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In many medical experiments, data  are collected across time, over a number of similar trials, or 
over a number of experimental units. As is the case of neuron spike train studies, these data may 
be in the form of counts of events per unit of time. These counts may be correlated within each 
trial. It  is often of interest to  know if the introduction of an  intervention, such as the application 
of a stimulus, affects the distribution of the counts over the course of the experiment. In such 
investigations, each trial generates a sequence of data  that  may or may not contain a change 
in distribution a t  some point in time. Each sequence of integer counts can be viewed as arising 
from a Poisson process and are therefore independently distributed or as an  integer-valued time 
series that  allows for correlations between these counts. The main aim of this paper is to  show 
how the ensemble of sample paths may be used to  make inference about the distribution of the 
instantaneous times of change in a given population. This will be accomplished using a Bayesian 
hieralchical model for these change-points in time. A bonus of these models is they also allow for 
inference about the probability of a change in each unit and the magnitude of the effects, if any. 
The use of such change-point models on integer-valued time series is illustrated on neuron spike 
train data, although the methods can be applied to  other situations where integer-valued processes 
arise. 

1. Introduction 
Neurophysiology has become a field of increasing attention as scientists attempt to  explain system 
response by describing the reaction of individual neurons or groups of neurons (Arieli et al. ,  1996; 
Hanes and Schall, 1996). In this and other research, the time it  takes for a single neuron to  react is 
taken into account as part of a cascade of events following application of a stimulus (Koch, 1997). 

Even in a resting or nonstimulated state, neurons continue to  show spontaneous electrical activity 
tha t  is stochastic in intensity. This activity is observed as a sequence of discrete electrical discharges, 
called spike trains or action potentials. While the duration and magnitude of the discharges vary 
little and carry almost no information, the counts of spike trains in equal intervals are informative 
and may be modelled as random variables that  follow a point process. The usual response to  a 
stimulus may then be manifested as a sudden change in the parameters of this process. The time of 
increase in electrical activity lags behind the time tha t  the stimulus is applied. It  is the distribution 
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of this time lag, or reaction time, that is of chief interest here, although we also examine the before 
and after rates. 

Commenges and Seal (1985) describe an experiment designed to study the time-to-reaction 
following the stimulation of a neuron located in the posterior parietal cortex of a monkey. A 
stimulus was applied to the neuron. The electrical discharge of the neuron was recorded for a time 
period both before and after the stimulus. This procedure was repeated on the same neuron 35 
times, resulting in 35 data sequences; since the sequence of runs was terminated before the cell 
tired, it is reasonable to assume that the reaction times remained identically distributed (but not 
identical) through these 35 trials. 

Commenges and Seal (1985) considered a parametric renewal process with intensity that changes 
at one or possibly two time points, although change-point estimation is only discussed for each single 
trial separately, after which the change-points are combined in an ad hoc fashion (Commenges, Seal, 
and Pinatel, 1986). Wegman and Habib (1992) and Brillinger (1992) provide reviews of stochastic 
modelling for nerve cell spike train data, the latter emphasizing the influence of networks of nerve 
cells on the action potential process of a single designated cell. 

This paper illustrates how a hierarchical Bayesian change-point model can be employed to com- 
bine data across trials. A preliminary autocorrelation analysis of the data suggested that there was 
no reason to reject the assumption of independence of the coullts of spike trains in disjoint inter- 
vals. Consequently, we initially modelled each sequence of counts as independent Poisson random 
variables that arise from a Poisson process with a change-point. Then, because of some concern 
about the ability of the autocorrelation tests to detect dependence, as well as possible physiological 
justification, we modelled counts as an integer-valued autoregressive (INAR) time series. Such a 
model, which is a discrete analog of the standard autoregressive process for continuous data, allows 
for correlations of the counts. As far as we are aware, this is the first time a Bayesian approach is 
taken for inference about INAR parameters and the first time INAR models with a change-point 
have been considered. 

Analysis of the above data, which were provided by Commenges (personnal communication), is 
deferred to Section 4, after details of the models are provided in Section 2. A Bayesian approach 
to estimating the parameters of both models is described in Section 3. The final section contains 
further discussion. 

2. The Models 
Assume that there are data in the form of an ,IT x n' array 

Each vector X L 1 ,  X L 2 , .  . . Xi.v represents observations over time from the ith row or sequence, 
i = 1 , 2 , .. . , kI. A change-point is said to have occurred at T,= 7, in sequence i ,  i = 1 , 2 , .. . ,1&I 

and 1 5 7, 5 nT - 1, if the random vector X L 1 ,  X i 2 ,  . . . , X1,, , has distribution Fzl,which is different 
from the distribution FZ2of the random vector XL,,+l, X,,,+2, . . . ,XLA\-.If T, = n',then no change 
has occurred in row i. The distribution of the time points of change T,and uilknown parameters 
of the distributions F L k ,i = 1 , .. . ,]If, k = 1,2 ,  are to be estimated from a realization of the data 
matrix (1). When there are multiple paths or sequences, we shall refer to a multipath change-point 
problem to distinguish it from the classical single-path problem, when 11.1=1. 

It is assumed that the times of change T ,  in each row or sequence are themselves independent 
and identically distributed in a given population, following a distribution g(t) = P r { T ,  = t } ,  
i = 1:. . . , A f ,  t = 1 , .. . , N,which is to be estimated. If g(N) > 0, then it is possible that there is 
no change in some rows. The introduction of g( .)  does not necessarily mean that each subject in the 
population has exactly the sarne change-point. It is emphasized that it represents the probabilities 
for the location of the change-point for a randomly selected unit in the population. U'hile it is well 
known (Hinkley, 1970) that the single-path maximum likelihood estimator of the change-point is 
not consistent as N increases, the nonparametric estimator of g( ) in the multipath case has been 
shown in Joseph and U'olfson (1993) and Joseph, lTandal, and Wolfson (1996b) to be consistent as 
A I  increases under certain regularity conditions. 

The case where 111= 1 has received considerable attention in the literature, including maximum 
likelihood approaches of Hinkley (1970). Hinkley and Hinkley (1970), and Yao (1987, 1990), non- 
parametric methods of Pettitt (1979), and the Bayesian approach of Smith (1975). Carlin, Gelfand, 
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and Smith (1992) used the Gibbs sampler (Geman and Geman, 1984; Gelfand and Smith, 1990) to 
find marginal posterior distributions in a hierarchical single-path change-point model. Introducing 
M > 2 considerably broadens the applicability of change-point models (see Lange, Carlin, and 
Gelfand, 1992; Joseph et al., 1996a). 

As a first approximation, we assume that the process of spike trains is a Poisson process. It 
then follows that X7], j = 1 , 2 , .. . ,nT, are independent Poisson random variables for each fixed 
i = 1 , 2 , .. . ,krl. Next, we investigated the possibility of correlations between counts, where it is 
important to recognize that the data are integer-valued. A1 Osh and Alzaid (1987) and Jin-Guan 
and Yuan (1991), based on an operator of Steutel and Van Harn (1979), have devised nonnegative 
integer-valued time series, called INAR processes, that have analogous correlation structure to an 
autoregressive real-valued time series. 

The Steutel-Van Harn operator (Steutel and Van Harn, 1979; A1 Osh and Alzaid, 1987) is defined 
by the sum zE1Y,,  where Y ,  is a sequence of independent and identically distributed (i.i.d.) 
Bernoulli(a) random variables, a t [0, 11, and X is a Poisson(X) random variable independent of 
Y, ,  i = 1 , 2 , .. . . A useful modification of this operator, which Gauthier and Latour (1994) call a 
generalized INAR or GINAR model, is to define a and X as above, but generalize Yi to be arbitrary 
i.i.d. integer-valued random variables with finite mean a. 

Let e t ,  t = 1 , 2 , .. . , represent a sequence of Poisson random variables with parameter 6, inde-
pendent of X ,  Y,  or a. The sequence e t ,  t = 1 , 2 , .. . , is usually called the innovation process. Then 
either of the above series can be used to generate an integer-valued time series of order p (p a 
nonnegative integer), with {ak)k=l  ,,,,, satisfying ai, E [0, I ] ,  k = 1 , 2 , .. . , p  - 1, and cup E ( O , l ] ,  
by specifying 

for t 2 2 and X1 N Poisson(X). If the Steutel-Van Harn operator is used and t t  is a sequence of 
Poisson(X) random variables, this is called a Bernoulli-Poisson model of order p, and if the operator 
defined by Gauthier and Latour (1994) is used, then this is termed a completely Poisson process of 
order p. Here we will discuss in detail only the Bernoulli-Poisson model of order p = 1, although 
similar techniques to those we present can be extended to higher order models and completely 
Poisson processes. Note that if 6= X ( l  - a),then the Bernoulli-Poisson process is stationary. 

3. Estimation of Parameters via the Gibbs Sampler 

3.1 Azdepende~zt Cot~nts  Model with a Change-Point 

The likelihood for the independent counts model with one change-point described in Section 2 is 
given by 

where 81 and 6 2 ,  possibly vector valued, are the parameters of the densities f l  and f 2 ,  respectively, 
and .ir = ( T ~ ,  . . , T.\T), where 7rh = Pr{TI = h), h = 1 , 2 , .. . ,nT,and i = 1 , 2 , .. . ,M .  Inference- 2 , .  

using this likelihood is difficult since it takes the form of a mixture. However, conditional on 
knowledge of the latent data (Tanner and TVong, 1987) ri, i = 1 , 2 , .. . , M, the change-points in 
each data sequence, the likelihood simplifies to 

TVhen each x , j ,  i = 1, .. . ,krl, j = 1 , .. . ,N,  follows a Poisson distribution, the parameters in 
the model are 81 = X 1  = (Al1,. . . , and 82 = A2 = (Al2, .. . , vectors of the means 
of the Poisson distributions before and after the change-point in each row, 7-r = ( T ~ ,. . . ,T*-), 
the multinomial probabilities that a change occurs at position i in each row, i = 1 , .. . ,M, and 
T = the unobserved latent data representing the change-points in each row. (71, . . . ,rj1~), 

For simplicity, one may choose conjugate prior distributions, although nonconjugate priors can 
also be accommodated, as in hliiller (1991). Since the gamma distribution is conjugate to a Poisson 
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likelihood function and the Dirichlet distributions form a conjugate family for the parameters of a 
multinomia! random variable, the prior distributions in the case that  the rcZJ are Poisson could be 
given as 

and 

where C>ll  T, = 1, a 0  = V a,,ai > 0, i = I , . . . , X ,  and the a ik3s ,  bik's, and a, ' s  are chosen 
according to  the available prior information. 

Implementation of the Gibbs sampler to find the marginal posterior distributions requires the 
specification of the full conditional distribution of the parameters, i.e., the conditional distribution 
of each parameter given the values of all of the other parameters. These are specified following 
standard procedures for conjugate analyses (see DeGroot, 1970) as 

and 

f (T  ( T ) -- ~ i r i c h l e t ( ~ ' ) ,  

where 3;, the kth element of P',is given by Pi;+C;Ll Ii,L=k), is the indicator function where I{yj 
for the set {y). 

The Gibbs sampler algorithm proceeds by drawing a random sample from each full conditional 
distribution (5)-(8) in turn. The parameters sampled from the immediately preceding random 
draw are used in the conditional distribution for subsequent draws. A large number of iterations 
are run, and after discarding iterates from an  initial burn-in period to  allow for convergence of 
the algorithm, the remaining random vectors, whose components are the samples draw11 from (5) 
through (8) in each iteration, can be regarded as samples from the joint posterior distribution of 
the parameters, from which inferences can be made. 

TVe used the method of Raftery and Lewis (1992) to  estiirlate the required number of iterations 
and burn-in for each parameter based on the output from a preliminary run of the sampler. 
Marginal posterior density estimates were generated by what has beconie known as the Rao- 
Blackwell method (see Gelfand and Smith, 1990). Four independent runs of the Gibbs sampler 
were carried out as an additional convergence check, and convergence was assumed only if all 
marginal densities were identical for all practical purposes. 

3.2 Integer- Valued Autoregresszve Model with a Clzange-Poznt 

In order to illustrate the methods for correlated count data,  we considered the Bernoulli-Poisson 
model of order p = 1, suitably modified to  accommodate the possibility of a change-point. This 
model was chosen because it represents a natural discrete counterpart to  the well-known versatile 
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autoregressive models of continuous-time series. Conditional on knowledge of the latent data 
~ i ,i = 1 , .. . , M ,  the likelihood again simplifies to a product of terms rather than a mixture, 
although the before and after change-point terms are now more complex, as discussed below. In 
the case of a first-order Bernoulli-Poisson IKAR model, the parameters to be estimated are 81 = 

( X i , 6 i , a i )= and '32 = ( X ~ ~ , . . . , X J . I P ,(Xi1,...,X.1rl,S1i,...,S~rl,all,...,asil)= (X2,62,a2) 
h i2 , .. . ,S21i2,0112,. . . , where X I  and X p  represent, respectively, the vectors of Poisson means 
before and after the change-point, 61 and 62 the mean vectors, respectively, of the Poisson 
innovation processes before and after the change-point, and oc 1 and a 2 ,  respectively, the Bernoulli 
parameters before and after the change-point. The stationarity condition for the Bernoulli-Poisson 
process, given in Section 2,  applies separately to each of the before and after change-point variables 
in each sequence. Hence, 6k is a function of ock  and X k ,  k = 1,2 .  The vectors rr and r remain as 
previously defined following equation (2). Note that  if o c l  = a 2  = 0,then the model reduces to 
the independent model described in Section 3.1. This can be seen by substituting al, = 0 in the 
likelihood equations below. 

The likelihood function can now be derived as follows. Let lli  denote the first segment of the 
likelihood function in sequence i, that is, the segment from the first observation up to and including 
the observation at  the change-point ~ i .Then 

where b in(x ,a)  denotes the binomial probability function with x trials and parameter a and 
Poisson(5) denotes a Poisson probability function with mean 5. The stationarity condition S1, = 

X1,(l - a l , )  implies 

Defining !'Vib(~,)= # { j  : j < r1x,,,-1 = a and x,,, = b) and applying the binomial theorem, it 
can be shown that  

The second half of the likelihood, 12,, has an analogous form, and the entire likelihood given 
2 ,TI( T ~ ,. . . , T . I ~ )can then be written as l(x ( e l ,02,71,. . . ,rnr)= IIk=l l,,. The same prior 

distributions as described in Section 3.1 can be used for n,X I ,  and X 2  [see equations (3) and 
(4)]. Since the components of oc 1 and a 2  are restricted to the range [ O , l ]  and represent binomial 
parameters, beta prior densities were used. 

The full conditional distributions for X1, and X2, are in the form of a mixture of gamma densities, 
while the full conditional distributions of the cul,'s are also in the form of a mixture, although the 
mixture components are not from a standard distribution. We used a sampling importance resamp- 
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ling algorithm (Rubin, 1987) to draw random samples from the latter mixture. U7e first compared 
each component of this mixture to a beta density matched for mean and variance. Since each fit 
was very close, we used this mixture of beta densities as the proposal density for the sampling 
importance resampling algorithm. The full conditional densities are 

where ATzklm = C%l x, - k - I - m + a X 1 ,  By, = 1 + ( 1  - a l Z ) ( ~ ,  - 1 ) +  bX1. and 

The full conditional distribution of X2, is similar. For the binomial parameters, 

where 

and 

A similar full conditional distribution is obtained for a z , ,  and the full conditional distributions for T,, 

i = 1 , .. . , M, and n have similar forms as in the independent case of Section 3.1, with tllc likelihood 
function adjusted a.s indicated above. The quantities (aa1, b a l )  represent the beta parameters for 
the prior distributions for a l i .  The subscript i is omitted from these priors parameters since a 
common prior density is assumed across all trials, i = 1 , .. . , M. This notation was used in order 
to avoid confusion with the Dirichlet parameters introduced in Section 3.1. Detailed derivations of 
the likelihood function and all full conditional distributions are available in the technical report by 
Birlisle et al. (1997). Again, the Gibbs sampler proceeds by sampling each variable in turn from its 
full conditional distribution. 

4. Neuron Spike Train Data Analysis 
Data consisting of counts of electrical discharges in 20-millisecond (nls) intervals approximately 
one-half second before and after a stimulus was applied to the neuron at t = 500 ms were observed 
on hi' = 35 data sequences. Each time, the neuron was allowed to return to the resting state 
before the experiment was resumed. See Figure 1. All sequences had 25 observations before the 
stimulus was applied, but the number of observations after the stimulus varied between 11 and 24. 
This variation should not cause substantial bias in estimating n unless there is evidence that the 
change-point occurs after approximately 220 ms poststimulus, which was not the case in this data 
set. 

The output produced by the Gibbs sampler for n is a sample from a Dirichlet distribution in 
N dimensions. Since this distribution is difficult to visualize, summary statistics are necessary. In 
particular, the means of the marginal Dirichlet posterior distributions can be calculated, and poste- 
rior marginal densities for selected change-point probabilities may be plotted. The latter display 
the variability about the Dirichlet means and are calculated here as a Rao-Blackwell mixture of 
beta densities over the set of random samples generated by the Gibbs algorithm. Within each iter- 



Change-Point Analysis of Neuron Spike Train Data 

Time (ms) 

Figure 1. Data from the experinlent with A4 = 35 trials. A stimulus was applied at 500 ms. 
Each represents a spike train at the indicated time. The total length of the broken lines indicate 
the follow-up times in each trial. 

ation, each sequence may have 7%< N or rL = N,z = 1 , .. . ,M. A useful statistic is 
then {# times 7%< number of iterations. This approximates the sequence or trial-specific 
probability of a change-point. 

4.1 Results from the Independent Poisson Model with a Change-Point 

Prior densitzes. The overall strategy was to create conservative prior distributions, in the sense 
that prior values for each parameter were selected to cover a somewhat wider interval than the 
available prior information might suggest. In this way, the entire ranges of most likely values for the 
parameters were covered by relatively flat portions of the prior densities so that the data themselves 
would contribute most of the information in the posterior densities. 

Accordingly, a Dirichlet prior density with a1 = a2 = . . .  = 024 = 0 and cvzs = asc; = . . .  = 
ads = 0.04 was used. The sample size equivalent of this prior density is one observation (C cui = I ) ,  
so that 35/36 = 97% of the information in the marginal posterior density on n would come from 
the data. We used prior gamma(4,0.03) and gamma(8,0.03) distributions for the before and after 
Poisson parameters, with mean rates of 0.12 and 0.24 firings per 20-ms interval and standard 
deviations of 0.06 and 0.085 firings per 20-ms interval, respectively. Hence, at least a doubling in 
the usual rate of discharges is anticipated after the stimulus, although the large standard deviations 
allow for a wide range of other values to be chosen by the data. 

Results. The Gibbsit software made available by Raftery and Lewis indicated that 5100 iterations, 
including a burn-in of 100 iterations, is sufficient to estimate 95% credible intervals for each 
parameter that would have true coverage between 92.5% and 97.5% with high probability. 

The mean marginal posterior change-point probability for 734 ,  which corresponds to 680 ms, was 
equal to 0.85, indicating that there is indeed a change in electrical activity following the application 
of the stimulus, occurring roughly 180 ms after the stimulus. None of the other change-point mean 
marginal probabilities was greater than 0.025, and in particular, there wa.s a negligible estimated 
probability of no change. The overall mean rate of discharges before the change-point is estimated 
to be 0.10 per 20-ms interval and 0.31 per 20-ms interval after the change, so that an approximate 
three-fold difference from the baseline rate occurs on average after the change-point. While a mean 
difference of 0.21 per 20 firings per 20 ms was observed, there were variations in the rates from se-
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quence to sequence. The minimum difference was 0.11, while the maximum difference wa.s 0.28. 
The standard deviation of the mean differences was 0.04 firings per 20-ms interval. 

The marginal posterior distribution for 734 is given in Figure 2. This figure indicates that  a t  
least 60% of similar trials will change a t  680 ms and that  the proportion could be almost as high 
as 100%. 

The mean of the trial-specific probabilities of a change-point was 0.9999, so under this model, 
there is virtual certainty that  there will be a change-point in each trial. 

A sensitivity analysis was performed by allowing the change-point to  occur a t  any time rather 
than being restricted to  occurring after 500 ms and by moving the means of the prior densities of 
XzL 50% closer to  the prior means of XI,. The results remained nearly identical to  those reported 
above. 

4.2 Results from the INAR Model wzth a Change-Poz~zt 

Przor densities. We used the same prior distributions for the XI, X q ,  and ri parameters a.s in 
the independent Poisson model. We initially considered using uniform(beta(1, 1 ) )  densities for the 
parameters a k , ,  k = 1 , 2 ,  and i = 1, .. . , A l .  However, with this prior density, the INAR model 
would lead to  very strong correlations ( a k 1  > 0.8) between observations, which seems unlikely. 
Consequently, beta( l .5 ,5)  distributions were selected since they are concentrated between 0 and 
0.6, the latter seeming to be a reasonable upper bound. Nevertheless, we perforlned a sensitivity 
analysis using both be ta (1 , l )  and beta( l .7 ,4)  densities, both of which allow for higher a k ,  values. 
Since the results from the latter two analyses were very similar, they are not discussed further here. 

Results. The Gibbsit algorithm again indicated that  5100 iterations were sufficient, including a 
burn-in of 100 iterations. 

The mean marginal posterior change-point probability for 7 3 1 was 0.80. The second largest mean 
change-point probability was 0.036, on r:35.When these two are summed, one arrives at a value 
close to the value on r:jd found in the independent model. Again, there was a negligible estimated 
probability of no change. The overall mean rate of discharges before the change-point is estimated 
to  be 0.11 per 20-ms interval and 0.30 per 20-ms interval after the change. The mean difference is 
0.19 per 20 ms, again similar to  that  estilnated by the independent model. The standard deviation 

Estimated marginal posterior density for 
the probability of change at period 34 

m 


Figure 2. LIarginal posterior densities for the plobdbility of a change-point at 7 3 1 ,  using the 
independent model of Section 3 1. 



121 Change-Point .4nalysis of Neuron Spike Train Data 

of the mean differences was again 0.04. The mean of the trial-specific probabilities of a change-point 
dropped slightly to 0.9624. 

The posterior densities of the a k ,  were investigated. The overall mean across trials was 0.25, 
close to the prior mean of 0.23. These means were similar both pre- and post-change-point. Even 
though there were up to 49 observations per sequence, there was little opportunity to update the 
prior densities on these parameters from these data. This is because most intervals prior to the 
change-point contained no spike trains, in which case the full conditional distribution for the ak, 's 
closely resembles the prior density. This can be seen from the form of the full conditional density 
for cuk, when there are no spike trains (see Section 3.2). While there were many more spike trains 
after the change-point, the change-points occurred toward the end of a period of observation, again 
affording little data with which to update the prior distributions of the a k , .  While there was little 
evidence of correlation in this data set, one must conclude that much longer observation times 
would be required to definitively settle this issue, which remains open to further study. In any 
case, both models seem to be equivalent for estimating the distribution of the reaction times to the 
stimulus, at  least in this experiment. 

A Bayes factor (Kass and Raftery 1995) was estimated to compare the two models through 
the information cont,ained in the data. The Bayes factor was calculated by computing the average 
likelihood values of each model across the Gibbs sampler iterations and was found to have a value 
of approximately 1014 in favour of the independent model. Given that virtually identical results 
were obtained from both models but that  70 fewer parameters are required for the independent 
model, this value is not surprising. 

5. Discussion 
In the data analysed here, the overall conclusions were not greatly affected by the choice of 
whether or not to incorporate correlations. In other cases, however, longer periods of observation 
and/or stronger correlations between observations may exist, making it important to account for 
them via an INAR or similar model. While we used a low-order binomial-Poisson model, the 
methodology described here can be extended to higher order and Poisson-Poisson GINAR models. 
This would allow for models incorporating seasonal variations, for example. Here we did not allow 
for correlations between sequences. The low correlation within sequences, as well as the small 
likelihood of a tiring effect across trials, made independence between sequences most likely. 

The methods may be extended in many directions. For example, one may have data from several 
experiments, each using a different neuron. In this case, one may analyse each experiment in a 
similar fashion to the analyses presented here, perhaps adding hierarchical terms in the model to 
describe the distributions of neuron firing rates among a population of neurons. 

The data analysed here were provided by Daniel Commenges of INSERhl, France. This work was 
supported in part by the Katural Science and Engineering Council of Canada and the Fonds pour 
la Formation de chercheurs et l'aide & la Recherche, Gouvernement du Qukbec. Lawrence Joseph 
is a research scholar supported by the Fonds de la Recherche en Santk du Qukbec. 

Dans de nombreuses expkriences mkdicales, les donnkes sont recueillies chronologiquement, par 
plusieurs essais similaires, ou plusieurs unitks expkrimentales. Comme dans le cas des ktudes sur les 
trains de dkcharges neuronales. Ces donnkes peuvent 6tre sous la forme de nombres d'kvknements 
par unitk de temps. Ces dkcomptes peuvent 6tre corrklks au sein de chaque essai. I1 est souvent 
intkressant de savoir si une intervention telle que l'application d'un stimulus, modifie la distribution 
des dkcomptes pour l'expkrience. Dans de telles recherches, chaque essai engendre une suite de 
donnkes qui peut ou non inclure un changement de distribution B une certaine date. Chaque suite 
de dkcomptes de nombres entiers peut 6tre vue comme provenant d'un processus de Poisson et 
alors indkpendantes, ou bien comlne skrie chronologique & valeurs entibres prenant en compte les 
corrklations entre ces dkcomptes. Le but principal de cet article est de montrer comment on peut 
utiliser un ensemble de trajectoires pour dkvelopper une infkrence sur la distribution des temps 
de changement pour une population donnke. Ceci est rkalisk par un modble bayksien hikrarchique 
pour des temps de changement. Un intkr6t supplkmentaire de ces modbles est qu'ils permettent 
un dkveloppement infkrentiel sur la probabilitk de changement en chaque point, et sur l'amplitude 
6ventuelle des effets. L'utilisation de tels modbles B point de changement pour des skries temporelles 
& valeurs entibres est illustrke ici par des donnkes sur les trains de dkcharge neuronale bien que ces 
mkthodes s'appliquent dbs que des processus & valeurs entibres sont impliquks. 
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