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SUMMARY

Long-range dependence is often observed in long time series. Correlations decay
approximately like |k[*# =2, with H € (0-5, 1), as the lag k tends to infinity. The long-term
features of the data are essentially characterised by the parameter H. Small changes of H
have strong implications for the long-term behaviour of the process. In particular, rates
of convergence of estimators for the mean, and for many other parameters of interest,
differ for different values of H. For some data sets, H appears to change with time. In this
paper we consider a simple test of the null hypothesis that H is constant. The test is based
on a functional central limit theorem for quadratic forms. Critical values for the test
statistic are given. Simulations confirm the validity of the test. A data example illustrates
its practical application.

Some key words: Change point; Fractional ARIMA; Fractional Gaussian noise; Long-range dependence;
Quadratic form; Stationarity.

1. INTRODUCTION

The phenomenon of long memory, or long-range dependence, has received wide atten-
tion in the last few years. While a systematic statistical theory has been developed mainly
in the last two decades, long-range dependence had been observed in many areas of
application a long time before stochastic models were known, see e.g. Cox (1984), Hampel
(1987), Kiinsch (1986) and Beran (1992a, 1994). A mathematical definition can be given
as follows. Let X, be a stationary process with autocovariances r(k) = cov(X,, X,.,). Then
X, is said to have long memory if, as |k|— oo,

r(k)~ Ly(K)[k*" 72, He(3,1), (1)

where L,(k) is a slowly varying function as |k| — oo, that is L,(ta)/L,(t)—1 as t - co for
any a > 0. This property implies that the correlations are not summable, and the spectral
density has a pole at zero. Under suitable conditions on L,(.), the spectral density

[e e}

1 .
fE=5- ¥ 9™ ~ Ly(x)|x[! =2 2)
n k=—o0
as |x| -0 for some L,(.) slowly varying at the origin. The best known models with (1)
and (2) are fractional Gaussian noise (Mandelbrot & van Ness, 1968; Mandelbrot &
Wallis, 1969) and fractional ARIMA (Granger & Joyeux, 1980; Hosking, 1981). These
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models are stationary with a constant long-memory parameter H. For some time series,
however, the long-term dependence structure seems to change over time. This can be due
to a change in the physical mechanism that generates the data. Typical examples are very
long time series with long memory in telecommunication engineering (Beran et al., 1995),
where changes in the data generating mechanism are likely to happen. In other situations,
changes in the way observations are taken may cause H to vary with time. For instance,
there could be several stretches of data, each measured by a different observer.

Even small changes of H are relevant, because they imply an essential change of the
long-term behaviour of the process. In particular, the rate of convergence of confidence
intervals for constants and for parameter estimates in regression with certain classes of
design matrices, e.g. polynomial regression, changes when H changes; see e.g. Adenstedt
(1974), Samarov & Taqqu (1988), Beran (1989, 1991) and Yajima (1988, 1991). Also, H
has a strong impact on long-term forecasts and the size of forecast intervals; see e.g. Ray
(1993) and Beran (1994, Ch. 1, 8). The question arises, therefore, how to decide whether
H is constant over the whole observational period or not.

To illustrate this, let us look at a typical data set with long memory, namely, the yearly
Nile river minima based on measurements at the Roda gauge near Cairo during the years
622-1284 (Tousson, 1925, pp. 366-85). The data are listed in the appendix of Beran
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Fig. 1. Nile river data. (a) Shows yearly minimum water level at the

Roda gauge for the years 622-1281 (Tousson, 1925, pp. 366-85).

(b) Displays a simulated series of a fractional ARIMA (0, d, 0) process
with H = 0-90.
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(1994) and can be obtained from the first author by e-mail upon request (e-mail address
beran@stat.math.ethz.ch). This is one of the time series that led to the discovery
of the Hurst effect (Hurst, 1951) and motivated Mandelbrot and co-workers (Mandelbrot
& Wallis, 1969; Mandelbrot & van Ness, 1968) to introduce fractional Gaussian noise
into statistics. The series is plotted in Fig. 1(a). It exhibits some typical features of station-
ary long-memory processes: locally there are spurious trends and/or cycles of varying
frequencies which disappear after some time, the mean seems to be changing with time
but the overall mean is constant. Fractional Gaussian noise with H around 0-83 turns out
to be a good model (Mandelbrot & Wallis, 1969; Beran, 1992b). Similarly, a fractional
ARIMA (0, d, 0) model with H = d + 4 = 0-90 fits well. In particular, the correlation structure
of the series is well described by this one parameter H only. This can be seen by comparing
the periodogram with the fitted spectral densities (Fig. 2). Yet a closer look at the data
reveals an inhomogeneity: observations 1 to about 100 seem to be more independent than
the subsequent observations, implying that the value of H might be lower for the first 100
observations than for the subsequent data. This is illustrated by Fig. 3. There, the periodo-
gram, in log-log-coordinates, for the first 100 and the last 553 observations is plotted.
Clearly, Fig. 3(b) plot shows a negative slope for all frequencies, whereas Fig. 3(a) looks

10000 —
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— Fitted spectrum of fractional Gaussian noise

—- Fitted spectrum of fractional ARIMA (0, d, 0)
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Fig. 2. Periodogram of the Nile river minima (in log-log coordinates),

and fitted spectral densities of a fractional Gaussian noise process and
a fractional ARIMA (0, d, 0) process.
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horizontal, suggesting uncorrelated observations. The question arises: is this inhomogen-
eity spurious, due to randomness, or real, due to a change of the dependence structure?
The answer is not obvious, because not only the raw periodogram but also optimal
parametric estimates of H vary considerably when calculated for short disjoint parts of a
stationary series with long memory. In order to be able to assess quantitatively how much
the estimates of H can vary when estimated from different portions of the data, we need
to derive the joint distribution of these estimates.

In this paper we answer this question and suggest a simple method for testing the null
hypothesis Hy: ‘H is constant’ against H,:‘H is not constant’. Related results in a nonpara-
metric setting and results on testing for change points in the marginal distribution can be
found in Giraitis & Leipus (1992, 1994).

The outline of the paper is as follows. In § 2 we state a functional central limit theorem
for quadratic forms. The test statistic is defined in § 3. Its asymptotic distribution follows
from the limit theorem in § 2. Some relevant quantiles are given. Simulations in § 4 demon-
strate the validity of the test. The test is applied to the Nile river data in § 5. Concluding
remarks are given in § 6. Proofs are given in the Appendix.

2. A FUNCTIONAL LIMIT THEOREM

Let {{;: —00 <s< 0} be a sequence of mean-zero, independent and identically dis-
tributed random variables with variance 7% fourth cumulant y, and all moments finite.
Define a moving average

o
Xt= Z a(k)ét—k (t=03 il:)a (3)
k=—o0
@) (b)
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Fig. 3. Periodogram (in log-log coordinates) of (a) the first 100 observations of the Nile river minima series,
and (b) the Nile river minima excluding the first 100 observations.
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where

T

a(k)=2—1n J e (%) di

-7

for some complex-valued function d(4) satisfying (1) = a(—A)*, where z* denotes the
complex conjugate of z,

J @A) dA < oo, |a(A)?=[A['"2HL(A|7Y),

-

where 0 < H < 1, and L is slowly varying at infinity. The spectral density of X, is

2

T
|a(d)* =
T

12
fo= 1AL,

2n
Note that long memory in the sense of (1) and (2) occurs for 3 < H < 1. The following

theorem however holds also if H is less than or equal to 1. In this section, we therefore
extend the range of H to the interval (0, 1). Let

[IN] N
0:()= Z bj—k{Xij—r(j—k)}> 0,(t) = ] Z bj—k{Xij_r(j—k)}a
Jk=1 Jk=[tN|+1

where | . | denotes the integer part, r(k) = EX,X, and

1 (" .
by=— J e**g(x) dx
2n J_,

for some bounded, real, even function g(x). Suppose further that

tr(RyByy «* [ )

N | are(y dx
as N — oo, where (Ry),  =r(t —s) and (By),, = b(t — s). For a discussion of this condition,
see Beran & Terrin (1994, p. 271). Let

, 14 T . 2 > ‘L'4 K o~ 2 2
o =—7—t— i {la(x)|*g(x)} dX+X4E‘2‘ la(2)["g(x) dx ¢,

)
1 1
Zy(t)=N"*o~ (1 -}t {; Ql(t)—l—_tgz(o}.

Denote by D[0, 1] the space that consists of those functions on the interval [0, 1] that
are right-continuous and have left-hand limits. The Skorohod topology on D[0, 1] is an
extension of the uniform topology on the space C[0, 1] of continuous functions. In the
uniform topology, functions are close if they differ by only a short distance in the vertical
scale. In the Skorohod topology, functions are also considered close if they differ only
slightly in the horizontal scale. For a precise definition, see, for example, Billingsley
(1968, p. 111).
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THEOREM 1. Under the above assumptions, Zy(t) converges in the Skorohod topology on
D[ 0, 1] to the Gaussian process

1 1
Z(1)= (1 —t)}%{; By(1)— 7 Ball —t)}, (5)

where B, and B, are two independent standard Brownian motions.

For a proof see the Appendix.

3. THE TEST STATISTIC

Assume that X, is given by (3), that (2) holds and the spectral density is characterised
by a finite dimensional parameter vector 6 = (t, ) =(t, H, 5, . . . , 1],,) such that

T

Sx; 0)=1f{x; (L, )}, J log f{x; (1, 1)} dx=0.
By definition, 7 is the expected mean squared error of the best linear prediction of X,
given {X;,s <t— 1}. The long-memory behaviour is characterised by H, the additional
parameters 1#,, . .., #,, allow for flexible modelling of short-term features. Define

o () = J e**f ~Hx; (1, )} dx.
Given X, X,, ..., Xy, let 7§ be the value of # that minimises

N
Q)= Y, o ;X —X)(X;— X).
i,j=1

The vector 7 is called the Whittle estimator (Whittle, 1951). Note that the integral
fe**f ~1 dx may be replaced by a Riemann sum,; see e.g. Beran (1994). Giraitis & Surgailis
(1990) show that, under some additional regularity conditions on f, N*(# — n) is asymptoti-
cally normal; see also Fox & Taqqu (1986), Dahlhaus (1989) and Yajima (1985). For
Gaussian processes, the asymptotic covariance matrix is the same as for the exact maxi-
mum likelihood estimator. Efficiency in the Gaussian case is shown in Dahlhaus (1989).

The coefficients oy, as well as their partial derivatives with respect to #, fulfill the
conditions given in § 2. The results in § 2 then imply the following functional central limit
theorem for Whittle’s estimator of H. For a proof see the Appendix.

COROLLARY 1. Define, for 0 <t <1,
LNt| N

Q:i(t;m) = i]z:l ai—j(rl)(Xi_X)(Xj_X)a Q,(t;m) = . El;tjﬂ O‘i—j(ﬂ)(Xi—X)(Xj—X-)-

Let #9(t) and #P(t) (j =1, 2) be defined by

79(t) = argmin {Q ;(t; #V)} (j=1,2),
and denote by HYV(t)=#P(t) the corresponding estimates of H. Moreover, define
k? = 2D1,'(n), where D is the k x k matrix with elements

4

0 0
Dy(n) = (2m) " j =108 f (x; (L)} 5 - logf {x: (L)} dx.
Ni nj

-n 14 J
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Then the process

Zy(t)=N¥" {t(1 - )} {HO () — HO(1)}
converges in the Skorohod topology on D[0, 1] to the Gaussian process Z(t) defined by (5).

More generally, Theorem 1 implies a multivariate functional central limit theorem for
7. However, here the focus is on testing for constancy of H so that Corollary 1 is sufficient.
A natural way of testing H,: ‘H = constant’ against the alternative that H changes some-
where in the observed time period is to compare estimated values of H for many different
subseries. We therefore suggest the test statistic

Ty= sup |Zy(t)l (6)
d<t<1-9¢
for some 0 < 6 < 1. Corollary 1 implies Ty — Y in distribution, where
Y= sup [|Z(9)] (7)
o<t<1-6

and Z(t) is defined by (5). Note that, due to the standardisation by {t(1 —t)}%, Z(t) is a
standard normal random variable for each fixed ¢.

Quantiles of Y can be obtained for instance by simulation. For example, the upper
90%-, 95%- and 99%-quantiles of Y obtained from 10 000 simulations turned out to be
2:65, 2:93 and 3-54 respectively. Depending on the model, ¥ may have to be replaced by
a consistent estimate. However, simulations of the asymptotic distribution have to be done
only once, since the distribution of Y does not depend on any parameters. For some model
classes, even x, and thus Ty, does not depend on any parameters. For example, for a
fractional ARIMA (0, d, 0) model, x? is equal to 6/n. For computational reasons one may
want to calculate H)(¢) (j =1, 2) only for a subset of all possible cut points t € [, 1 —§].
Thus, one may consider

In.= sup | Zy(2)] (8)
0<t=jk/N<1-9¢
for a fixed integer k. The supremum is taken over all integers j for which the two inequalit-
ies hold. Keeping k fixed and letting N tend to infinity, the asymptotic distribution of Ty,
is the same as for Ty.

Finally note that, in practice, 6 will have to be chosen such that the resulting shortest
series can still be used for estimating the long-memory parameter. For instance, for N =
1000 and a fractional ARIMA (O, d, 0) model, we may choose é = 0-1. The shortest series is
then of length 10005 = 100.

4. SIMULATIONS

We simulated 400 series of a fractional ARIMA (0, d, 0) process with d = H —3=0-2 and
0-4 respectively and lengths N = 500 and 1000. For each series, the test statistic Ty, with
k=20 and 6 =0-1 was calculated. Table 1 gives, for each value of d and N, the relative
frequency of simulations where Ty ; was above 10%, 5% and 1% critical limits 2-65, 293
and 3-54 respectively, which were obtained from the asymptotic distribution of Corollary 1.
The results show satisfactory agreement with the nominal rejection levels.

It should be noted that the method assumes that the fitted parametric model is the
correct model. In practice, it is usually not known a priori which model is correct. Thus,
one may have to choose an appropriate parametric model, for instance by applying data
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Table 1. Simulated rejection probabilities for H,:H = constant,
based on Ty, and asymptotic 10%-, 5%- and 1%-quantiles
obtained from Corollary 1

d=02 d=04
N a=01 a =005 =001 a=01 a=005 a=001
500 01125 0-0800 00175 01325 0-0850 00275
1000 01275 0-0675 0-0175 01125 0-0625 0-0300

The simulated process is fractional ARIMA (0, d, 0).

driven model selection criteria such as Akaike’s information criterion or consistent versions
of it; see e.g. Akaike (1970) and Schwarz (1978). It is known that using the wrong para-
metric model can lead to considerable bias in the estimation of H; see e.g. Cheung (1993),
Agiakloglou, Newbold & Wohar (1993) and Agiakloglou & Newbold (1994). The possible
effect of model misspecification on the proposed test is illustrated in Table 2. There,
the true model is a fractional ARIMA (1, d, 0) process with positive autoregressive coeffi-
cients ¢, = 0-1 and 0-4 respectively, however an ARIMA (0, d, 0) model is fitted. Thus, X, is
generated by

® d
Z (— l)k (k) Bk(Xt - ¢1Xt—1) =&
k=0

with independent identically distributed N(0, ¢2) variables ¢, and B*X, = X, _,. Instead of
using this model and estimating d and ¢, from the data, d is estimated under the assump-
tion that ¢, is equal to zero. Table 2 is based on 400 simulations. The results show that,
under mild misspecification of the model (¢, = 0-1), the actual level of the test is practically
the same as assumed. In contrast, for the case with ¢, = 0-4, assuming ¢, =0 leads to a
gross misspecification of the model and hence to a considerable deviation from the nominal
significance levels. In the case considered here, the wrong model leads to an unduly
conservative test. The effect is most dramatic forAd) =04 and d =0-4. The reason is that
assuming ¢, =0 leads to a large positive bias in d, while d is restricted to the stationary
range —1 < d < 3. With high probability d is then approximately equal to 1 for all subseries
and hence Ty ,==0.

Table 2. Effect of model misspecification on simulated rejection prob-
abilities using k=20 and asymptotic 10%-, 5%- and 1%-quantiles
obtained from Corollary 1

d=02 d=04
&, N a=01 a=005 «a=001 a=01 a=005 a=001
01 500  0-0678 0-0352 0-0075 0-0503 0-0327 0-0126
1000  0-0980 0-0553 0-0101 0-0653 0-0327 0-0050
04 500 00151 0-0126 0-0050 0 0 0
1000  0-0201 0-0126 0-0025 0 0 0

The simulated process is a fractional ARIMA(1, d, 0) process with autoregressive par-
ameter ¢; =01 and 0-4 respectively. A fractional ARIMA (0, d, 0) process is used to
estimate d.
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Table 3. Simulated rejection probabilities for the alternative X,

(t=1,...,N/2) are independent identically distributed stand-

ard normal random variables, that is d=dV =0, and X,

(t=N/2+1,...,N) is an independent fractional ARIMA (0, d, 0)
process with d =d® =0-25 and 0-4 respectively.

d?® =025 d® =04
N a=01 o =005 a=0-01 a=01 a =005 =001
200 04150 0-2950 0-1275 0-6700 0-5630 0-3025
500 05975 0-4475 0-1725 09725 09300 07125
1000 09250 0-8400 0-5500 1 1 09975

The test statistic Ty, with k =20 is used together with asymptotic 10%-, 5%-
and 1%-quantiles obtained from Corollary 1.

Table 3 gives some simulated powers for the alternative that half of the data consist of
independent standard normal observations, that is d = 0, and the other half are generated
by a fractional ARIMA (0, d, 0) process, independent of the first half, with d = H —1 = 0-25
and 0-4 respectively. The results are based on 400 simulations. Note that, owing to the
relatively high variability of H, n =200 is about the smallest sample size where one still
may be able to detect a change in H.

5. APPLICATION TO THE NILE RIVER DATA

For the Nile river data, an omnibus goodness-of-fit test supports the model of fractional
Gaussian noise with H around 0-83 (Beran, 1992b) with a P-value of about 0-7. The same
is true for a fractional ARIMA (0, d, 0) process with H = 0-9. Naturally, overall goodness-
of-fit tests tend to have bad power against specific alternatives. As we saw in § 1, a closer
look at the data indeed discloses a possible change of the dependence structure after about
the first 100 observations. A preliminary analysis yields estimates of H for the subseries
Xi+100G-1)> - - - » X100; (j=1,...,6) of 0-5433, 0-8531, 0-8652, 0-8281, 0-8435 and 0-9354.
The biggest jump occurs between j =1 to j = 2. Even otherwise the variability of H seems
high. However, a relatively high variability of H between disjoint stretches of a series is
to be expected, as can be illustrated by looking at a typical realisation of a fractional
ARIMA (0, d, 0) process with H = 0-9; see Fig. 1(b). Here, the estimates for the six disjoint
subseries of length 100, defined as above, are equal to 0-6648, 0-9401, 0-8404, 0-9146, 0-7627
and 07549 respectively. It is therefore not necessarily easy to decide ‘by eye’ whether for
the Nile river data H is constant or the differences between the estimates are merely due
to random error. The method of § 3 answers this question in a formal way. Consider, for
instance, 6 =0-1 and k=20. Figure 4 displays Zy(t) as a function of ¢ =jk/N (k =20)
together with horizontal lines corresponding to the 5% and 1% critical limits for Tj.
Figure 4 shows that there is statistical evidence, at the 1% level of significance, that H is
not constant. The value of Zy(t) is largest around jk = 100, with Ty x equal to 44 which
is clearly above the 1% critical limit of 3-54. This confirms the visual impression in Fig. 1(a)
and Fig. 3.

6. FINAL REMARKS

In this paper, we considered testing whether the long-memory parameter H remains
constant. In situations where the long-term behaviour is the main focus, the parameter H



636 JAN BERAN AND NORMA TERRIN

[}
4 -
(]
1% critical limit
o
3 o
I’Z | ° 5% critical limit
N
o o
oo
2 4 o
o
° o °
o ° o
o . . . °
1 - ° °

T T T I
100 200 300 400 500 600
LNt

Fig. 4. |Zy(t)| versus Nt for the Nile river minima and

critical lines for the 5% and 1% level of significance.

The null hypothesis is rejected at a=005 or 001,

respectively, if | Zy(t)| exceeds the corresponding critical
line at least once.

is most important. This is for instance the case when long-term forecasts are required or
when one needs to calculate confidence intervals for location or regression estimates; see
e.g. Beran (1989) and Yajima (1988, 1991). In other situations, the other components of
n may be of interest as well. A test for constancy of # or certain components of # can be
developed by analogous arguments from Theorem 1.

In the proposed method, the long-memory parameter was assumed to be estimated by
exact or approximate maximum likelihood. Thus, in particular, H is based on the periodog-
ram at all frequencies. In some situations, it is preferable to base the estimate of H on
only a certain number of low frequencies, since it may be difficult or unnecessary to model
the whole spectral shape and a misspecified model may lead to biased estimates of H: see
the remarks and simulations in § 4. Estimates which rely mainly on low periodogram
ordinates are discussed, for example, in Geweke & Porter-Hudak (1983), Graf, Hampel
& Tacier (1984), Robinson (1994), Hurvich & Beltrao (1994) and in an as yet unpublished
report by N. Terrin and C. M. Hurvich. A generalisation of our test to the situation where
H is estimated by one of these methods should be straightforward.
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APPENDIX
Proofs

Proof of Theorem 1. Convergence of the finite dimensional distributions of Zy(t) follows from
Theorem 1 of Beran & Terrin (1994). The relative compactness of N~ *Q,(t) is demonstrated in
the proof of Theorem 3.1 of Giraitis & Leipus (1992). Therefore, Zy(t) is tight, and the theorem
is proved. |

Proof of Corollary 1. Let n be the true parameter vector, Q;(¢,#) (i=1 or 2) the vector of all
partial derivatives

0
Qi(t,n) = <a Qi(t, 11))

ji=1,..., m

and Q;(t, n) the matrix of all second partial derivatives

2

0
it =
0i(t,n) < anm

Then 7%(t) is the solution of Q}(t, #) =0. Applying a Taylor expansion at 5, we obtain
A9(t) —n = {Q{(t, n)} ' Qi(t, m) + o(N ~%).

The result then directly follows from Theorem 1. 0

Qi(ta 71))

Jk=1,..., m
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