computed with the aid
of all the past observations.

One interesting feature of this algorithm is the
ability of updating the Kalman filter after change
detection, with the aid of the estimate of the
jump magnitude.

Another interesting property concerns the
diagnosis problem, and will be discussed in
Section 9. The theoretical properties of the GLR
test will be reported in Section 3.

3.2. A modified algorithm

In practice, the main advantage of the GLR
algorithm (19) is to give good estimates for the
change time r and “magnitude” v, even if the
change actually occurs in more than one step in
time.

However, a true drawback lies in the coupling
effect between the window size M and the
threshold A in (19) and in the possibly high
sensitivity with respect to the choice of A.

For these reasons, a modified algorithm was
derived by Basseville and Benveniste (1983a)
and applied to geophysical signals. The decision
is based upon the MLE %, (and not on the
likelihood ratio), and the resulting algorithm—
filtering + detection + updating—works as a low-
pass filter everywhere except at the change
points.

An experimental comparison with the Page-
Hinkley stopping rule (13)-(14) is done in
Basseville and Benveniste (1983a), and also with
a “mixed” algorithm involving Hinkley’s stop-
ping rule and Willsky’s magnitude estimate.

Other ways of managing not necessarily
additive changes in systems like (16) are
reported in Section 9.

4. CHANGES IN SPECTRAL PROPERTIES
OR EIGENSTRUCTURE

We now investigate the problem of changes in
AR or ARMA models, or equivalently in the
state transition matrix F of model (16). In this
section, we are mainly interested in the problem
of segmentation of scalar signals, while the
vector case will be mainly investigated in
Sections 5-8.
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It may be of interest to keep in mind the
following distinction between the two types of
situations:

(i) either the analyzed system or signal is
known to have the same behaviour as an
AR or ARMA process, and then the model
is descriptive enough for its parameters’
behavior to be of interest;

(ii) or the model of the system or signal is not
known, and the main issue is the detection
of changes in its spectral characteristics;
then the AR or ARMA model to be used is
nothing but a tool for the detection of such
changes. In this case, robustness properties
of the detectors may be of key importance.

4.1. Generalized likelihood ratio test

In the present situation of detecting changes in
(scalar) AR or ARMA models, the generalized
likelihood ratio (GLR) test presented in the
previous section may still be used. The
log-likelihood is computed as in (17) using the
conditional laws of the observations, and the
parameter 0 defined in (2) for AR models. In an
on-line framework where 63 = 6, in (5) and the
law pg is assumed to be known (possibly up to a
convenient identification), the GLR test is
exactly as in (18). But the maximization over 6,
is no longer explicit, because the change is not
additive on the observation. Moreover, in the
ARMA case the cumulative sum (17) is no
longer linear in the parameters. Therefore the
test (17)—(18) is quite time-consuming.

Assume now that 8;% 6, in (5)—which is
generally the case in off-line approaches. In that
situation, the log-likelihood ratio for a sample of
size n is;

r—1
PofYel )
ST 7 Doy Po,) = lo
1(Poo> > Poys Po.) kgl gPeo(Ykl )

< Pel(Ykl ) ,
tE o Ty )

If none of the parameters 6,, 6/, 8,, r are
known, the GLR test is as follows:
H,
max min max max S5(pe,; 7, pe;, pe,) Z A. (18')
Isr<sn 6, 6, 6 X
In other words, the unknown parameters are
again replaced by their MLE. Further details for
the AR case will be given below. A complete
theoretical investigation of this test is done in
Deshayes and Picard (1986) with the aid of
convenient statistical asymptotic analyses and
will be reported in the next section.
Nevertheless, several design issues may be

extracted from the GLR methodology, as will be
shown below for detecting changes in AR
models.

4.2. The two-model approach for on-line change
detection in AR models
Let us consider an AR process:

D
yn = 2:1 a'(n) n—i + &, (20)

where (g,) is a Gaussian white noise with
variance o2, and: for 1 <i<p:

{a? for n<r—1
a; for n=r
and

,_[o5 for nsr-1
0% =
for n=r.

Let us define:
0 =(a,...,a,, 00 (j=0,1)
and
Y '=(Y,_,..., ).

The problem is to detect a change in 6 and to
estimate the change time r.

4.2.1. Implementation of the GLR test. An
on-line implementation of the algorithm (17)-
(18) is depicted in Fig. 3 and may be described
as follows. If the AR model M, under the no
change hypotheses (i.e. before the change) is not
known, identify it with the aid of a recursive
growing memory filter. On the other hand, for
each possible change time r, use the data of the
time window {r,r+1,...,n—1,n} for iden-
tifying the AR model M, after change, and
compute the log-likelihood ratio S§7. Then
maximize over r. Other distance measures
between the two models M, and M, will be
reported below.

If the full GLR algorithm (17')-(18') is
implemented on-line, three models M,, M, M,
have to be identified: for fixed r, M, and M|, with
growing memory filters using the data of the
time windows {1,...,n} and {1,...,r-1},
respectively; M, using the time window {r, r +1,

~
=

r-1|r n-.

“Il.-

FIG. 3. Scheme for the GLR test.
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FIG. 4. Using two models, one ‘“‘global” and one local.

..,n—1,n}. Then the maximization over r
has to be performed. Actually it may easily be
shown that, for ARMA processes, the GLR test
(17)-(18") is:

max u,(r)Z A

1=r=<n
where:
u,(r) =nlog 6%
—[(r—1)log 8¢+ (n—r+1)log 61} (22)

in which &2, 6(%, 63 are the variances of the
innovations of the (estimated) models M,, M,,
M,, respectively.

A simplified and approximated implementa-
tion was proposed by Appel and Brandt (1983).
The detection of the change is done first, using a
fixed window length N=n—r+1 for M;, and
the decision rule:

u,(N)=nlog &%
H,
—{(n—N)log 65>+ Nlog&i] = 4. (23)
0

The estimation of the change time is done in a
second step. The resulting algorithm is very close
to GLR.

4.2.2. Other distance measurements between
the two models. By the same time, Basseville and
Benveniste (1983b) also proposed to use the
above-mentioned two-model approach for
change detection (Fig. 4): compute a distance
between a long term or global AR model M, and
a short term or local AR model M,. Several
distance measurements may be used (Gray and
Markel, 1976; Ishii et al., 1979). The Euclidean
distance between the AR parameters:

p
2 (af —a)?
i=1

is bad, because of neither mathematical nor
spectral theoretical meaning, but unfortunately
still often used in practice. An efficient and
theoretically sound distance between the spectral
densities S;(e'”)(j =0, 1) is:

lllog Si(e") — Log So(e") |2

which may be well approximated by the cepstral
distance, namely the Euclidean distance between

the cepstral coefficients (Gray and Markel,
1976). Another distance was given in (22), which
may be seen as the Chernoff distance between
the joint distributions of the observations.
Finally, Basseville and Benveniste (1983b)
proposed the use of the Kullback divergence
between the conditional distributions of the
observations, which results in:

163 82\ (97 el
(B (1 B @,
v 2(6% 1+52) 202 ~ 2 @4

where
. p . .
el =y, 21 aly,—i (j=0,1)

are the innovations of the growing memory and
sliding filters, respectively.

Because the effect of a change in the AR
model is reflected on w, (24) by a change in the
sign of its mean value, an accurate estimation of
the change time may be obtained if we add the
Page-Hinkley stopping rule (11) computed on
the w,,.

The differences between the algorithms (22) of
Appel and Brandt (1983) and (24) of Basseville
and Benveniste (1983b) lie in the distance which
is used between the two models M, and M, of
Fig. 4, and in the estimation of the change time.
But they are very similar in their spirit and have
been compared by André-Obrecht (1988) for the
segmentation of continuous speech signals. An
example may be seen in Fig. 5. The same French
sentence is shown in each part (a) and (b) of the
figure, and processed by the algorithm (22) in (a)
and the algorithm (24) in (b). In each case, the
behavior of the statistics (22) or (24) is depicted
below the signal, and the vertical lines indicate
the estimated change times. It has to be noticed
that the statistic (24) has a smoother behavior
than (22), and thus leads to a more robust
detector (lower sensitivity to the choice of the
threshold). We refer the reader to Basseville and
Benveniste (Eds, 1986, Chapter 6) for further
discussions and comparisons between the two
above-mentioned algorithms and also with the
cepstral distance.

For other uses of distance measurements for
segmentation, see Ishii et al. (1979).

4.2.3. Comments on this approach. Three key
features have to be emphasized. First, this
particular implementation of the two-model
approach is more efficient than a previous one
(Bodenstein and Praetorius, 1977) which is
depicted in Fig. 6. It consists of the comparison
of two local models Mj and M, identified inside
two finite windows having the same length.
Clearly the reference model M, (before change)
is far more precisely identified than Mg and, if a
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FiG. 5. Comparing the two algorithms [(22)—(a) and (24)—(b)] on continuous speech signal.

small forgetting ability is used, it will be slightly
modified by the change, and thus the false alarm
rate should be reduced.

Second, this two-model approach is more
efficient than a one-model approach based on
classical x>-type tests on the innovations of M,,

as: i [ (e2)? 1] 5

k=1
! & N

E———
M,

——
M"
0

Fi16. 6. Using two local models.

which was studied in Segen and Sanderson
(1980), for example. This test is “blind”, it is in
fact designed to detect a deviation with respect
to the noise behavior—thus the range of changes
that can be detected is larger with the former
approach (24) than with the latter (25)— and
may have a high variance before change. See
Basseville and Benveniste (1983b) for further
discussions.

Finally, no theoretical result concerning
performance evaluation of the two-model
approach is available at this time, except in the
case of exact implementation of the likelihood
ratio test GLR which will be investigated in the
next section, and for the local approach
presented in Section 6.




Y

A non-parametric treatment of this approach
may be found in Kedem and Slud (1982) and will
be commented on in the last section.

5. THE LIKELIHOOD APPROACH IN A
GENERAL FRAMEWORK

As already mentioned in Section 1, the
likelihood ratio approach is a fairly general tool
for change detection which may be used in
general situations encountered in automatic
control and signal processing, such as changes in
multivariable AR or ARMA models and changes
in the state transition matrix of a state space
model.

This approach again consists of computing the
log-likelihood ratio (17) based upon the
conditional distribution of the observations
(conditioned by their past values), and in
running the GLR test (18) which generally
involves a double maximization of high com-
putational cost. For this reason, several different
approximations have been designed, even in the
scalar case as described in the previous section.
Another general tool for approximating the
likelihood ratio will be presented in the next
section. However, the GLR may at least be
used as a benchmark for other algorithms,
because its theoretical optimality has been
completely investigated recently (Deshayes and
Picard, 1986) from an off-line point of view.

Before giving the key result of this study, let
us first briefly outline the main difficulty of the
change detection problem.

Usually the criterion for performance evalua-
tion of statistical tests between two hypotheses
H, and H,—here no change and change,
respectively—is to maximize the power B (or
probability of deciding H;, when H; is true) for a
fixed level « (or probability of deciding H; when
H, is true). When H, is not reduced to a single
distribution, the best property for a test is to be
uniformly most powerful (UMP) (for each
distribution belonging to H,). Unfortunately,
because the parameters of interest in change
detection problems—namely the change time
and the change magnitude—are such that the
Neyman—Pearson lemma (Lehmann, 1959) is not
valid, change detection problems are multiple
hypotheses testing problems for which no UMP
test exists. For this reason it is necessary to
define an asymptotic framework in which UMP
tests exist for change detection problems.
Deshayes and Picard (1986) use the large
deviations asymptotic analysis in  which
exponential error probabilities are introduced: o
and 1— B are kept exponentially decreasing to
zero while the number of observations goes to
infinity. Considering only the corresponding
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exponential decay rates, and for specific families
of densities, the GLR test is shown to be UMP.
The asymptotic behavior of the test is derived
together with the asymptotic distribution of the
change time and magnitude estimates.

6. THE STATISTICAL LOCAL APPROACH

In this section we describe another approach
for overcoming the main drawback of the GLR
test (18), namely its computing time cost due to
the double maximization. This approach is
known by statisticians under the name of local
approach and has been introduced in change
detection problems by Nikiforov (1983, 1986) for
on-line detection of changes in spectral charac-
teristics. The use of the local approach in
conjunction with functions other than the
likelihood one has been proposed in Basseville et
al. (1987) and Benveniste et al. (1987) and will
be described in the next section.

6.1. Local approach for changes in spectral
properties

The original idea of Nikiforov (1983, 1986)
consists of looking for small changes in AR (or
ARMA) models and using a special type of
Taylor’s expansion of the log-likelihood function
which is called Le Cam’s asymptotic expansion
(Roussas, 1972). In other words, instead of
monitoring the observations process (y,), or the
innovation process, the local approach monitors;

d
10g Po(¥n | Yn-1> - - - No=a,-  (26)

de
The key theoretical point here (Deshayes and
Picard, 1986) is that there exists a central limit
theorem for z,, the main consequence of which
is as follows. Any change in 6 (2) is reflected in a
change in the mean of z, for which the
Page—Hinkley stopping rule (11) or the GLR
(15) of Section 2 may be used.

Using two different kinds of a priori
information about the changes to occur (changes
along a known direction, changes outside an
ellipsoid centered at the reference model 6,),
Nikiforov developed two algorithms based upon
the detection rule (11), which he called
cumulative sum algorithms (CSA).

More precisely, recall that the considered
detection rule was defined with the aid of:

8» = max Sz(90: V)' (27)

1=k=n

Zn

In the first case of change along a known
direction C, the parameter 6 evolves as:

8=8y+1nC (28)

and the corresponding cumulative sum to be
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used in (27) is:
#(60, C)= 2, zIC (29)
i=k

where z; is defined in (26).
In the second case of change outside an
ellipsoid for which;

(6 —00)"F(6 - 0p) 21 (30)

the corresponding function in (27) is:

n T n
2= (2 z,-) 9'*'1<2 z,-). (31)
i=k i=k
We refer the reader to Nikiforov (1986) for
further details. Let us emphasize that these
cumulative sum algorithms may be designed for
any change in a multivariable ARMA process.
The application of this methodology to seismic
signal processing is described in Nikiforov and
Tikhonov (1986).

6.2. A tool for performance evaluation of CSA

Another interesting part of the above-
mentioned work is the derivation of a convenient
tool for performance evaluation of cumulative
sum algorithms. This tool, known as the average
run length, permits the computation of both the
false alarm rate and the delay for detection with
the aid of a single function which is the
expectation of the detection time under the
convenient probability law. We refer to Nikifo-
rov (1986) for more details. With respect to the
criteria discussed in Section 1.4, the delay for
detection which is evaluated is defined in the
same manner as in Lorden (1971).

7. A COUNTER-EXAMPLE AND ANOTHER USE
OF THE LOCAL APPROACH

In spite of the wide applicability and the good
properties of the statistical change detection/
estimation algorithms described above—namely
the likelihood ratio and the local approaches—
there exist situations where none of these two
approaches can be used because of coupling
effects in the likelihood function between the
parameters to be monitored and unknown
nuisance parameters.

The purpose of this section is the presentation
of such a counter-example and of the cor-
responding solution which has been recently
derived (Basseville et al., 1987). This solution
may be extended to more general situations as
will be shown below: to any recursive parameter
estimation algorithm may be associated a change
detection and a model validation scheme
(Benveniste et al., 1987), using the local
approach for conveniently chosen statistics.

7.1. An example of change detection in the
presence of nuisance parameters

The example 2 of vibration monitoring of
structures under natural excitation, which was
described in 1.1.2., may be easily stated as a
problem of detecting changes in the AR part of a
multivariable ARMA process having unknown
and time-varying MA coefficients to be con-
sidered as nuisance parameters. Because the
Fisher information matrix of an ARMA process
is not block-diagonal with respect to the AR and
MA parameters, neither the likelihood function
nor its “Taylor’s” expansion (local approach)
are of any help for solving this particular
detection problem (see the discussion on
nuisance parameters in Deshayes and Picard,
1986). The solution presented in Basseville et al.
(1987) uses two basic tools. Let:

14 ]l
Y, =2 AY, + 2 B(E,.; (3
i=1 j=0

be the considered ARMA process, where (E,),
is a standard Guassian white noise sequence.
The first tool to be used is what we call the
instrumental statistics:

U,= > ZW§ (33)

k=p+N-1
where
Zi=(Yiop * Yipons1)
is the vector of past observations and:
We=Y,-A Y — - —AY,

is the MA part.

The second tool to be used is the local
approach described in Section 6, however not
connected to the likelihood function but to the
above instrumental statistics U, (33). In other
words, we again look for small changes in the
AR coefficients (A;);<;<, of (32). It turns out
that, because of the non-stationary central limit
theorem of Moustakides and Benveniste (1986),
these changes are reflected in changes in the
mean of the instrumental statistics U, which is
furthermore asymptotically Gaussian distributed
with covariance matrix £,. As we followed for
that application an off-line model validation
approach (validation of a ‘“‘signature” on a new
record of measurements), the convenient test for
detecting a change in the mean of U, is simply
the x? test:

H,
Upz'U, = A (34)
0

As shown in Basseville et al. (1987), this test is
very powerful in practice. Its theoretical
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properties are investigated in Rougée er al
(1987). We will see in Section 9 how it can be
used for solving the diagnosis problem. Finally,
an on-line implementation is reported in
André-Obrecht (1988) for another application.

7.2. Extended use of the local approach for
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p h =F(Y,2)
H [—» F

change detection and model validation

The detection solution presented above may
be extended to more general situations than
ARMA models. Actually the key idea in the
previous example was to use, for the detection
problem, the same starting point as in the
identification problem. It was known that the
instrumental variable identification method for
estimating the AR part of an ARMA process
was theoretically (Benveniste and Fuchs, 1985)
and experimentally (Prevosto et al., 1983) robust
with respect to the unknown and time-varying
MA part. Thus the “instrumental statistics” U,
(33) was defined and theoretically studied for
deriving the detector (34).

In the same manner, starting from any general
recursive parameter identification algorithm:

0,=06,_1+v,H(O,-:, X,) 35

and applying the local approach to the statistics
H(6,, X,,) where 6, is a nominal model, it is
possible to prove a central limit theorem which
transforms the problem of detecting changes in
the parameter vector 6 into the problem of
detecting changes in the mean value of an
asymptotically Gaussian distributed process
which is a convenient cumulative sum of the
function H. We refer to Benveniste et al. (1987)
for more details. No theoretical result concern-
ing the performances of these tests is available
now, except for (34).

We shall see in Section 9 how this general
approach may be used for solving the diagnosis
problem.

8. GENERATING THE SIGNALS
TO BE MONITORED

This section is devoted to the presentation of
different types of algorithms for solving the task
(i) described in 1.2, namely the problem of
generating the signals to be monitored in order
to achieve change detection. For this purpose,
both deterministic and stochastic algorithms may
be used, and we distinguish two classes of
methods which operate the compression of
information in different ways: redundancy and
filtering operations. The generation of such
“residuals” and ‘“change indicating signals” A
may be generally summarized as in the diagram
of Fig. 7 (Mironovski, 1980), where P is the

AUTO 24:3-B

Fic. 7. Diagram for residuals generation.

studied process or system having inputs U and
outputs Y, and where H and F will be defined
below.

8.1. Redundancy methods

These techniques, which are well known in the
automatic control community, are basically
deterministic. They exploit either the direct
physical redundancy of the system, namely the
identical measurement and/or control units
present in duplicate, triplicate and even quad-
ruplicate in the system; or the analytical
redundancy, i.e. the deterministic instantaneous
or temporal relations existing between various
measurements, for example kinematic. If the
redundancy is high enough, a diagnosis of the
change can be obtained as will be shown below.

8.1.1. Direct or physical redundancy. If
several identical sensors measuring the same
quantities are available, the differences betwen
the two signals contained in each possible pair
may of course reflect a failure. In the diagram of
Fig. 7, for a duplicate system H is the second
system, and the operator F(Y, Z) producing the
“residual” A is a simple difference. These
“residuals” are generally processed with the aid
of voting methods (Willsky, 1976). But another
possible processing consists of searching, given
an error bound for each sensor, for subsets of
measurements with different degrees of consis-
tency. The most consistent subset is used for
estimating the measured quantity, and the less
consistent one—if it exists—for isolating the
failure. This has been done in Desai and Ray
(1984) for multidimensional measurements, for
example speed and acceleration in a three-
dimensional space. It has to be noticed that this
method processes simultaneously real measure-
ments and artificial measurements resulting from
the investigation of the analytical redundancy of
the system. Furthermore it is possible to solve
the problem of calibration between measure-
ments from identical sensors having different
biases for example (Ray and Desai, 1983).

8.1.2. Indirect or analytical redundancy.
Analytical redundancy is the set of all existing
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instantaneous or temporal relationships between
the inputs of the actuators and the outputs of the
sensors of the system which are identically zero
when no change occurs. These techniques seem
to have been developed independently in the
United States (Deckert et al., 1977; Chow and
Willsky, 1980, 1984) and in the Soviet Union
(Mironovski, 1980). We present here some key
points when deriving redundancy relations in the
two situations where the system is represented
by a state space model—first deterministic and
then noisy—or by a block-diagram connecting
elements with known transfer functions.

8.1.2.1. Deterministic case. Consider a deter-
ministic system described by:

{X=AX+BU XeR", UeR’
Y=CX Y eR’.

Let us introduce a so-called redundant variable z
such that:

A=F(Y,Z)=M(y,,...,y)+z=0 (37)

where M is an instantaneous relation which may
be linear in the y;. Several methods are available
for designing z, namely for designing the block
Hin Fig. 7.

For an observable system, a possible solution,
when M is linear, consists of using as H a
Luenberger observer (Kailath, 1980) designed
for estimating the instantaneous linear combina-
tion of the states of the system: —MY =
—MCX = LX. Recall that for a noisy system the
best observer of X, in the mean square sense, is
the Kalman filter, which is of order n and thus is
equivalent to a system duplication. Luenberger
derived a method which reduces the order to
n—s, where s is the dimension of the
observation Y. The order may be further
reduced if LX is estimated and not X.

Applying this theory modifies the diagram of
Fig. 7 with a Luenberger observer as H and the
linear combination M as F. This results in the
diagram of Fig. 8. Consider now the problem of
designing such a device of minimum order k. It
may be simply shown (Mironosvski, 1980) that,

(36)

‘Y
instantaneous
linear M
combination
Y ¥ A =2+MY
— z o h .
[— L v >
U

linear
transfer
function

FIG. 8. Diagram for residuals generation with analytical
redundancy.

because H is a linear stationary block with scalar
output, the diagram of Fig. 8 may be described
by the equation:

k—1

p*A=p*MY + Z‘ap"(w;Y+ BiU—vz) (38

where p' is the i-th differential operator.
Because of (36) and (37), this relation is
satisfied for any input U if and only if:

(a0 + voM; a1+ vy M;. . e+ v M,

C

M) C:A =0 (39)

CA*

and for j from 0 to k£ —1:

k
Bi=- 2 (o; +y:M)CA™ B

i=j+1

where a;, =0 and y, = 1.

Mironovski (1979) has shown that the
minimum order £ of a device such as Fig. 8 is
always between the smallest and the largest
Kronecker invariant index, and that it is possible
to choose M in order to reach these bounds in k.
From (38) and (39), it can be seen that this
approach leads to the concept of ‘“‘parity check”
studied by Chow and Willsky (1980, 1984). They
use an ARMA model (38) and look for the
orthogonal space of the range of the observ-
ability matrix (39).

8.1.2.2. Extension to noisy systems. If the
model (36) is perturbed by noises on the state X
or the observation Y, the relation (37) no longer
holds even when no change occurs. Therefore
redundancy relations which are robust with
respect to the noise have to be defined. One
possible solution consists of searching for
conditions similar to (39) but related to an
extended observability space taking noise into
account (Chow et al., 1986). Using the same
approach, it is possible to take into account
uncertainties on the parameters A, B, C. One
can also avoid such a modelling and work
directly with the empirical covariances of the
observations (Pattipati er al., 1984).

8.1.2.3. Systems defined with transfer func-
tions. The use of redundant variables has been
also studied for linear systems described by any
block diagram connecting elements with known
transfer functions Wi(p), ..., W,(p) (Mironov-
ski, 1980).

It can be shown (Britov and Mironovski, 1972)




that a redundancy relation z of the form:
z= Z (aoitt; + Boiyi)
i=1

+ 121 Wk(P) g (au; + Buy:) (40)

can be obtained if and only if the transfer
functions W;(p) are rational; then the coefficients
as and Bs in (40) can be written in closed form.
Consequently, for any system defined with
components having rational transfer functions, it
is possible to design a detection device such as
Fig. 8, of order equal to the largest order of the
elements belonging to the system, and thus
generally far lower than the system order.

8.2. Filtering methods

8.2.1. Kalman filters and state observers. A
rather old solution (Willsky, 1976) to the change
or failure detection problem consists of monitor-
ing the innovations or prediction errors or some
conveniently chosen estimation filter(s) or
parameter identification algorithm(s) which fills
the block H of the diagram of Fig. 7. This idea
has been developed along two main axes. The
first viewpoint led to design filters especially
sensitive to the changes under study: this is
precisely what was described above for the
various observers; a geometric framework for
this approach is presented in Massoumnia
(1986). The other approach consists of using the
optimal state estimate, namely the Kalman filter,
designed according to the model of the system
(or signal) in its normal operating mode. As will
be shown in the next section, if diagnosis is
desired in addition to detection, a possible
solution consists of using a bank of Kalman
filters designed according to all the available
possible models of the system (or signal) under
all the change hypotheses. The corresponding
decision rules will be discussed in the next
section.

But, as far as the design of decision rules is
concerned, we insist upon the fact that the
Kalman filter is the only one which produces
zero-mean and independent residuals—under
the no-change hypothesis—when state and/or
measurement noises are present. This is
generally not the case for the instantaneous or
temporal redundancy relations described above.
Therefore the assumption of independence in
statistical decision rules is valid only for the
innovations of Kalman filters. For monitoring
other types of “residuals”, it may be of interest
to use the algorithms for detecting changes in
spectral characteristics presented in Section 4.

8.2.2. Generalization to extended or decentral-
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ized Kalman filters. The extension of the above
approach to non-linear dynamical systems may
be achieved with the use of extended Kalman
filters (Himmelblau, 1978; Usoro et al., 1985).
On the other hand, in order to reduce the
implementation cost of Kalman filters, and also
to introduce protection against some subsystem
failures, the use of decentralized filters is
currently under investigation in the aeronautic
domain (Kerr, 1985).

8.2.3. Extension to other identification meth-
ods. The detection strategy which is commonly
chosen in connection with filtering methods for
change detection, consists of testing how much
the sequence of innovations has deviated from
the “white noise” hypothesis. See Mehra and
Peschon (1971) and Willsky et al., (1975), for
example. The tests which are used are then
classical tests for zero-mean, independence, unit
variance, . . . But, in some practical problems, it
may be useful and even necessary to monitor
some more complex function of the innovations
than the innovations themselves. This is the case
in the Example 2 of Section 1, and we described
in Section 7 a systematic approach transforming
a possibly complex change detection problem
into the simple problem of change in the mean
of a Gaussian process with known covariance
matrix.

9. THE DIAGNOSIS PROBLEM
In this section we investigate the diagnosis
problem, namely the problem of estimating the
origin of the change and possibly its location in
the system. Two types of situation have to be
distinguished, of unequal degree of difficulty.

(1) Diagnosis of changes on identifiable model
sets
In this case, there is a one-to-one
correspondence between the parameters
used for detecting model changes and the
parameters for which diagnosis is desired.
For example, one monitors an AR or
ARMA model, and one wishes to know,
when a change is detected, which poles
actually moved.

(i) Diagnosis of changes on non-identifiable
model sets
This situation is much more difficult to
solve because the convenient parameteriza-
tion for diagnosis is in terms of not
identifiable parameters. An example of
such a situation is described in Basseville et
al. (1987) and Moustakides (1986b) (see
Example 2 of Section 1): it is desired to
diagnose the changes in terms of the
mechanical characteristics of the structure
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which are not identifiable partly because of
a model reduction performed in practice for
monitoring.

To our knowledge, three types of methods
have been developed for answering such
questions. The multiple model (MM) approach
is probably the older one and has been
investigated in several directions. The general-
ized likelihood ratio (GLR) methodology using
several possible models is another solution.
Finally, the local approach of Sections 6 and 7
may be used for solving the diagnosis problem
even in situation (ii) described above.

9.1. The multiple model approach
The use of several possible models of the

system under consideration is of common .

practice especially in automatic control for
different purposes. An overview of such an
approach for state estimation can be found in
Pattipati and Sandell (1983). Adaptive iden-
tification is discussed in Tugnait (1982b), and the
design of adaptive gains in recursive identifica-
tion is reported in Andersson (1985). The use of
the MM approach in change detection is
reviewed in Willsky (1976). Generally speaking,
in an MM environment change detection is
based upon the monitoring of the a posteriori
probabilities of the different models, and, in
order to avoid the exponential growth of the size
of the filters bank to be used, several suboptimal
strategies have been proposed. See for example
Willsky et al. (1975, 1980) and Tugnait (1982a).

Of course, this methodology brings informa-
tion for diagnosis: each model corresponds to a
different change situation and the maximum a
posteriori probability indicates what is the most
likely change. This approach involves implicitly
Bayesian techniques, for which an extensive
study may be found in Peterka (1981).

9.2. The GLR methodology

If a list of N possible (additive) failure
directions f; is known for the system (16), then
activating in parallel N GLR tests corresponding
to these directions leads to a diagnosis of the
change, according to the largest of these tests.

9.3. Two uses of the local approach

The local approach presented in Section 6 may
be used for solving the diagnosis problem in the
following manner. If several possible directions
of changes C; are known in advance, running the
corresponding cumulative sum algorithms (27)-
(29) in parallel leads to diagnosis of the change.

A second possible use of the local approach
for diagnosis is related to the Example 2 of
Section 1 and reported in Basseville et al. (1987)

and Moustakides (1986b). It consists of focussing
the instrumental test (34) on some pre-specified
subspaces of the parameter space using con-
venient Jacobians. In situation (ii) described
above, the computation of the relevant Jacobi-
ans is much more complicated, because of the
necessary model reduction, but a solution does
exist and provides satisfactory results for
diagnosis in terms of the mechanical parameters
M and X of (3).

This approach may be generalized in order to
associate to any recursive parameter identifica-
tion algorithm a procedure for diagnosing
changes even in terms of non-identifiable model
sets. We refer to Benveniste et al. (1987) for
further details.

10. OPEN PROBLEMS AND CONCLUSIONS

We have described what we think to be the
state-of-the-art about change detection, estima-
tion and diagnosis in signals and dynamical
systems. We have mainly investigated parametric
statistical approaches, especially for the design
of convenient decision rules, with special
attention to the general likelihood ratio
methodology.

One important issue we have not addressed
for change detection algorithms is the problem
of robustness with respect to unmodelled
phenomena. Some discussions about this point
may be found in Chow et al. (1986) and
Basseville and Benveniste (1983a,b), for ex-
ample. One basic conclusion of these works is
that it is possible to obtain accurate change
detection and estimation using both a simplified
model of the monitored signal or process and a
convenient detector. For example, the two-
model approach with AR models and
Kullback’s divergence (see 4.2.2.) leads to a
sensible segmentation of continuous speech
signals (André-Obrecht, 1988), even though it is
well known that AR models are not convenient
for modelling speech.

A radical way of getting rid of this robustness
problem consists of using non-parametric tech-
niques (Kassam, 1980). For example, Kedem
and Slud (1982) use zero-crossings statistics in
order to characterize the global and the local
models of Fig. 3 as well as a distance
measurement between them. Deshayes and
Picard (1986) report some theoretical results
about off-line Kolmogorov—Smirnov’s tests ap-
plied to the empirical cumulative spectral
distribution function (integral of the periodo-
gram). Finally, Darkhovskii (1985) gives a
consistency result for an estimate of the change
time based upon an extension of the Mann-
Whitney’s statistics.
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Apart from this important robustness prob-
lem, the open problems are of three different
types. First, as far as on-line signal segmentation
is concerned, the two-model approach we
described is not convenient when the segments
to be found are short: other types of parametric
models than classical AR or ARMA models
should probably be used, as in Friedlander and
Porat (1987). Second, still in an on-line
framework, other types of criteria than delay for
detection should be optimized, especially for the
problems of change or failure detection in
controlled industrial processes: convenient cri-
teria should include inspection and repairing
costs, for example. Finally, much remains to be
done in the field of diagnosis, especially when
the parametric models which are used for
monitoring are of far lower dimension than the
monitored system. The general solution pro-
posed in Benveniste et al. (1987) should be used
in experiments on different types of systems, and
such algorithms should be included in general
preventive maintenance strategies.
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