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Abstract. The problem of identifying the time location and estimating the amplitude of
outliers in nonlinear time series is addressed. A model-based method is proposed for
detecting the presence of additive or innovational outliers when the series is generated by a
general nonlinear model. We use this method for identifying and estimating outliers in
bilinear, self-exciting threshold autoregressive and exponential autoregressive models. A
simulation study is performed to test the proposed procedures and comparing them with
the methods based on linear models and linear interpolators. Finally, our results are
applied for detecting outliers in the Canadian lynx trappings and in the sunspot numbers
data.

Keywords. Bilinear models; exponential autoregressive models; outliers; self-exciting
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1. INTRODUCTION

Time series are often perturbed by occasional unpredictable events that generate
aberrant observations. They may be due to gross errors arising in the
measurement, collection and processing of the data, or to some unusual event
influencing the analysed phenomenon, such as wars, strikes, an economic crisis or
a temporary change in experimental conditions.

Outliers may have a significant impact on the results of standard methodology
for time series analysis, therefore it is important to detect them, estimate their
effects and undertake the appropriate corrective actions. For example, the impact
of outliers on parameter estimation has been studied by Pefia (1990), on
autoregressive moving-average (ARMA) identification by Deutsch et al. (1990),
and the effects on forecasts are addressed by Ledolter (1989) and Chen and Liu
(1993a).

If the time location of an outlier is known, the intervention analysis (Box
and Tiao, 1975) or missing value methods (e.g. Ljung, 1989; Beveridge, 1992)
may be useful. The case of the unknown location is much more controversial
and has attracted a considerable interest in the literature. Two frameworks
may be distinguished. First, a model-based approach, where the underlying
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structure of the time series is supposedly known. Starting from the paper of
Fox (1972) concerning autoregressive models, this approach has been extended
to ARMA models by several authors (Tsay, 1986, 1988; Chang ef al., 1988;
Chen and Liu, 1993b). A Bayesian model-based approach was proposed by
Abraham and Box (1979) for autoregressive models, by Smith and West (1983)
for sequential decisions with dynamic linear systems, and more recently by
McCulloch and Tsay (1994) and Barnett et al. (1996) both employing Markov
chain Monte Carlo methods. The second framework is non-parametric and is
based on the relationship between outliers and linear interpolators (Ljung,
1989, 1993; Pefia, 1990; Pefia and Maravall, 1991). However, the need for
employing finite interpolators in practical applications makes the results of this
approach substantially equivalent to those obtained for additive outliers when
a sufficiently wide autoregressive model is fitted.

If more than one outlier is present in the time series, masking effects may
seriously affect identification. A widely used linear model-based approach has
been proposed by Chen and Liu (1993b) which consists of an iterative procedure
that identifies outliers sequentially by searching for the most relevant anomaly,
estimating its effect and removing it from the data, estimating again the model
parameters on the corrected series, and iterating the process until no significant
perturbation is found.

Only in recent years, the attention of researchers has shifted to the problem
of our interest — the detection of outliers in nonlinear time series. The most
relevant contributions to the analysis of nonlinear time series affected by one
or more outliers deal with robust recursive estimates. In particular, for bilinear
models, Gabr (1998) investigated a modification of some robustified versions of
methods used in linear time series models. For threshold models, Chan and
Cheung (1994) modified the class of generalized M-estimates usually applied to
linear models. Finally, outlier detection in autoregressive conditionally
heteroscedastic (ARCH) and generalized ARCH (GARCH) models was
studied by van Dijk ef al. (1999), with particular attention to robust testing,
while Chen (1997) adopted a Bayesian approach via the Gibbs sampler to
detect additive outliers in bilinear models.

We believe that the choice of a suitable time series model is important when
searching for outliers, because, on the one hand, a large residual variance caused
by overall lack of fit would result in under-identification of outliers, while on the
other, a model unable to explain the local behaviour of the series would yield
single large residuals, resulting in over-identification.

The outline of the paper is as follows: Section 2 deals with the model-based
formulation mentioned above, and gives a general result obtained using observed
residuals, with the assumption that the observed series follows the same model as
the unperturbed series; Section 3 contains results for three widely used models:
bilinear, self-exciting threshold autoregressive and exponential autoregressive.
Section 4 reports results of some simulations and application to two real series
(Canadian lynx trappings and sunspot numbers), and Section 5 draws some
conclusions.
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2. OUTLIER DETECTION IN GENERAL NONLINEAR MODELS

Many authors, such as Chen and Liu (1993b) and Chan (1995), distinguish
essentially four characterizations of outliers found in time series data: the additive
outlier (AO), the innovational outlier (I0), the level shift (LS) and the temporary
change (TC). An AO affects only the level of a particular observation while an IO
affects all observations beyond a certain time point through the memory of the
underlying process. A level shift is an event the effect of which becomes permanent
on time series, and a temporary change is an event having an initial impact the
effect of which decreases exponentially according to a fixed dampening parameter.
We shall focus on the first two types (additive and innovational outliers).

We suppose that the observed phenomenon may be described by a stationary
zero-mean process {x,} following the model:

X :f<x<”1>;e<”1>) te

where f is a nonlinear function also containing unknown parameters, x
(Xi—15 X200 sX1—p) eV = (g1, €1mnve.nbisy); {g,)} is a zero-mean Gaussian
white-noise series with E(g?) = o2.

The observed data (yy,...,y,) are realizations of a perturbed process with an
outlier at time ¢, (1 < ¢ < n), defined as follows:

-1 _

1 if t =
Ve = X1+ 40:q, Org = { 0 if t # Z

if the outlier is additive, and
nzf@“%%“0+wn M= &+ 0gdrg (1)

where 1" = (9,21, Ni—2s--Mi—s) and Y70 = (-1, Vio2y..op1p)s if the outlier is
of an innovational type.

The quantity w, is assumed constant and unknown, and we shall refer to it as
the amplitude of the outlier.

We believe that the iterative framework of Chen and Liu (1993b) may be quite
effective in the nonlinear case also, where masking effects can be even more
serious. Thus we shall adopt a similar strategy, based on the following steps:

Step 1. Derive initial estimates of the model parameters.

Step 2. Given the parameter values, for any ¢ and for each type of outliers,

assume that an outlier has occurred at time ¢, and estimate its ampli-
tude. If the largest absolute estimated amplitude is significant (i.e.
larger than an a priori fixed sensitivity level, usually 3.5 or 4 times its
estimated standard error), identify an outlier of that type at that time;
otherwise stop.

Step 3. Remove the effect of the identified outlier by subtracting its estimated

amplitude from y, (and also correcting all subsequent observations
according to the estimated model in case of innovational outlier).
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Step 4. Estimate again the model parameters on the corrected series, and iterate
step 2.

While step 3 requires at most a limited computational effort, the core of the
procedure lies in step 2, and we shall concentrate on it.

In order to estimate w,, we adopt a conditional maximum likelihood approach,
and assume that, given the model and the parameter values, the likelihood
function of the data is proportional to the likelihood of the residuals. For any
given ¢, we shall assume that the function f'and its parameters are known, that an
outlier (of either type) has occurred at time ¢, and derive an estimate of its
amplitude &, by maximizing the conditional likelihood with respect to w,. In
order to compute it, we need initial values. We shall suppose that no outlier
occurs for r = 1, 2,...,r = max(p, s), and estimate w, only for ¢ > r, therefore we
need X,,...,x,_,, which are actually observed, and ¢,....,¢,_, that may be obtained
from ¢ = x, — f(x"7V; V) setting & = 0, x, = 0 for k < 0. Conditional on
these initial values, we may write the likelihood as

t=r+1

10]0) = 1) ox 1(2) = (2no) "2 exp{—ﬁ > <s,>2} )

Therefore, we shall estimate w, by minimizing the sum of squares 28,2. While (2)
holds exactly for linear models, it may only be considered as an approximation for
nonlinear models (Priestley, 1988).

Given the data, the model and its parameters, and conditional on the initial
values, we can compute the observed residuals

]/]t:yt_f(y(lfl);n(ffl))’ [:r-i—l’“.’n

which, when no outlier is present, coincide with ¢,. If an innovational outlier with
amplitude w, occurs at time ¢, then from (1)

N ==&, t<gq; nq:8q+wq; 7]q+j:8q+ja j:]7"'an_q
thus

n q—1 n
= m+m—o)+ > 0 (3)

t=r+1 t=r+1 t=q+1

and minimization with respect to w, yields o, = n,.

The likelihood ratio test statistic for the hypothesis Hy: no outlier at ¢t = ¢
against the alternative H,: innovational outlier at ¢t = ¢ (following e.g. Chang
et al., 1988) is &,/67 4, where

o Mt A
lq — .

n—r
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The statistic @,/6;4 is asymptotically N(0,1) distributed under H,. Thus we
adopt 67, as an estimate of the standard error of the innovational outlier at time
q.

Derivation of estimates in case of an additive outlier at time ¢ is more difficult:
although the observed residuals 5, are equal to ¢ only for ¢t < ¢, and 5, =
&; T w, as before, now the difference between 7, ; and ¢, ;, for j > 0, depends
on w, and f, because each 7, ;is a nonlinear function of the previous #,.

To overcome such difficulties, we consider a locally linear approximation of f
obtained by a first-order Taylor expansion about (™", »=D):

P
f(x(z D, gl 1)) gf(y(tfl);n(tfl)) + Y (e —ve) At +Z Gy — M) 1 (1)
j=1
(4)
where
) =2 2 () = A0=0. j>p (9)
8(%—/)
9 (t—=1). ,(1—1)
w0 = oo () = ts () =0, j>s  (6)
8(’15;‘)
From (4) we obtain:
J
Ngtj — &q+j = wq/i(q +J) + Z Ngtj—k — sq+jfk)llk(q +i) ¢, J=1,2,...
k=1
(7
Now, recalling that , — ¢, = ®,, and defining the recursion ¢y = 1,
J
cj=—|Mla+N+D crrmlag+i)|, j=12...
k=1
we can write
’/]q+j—8q+jgcj‘wq7 j:0,1,2,... (8)
Thus the sum of squares (3) can be rewritten:
n q—1 n
2 2 2 2
D@ )+ —0)+ D I — (e —a)]
t=r+1 t=r+1 t=q+1
1 s n—q
- Z ()" + ) (gej = ¢j0g)
t=r+1 j=0

and is minimized by

© Blackwell Publishing Ltd 2005



112 F. BATTAGLIA AND L. ORFEI

O — Z;;g Cj'/lq+_i (9)
q9 -4 .2
T

The estimate (9) is a weighted average of the observed residuals from ¢ = ¢
onwards, as it happens for linear models. Here, however, the weights may be
complicated functions of the parameters, the observations and the true residuals.

The likelihood ratio test statistic for the hypothesis Hy: no outlier at 1 = ¢
against the alternative H;: additive outlier at ¢ = ¢, turns out to be

n—q
o Zj:O Cilg+j

Oq =
* n—q 2
99/ D=0 €

where

1 n n—q
2 _ 2 a2 2
e DL I
Jj=0

t=r+1

The statistic o, is asymptotically N(0,1) under Ho. Thus we assume o as an
estimate of the standard error of the additive outlier at time g.

In Section 3 we take into account specific kinds of models (bilinear, threshold
and exponential autoregressive) by specifying the functional form of f. This
enables us to express differences 1, ; — ¢, ; in a more precise form and to derive
improved model-based estimates of the additive outlier amplitudes.

3. OUTLIERS IN BILINEAR, THRESHOLD AND EXPONENTIAL AUTOREGRESSIVE MODELS

An expansion similar to (4) leads to a general class of nonlinear models called
state-dependent models (SDM) introduced by Priestley, that may be formulated
as follows (Priestley, 1988, p. 93):

P s
XA Y T =+ e (10)
Jj=1 Jj=1
where z¥ is the state-vector, i.e. 2 = (Xi_ps1reeesXts E1mgt 1o st &), and

¢i(), ¥(-) correspond to the derivatives (5) and (6) respectively.

This formulation, generally known as an SDM of order (p, s), can be
interpreted as a locally linear ARMA model in which the evolution of the process
at time (¢ — 1) is governed by a set of AR coefficients {¢; (z"Y)} and a set of MA
coefficient {y; (z"Y)}, all of which depend on the ‘state’ of the process at time
point (¢ — 1). It is also assumed that (10) satisfies the standard conditions usually
imposed to identify an ARMA model.
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All the models we consider (bilinear, threshold and exponential autoregressive)
belong to the class of SDM models. Choosing particular analytical forms for the
coeflicients, it can be easily seen that SDM (10) includes the linear ARMA model,
the bilinear, the self-exciting threshold autoregressive and the exponential
autoregressive models as special cases.

For example, setting {¢; (z“"D)} and W (z“"D)} as constants (i.e. independent
of ™), (10) reduces to the usual ARMA(p, s) model.

To obtain the general discrete time bilinear model, take {(,[)_,—(z(’_'))} as constants,

%

m
¥ (Z(tfl)) =y + Z Bijxe—i;
i=1

thus (10) becomes

P m / s
x,:Zlocjx,,jJrZZﬁijxt,is,,jJrZ]yjs,,jJrst (11)
Jj= J=

=1 j=1

usually indicated as BL(p, s, m, /).
Setting

Yy =0V, and 2"V =9V ifx_g € R,

where {R?”, i = 1,...,h} is a given partition of the real numbers, d is the delay
parameter and x,_; is the threshold variable, (10) reduces to the SETAR(%; p)
model

xe=0y +> ¢Vx ;+e, ifxqeRO (12)

)4
J=1

Finally, in (10) take

V) =0v,;  and  ¢,CT) =g, Fme, =1,

then we obtain the exponential autoregressive model of order p, defined as
EXPAR(p):

P
M= Z <¢J + Eieﬂx’:')xr—j +é& (13)

=

We derive specific results for each of these three models in the Appendix.

4. APPLICATIONS TO REAL AND SIMULATED SERIES

In order to evaluate the performance of the proposed procedure, some series have
been simulated. The noise process was generated using the SCA system (Liu and
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Hudak, 1992), under the assumption of standard normal distribution; 1000
elements were simulated and the series values were computed according to the
selected model, retaining only the last 500 observations to eliminate the influence
of the initial values. Then, each series was perturbed with a single additive or
innovational outlier at a randomly selected time point, with amplitude 3.5 or 5.0.
While the latter is generally easily recoverable by graph inspection, the first case is
hardly noticeable at first sight; an example is in Figure 1, where outliers are
highlighted by triangles.

The generating process was repeated 100 times independently for each of the
following three models:

i. Bilinear BL(1, 0, 1, 1) model: x, = 0.4x,_; + 0.4x, 16,1 + &,

ii. Self-exciting threshold SETAR(2; 1) model with threshold value equal to 1:

L J04—06n +g) ifx <1
T —02408x  +67 ifx g > 1

iii. Exponential autoregressive model EXPAR(2) (see Haggan and Ozaki,
1981):

X, = (1.95 + 0.236_’92*1))(;,1 + (—0.96 - 0.246_"'2*1)36;72 s

The model parameters were estimated by means of least squares, and were
generally fairly correct showing a small bias. The simulated series exhibit rather
strong nonlinear features, and the outlier identification methods based on linear
autoregressive models, or linear interpolators, yield unsatisfactory results.

The results of the suggested procedures are reported in Table 1. For each of the
100 replications, the most significant estimated amplitude was recorded, and
Table I reports how many times it corresponds to the actual location and type of
the outlier. Moreover, the average estimated amplitude and its standard error,
computed on the correctly identified cases, appears in the table. In all cases when
the location was correctly identified, the likelihood ratio test statistics were larger

1 51 101 151 201 251

FIGURE 1. Simulated series following a SETAR(2;1) model, perturbed with additive outliers at =
55(w = 5.0), and at ¢t = 211(w = 3.5).
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TABLE I
OUTLIER IDENTIfICATION ON SIMULATED SERIES

Outlier Correct time Correct type Estimate
Model type identification identification average (SE) Lr.t. > 3.5.
BILINEAR Additive
w=>5 96 96 4.76 (.90) 96
=35 88 88 3.37 (.70) 85
Innovational
w=>5 91 91 4.88 (.94) 86
=35 50 50 4.04 (.68) 39
SETAR Additive
w=>5 92 85 4.98 (.94) 83
=35 57 49 3.93 (.66) 51
Innovational
w=>5 87 81 5.07 (91) 79
=35 44 41 4.26 (.60) 33
EXPAR Additive
w=>5 99 99 5.02 (.38) 99
=35 97 96 3.50 (.48) 94
Innovational
w=>5 82 82 5.27 (.93) 75
=335 47 47 4.28 (.79) 29

Notes: For each simulated model and contamination, the frequency of correct time and type detection
on 100 replications is shown, together with the average and standard error of the estimated outlier
amplitude in the correctly identified cases, and the number of times that the likelihood ratio test
statistic (l.r.t.) was found larger than 3.5 (it was always larger than 3.0).

than 3.0 (high sensitivity) and often larger than 3.5 (medium sensitivity). The
number of replications where the test statistic was larger than 3.5 is reported in the
last column of Table I.

We found that when the perturbation is relatively large (w = 5) the procedure is
very effective, both in the additive and innovational case. Moreover, the estimated
amplitude shows a small bias. On the contrary, when the outliers are less relevant
(w = 3.5), their detection is much more difficult (although generally correct in
about one half of replications), and an innovational outlier is often less clearly
identified than an additive one, especially in the SETAR case. Furthermore, the
estimated amplitudes have shown a positive bias.

In order to complete our analysis, we also considered two classical examples,
the Canadian lynx series and the sunspot series, and applied the proposed iterative
procedure. These data sets have been widely investigated in literature, and many
models have been adapted to both series; we have considered some of them and
the parameter estimates proposed in literature.

For the Canadian lynx series after a logarithmic transformation, we searched
for outliers using a BL(12, 0, 9, 9) as in Gabr and Subba Rao (1981); a SETAR
(2; 7, 2), as in Tong and Lim (1980), and an exponential model of order 11, as in
Haggan and Ozaki (1981). In all cases, the parameter values were those reported
by the related papers. It is a fairly regular series and neither of these models
suggests any outlier, since the likelihood test statistic values for each time are
always smaller than 3 in modulus. Using a linear interpolator or a linear
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TABLE II
OUTLIER DETECTION IN THE SUNSPOT SERIES, USING MODELS SUGGESTED BY PRIESTLEY (1981)

Model &2 q Type o Lr.t. statistic
BL(3,0,3,4) 182 75 AO 21.14 4.11
78 10 51.54 3.96
SETAR(2:4,10) 171 149 AO 48.73 4.57
AR(9) 188 171 AO 36.54 4.62
78 10 56.07 4.51
218 AO 29.88 4.27
137 10 42.0 3.58

Notes: For each fitted model, the table displays the observed residual variance, the identified outlier
time (¢) and type, the estimated amplitude and the observed value of the likelihood ratio test statistic.

autoregressive model, we found a slightly worse fit and likelihood ratio test
statistic values between 3.0 and 3.5 at 1 = 50 (AO), t = 97 (I0) and ¢ = 16 (AO).

For the sunspot series, we used 216 observations from the year 1700 to 1915
and considered a BL(3, 0, 3, 4), a SETAR(2; 4, 10) and an AR(9), as reported in
Priestley (1981, pp. 882-7), results are shown in Table II where the iterative
procedure is used and the sensitivity level is set at 3.5.

It may be seen that each method suggests the presence of outliers at different
locations. The events detected using a bilinear model relate to the lower part of
the cycle, while the SETAR model relates to a peak. The procedure based on
linear autoregressive models seems to produce an over-identification, possibly
because of the nonlinear features of this series. Thus we can draw the conclusion
that some perturbation probably occurred but no uncontroversial outlier may be
identified.

5. CONCLUDING REMARKS

The increasing interest towards nonlinear models for the analysis of important
time series the behaviour of which is not well reproduced by linear models
requires specific techniques for treating outliers in this context. Outliers are even
more critical in nonlinear series than in the linear case, because, on the one hand,
their effects may be much longer persistent, and, on the other, they may have a
serious impact on parameter estimation, which is usually more difficult when
nonlinear models are entertained. Therefore specific model-based methods, like
those proposed here, are relevant.

In our simulation experiment, the bias induced by outliers on parameter
estimation was not found to be very large, but we analysed a series of 500
observations: smaller series are certainly more seriously affected. However, the
iterative detection procedure or robust estimation methods may help in reducing
the bias.

When outliers are very large, the detection methods based on linear ARMA
models or linear interpolators are relatively successful, but they are less useful
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when the anomalies are not so evident. It would be interesting, however, although
difficult, to derive optimal nonlinear interpolators based on different nonlinear
models and study their effectiveness in outlier identification.

Finally, we can observe that various different models have the purpose of
reproducing and explaining similar nonlinear features; therefore, often several
different nonlinear models are fitted to the same data: we think that this may also
be convenient when searching for outliers. In fact, performing an outlier detection
based on linear and on some nonlinear models provides complete information on
perturbed time periods, and helps to distinguish between genuinely unpredictable
observations and misfitting because of the model global or local inadequacy.

APPENDIX

We derive here the explicit form of the outlier estimates for bilinear, threshold and
exponential autoregressive models.

BILINEAR MODELS

Consider a series {y,}, following model (11), which contains an AO at a generic time point
g,i.e.y, = X, + o, for notational simplicity we put o; = 0 forj > p, f; = 0fori > mor
j > 1Iland y; =0, > 5. From (5) and (6), we can write:

/1 (q+k) = +Zﬁunq+k —jy My Q‘|‘k Zﬁl}yq+k i+
J=1

so that the generic coefficent ¢ is

! k m
SR VIR S (z - y,) (A
= =1 =1

where, as before, ¢y = 1. Note that 1,(¢ + k) = 0 if r > max(m, p) and (¢ + k) =0 if
r > max(/, s). The approximate difference between the residuals (7) is:

k m
nq+k — &q+k = Crg = —Wqlg — g Z ﬁk]nq+k —j Z Z (ﬁiryq+k7i + Vr)(anrkfr - 8£[+k*")
=1

r=1 i=1
However, we may evaluate the exact difference as follows:
Nyrk = Egrk = Voik —f (y(‘”""), n@“"”) — Xk +f (x(‘”""), 8@*"’”)

k m

= —Wglk — (g Z.Bk/‘”q-%—k—j Z Z ﬁ:ryq+k i+ )(”q+k—r - 8q+k—r) (Az)

r=1 i=1

The error consists in substituting the unperturbed residuals ¢, with the observed residuals
n, in the second term of (A2) for tr=¢g + k-0 g+ k—-1+ 1,....,¢g + k—1: if an
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additive outlier occurs at time ¢, generally [n,.;/ > > |e,+;/ for j=0 and a better
approximation may be achieved by deriving an estimate of the ¢,; based on an initial
estimate of w,.

Thus we compute initial coefficients ¢} as follows, according to (A.1):

o + Z Biigri—j + Z Cier (Z BirYati—i + V,)

J=k+1

k‘*

and obtain a first estimate of the outlier amplitude, a)j;, according to the linear combination

).
Now, through w,, We can compute approximate values ¢ of the unknown es using (11)
applied to x; = x, — a)t’;é,,q, and finally new values of ¢, given by

! k m
j=1 r=1 i=1

so that the quantities ¢ - @ are closer to the exact differences 1, — ;4 given in (A.2),
and a final estimate of the outlier amplitude is:

n—q
o — =0 Cillg
g = n=q 2

Zj:() <

SETAR MODELS

For clarity of exposition, in (12) we shall write ¢§i) = ¢Ef"*") if x,_qs € R, since the regime

at time ¢ depends upon the value of the threshold variable at time ¢ — 4. The analogous
model for the perturbed residuals is:

P
me=vi— 6 =Y ¢
=1

where, as before, y, = x, + ®,. Note that an outlier occurring at time point ¢ may
influence the correct regime identification at time ¢ + d. Following the same scheme used
for bilinear models, (5) and (6) become:

Mg+ k) =8 j=1,p k>0
lilg+k)=0, j>p, k>0;
plg+k) =0, Vj, k>0

and the coefficients ¢; in (8) are ¢; = — q&ﬁy #¢) The difference between residuals is now
exactly:

7’Iq+j*8q+j:¢wﬂd d)(,vq/d +Z¢xq+/dxq - kfzq&()qjd%ﬁ—j—k’ Jj=1,....p

(A.3)
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Ifj # d, x,+,and y,+; belong to the same regime, i.e. the coefficients of the two series
coincide: therefore the only term different from zero in (A.3) is that for
k=j:Ng — trj = —¢}”’*’"’)wq. On the contrary, if j = d, the regime may change,
because the outlier affects the threshold variable; (A.3) becomes:

(o) 00 N () a0
Ngrd — Eq+d = Q' — P + Z b Xgrd—k — Z d’kyq YVat+d—k (A4)
k=1 k=1

The second difference on the right-hand side of (A.4) contains the perturbed term if d =
k. This case is possible only if d < p; thus, assuming that d < p,

Ng+d = eq+d = d)(()x y,, + Z)’zﬁd k(qﬁ[" - ) +J’q( o -9, ) — Wq * 5}“’)
kA

Generally, the coefficients d)ﬁx‘f) are not known, because they are related to the series {x,};
one possible way to proceed is to evaluate a preliminary estimate wjconsidering only the

differences that are not affected by the presence of unknown terms, i.e. differences for

j # din (9), or alternatively putting c; = — S"”; we then estimate x, by analogy through

x, = y; — w, and compute a modified residual 17, as follows:

Mo = Ngrd = (d)‘()x;) B ) Zyﬁd k(¢k k ) — Yy (‘/’Eﬁ) - fiyq)>

thus to. a closer approximation n, ., — &a = C 0y, where. ¢ == ([)S")‘.
Letting n;; = n,; and ¢; = ¢; for j # d, the final estimate is obtained as

! 1+Z/1;

We note finally that in the somewhat unusual case that d > p the possible regime change
at 1 = g does not affect the coefficients ¢;, j = 1,...,p; therefore, a two-step estimation is not
required.

EXPONENTIAL AUTOREGRESSIVE MODELS

The function in (13) depends only upon observations, so that the first derivatives with
respect to the residuals are zero for every ¢; (5) becomes, in this case:

p 2
(g +k) = ¢y + me v — 2y > dgrjore P
=

Mg k) =+ me e, j=2,p

so the coefficients ¢; coincide with —4(¢g + j). The difference between residuals is:
U 2 2
IRENEDD { <</>j + ”je_'x">xq+1—j - (‘7’/ + nje_’“>yq+1—j}
J=1

P
a2 ) 2
—(¢1 +me ’y")wq + (e e ’y"') E TjXg+1-j
J=1
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2
_ W2k _
nq+k—8q+k7—(¢k+nke'f/“)(uq, k=2,...,p

The first expression contains a second term, that we shall denote by ¢, which depends
upon the amount x,, that is generally unknown. We can proceed as before, deriving a first
estimate w’ using only the differences not affected by unknown terms, i.e. the differences for

q

k=2,.,p, in (9 (or , =n, if p=1) and x, can now be estimated through

x; =y - wj;, and its value used to estimate the amount ¢:

JJ
= (e*yx;Z _ ef‘/’yg) (mx; + Z leyq+1j>
Jj=2
so that we can obtain the final estimate of the anomaly by

* P *

O = g + E./':lcf"qﬂ
q = r 2
1 +ijlcj

where i, = n, —ctand =1, 7 =2,....p.
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