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Permuting the observations can provide an approximation for the distribution function of our test statistic. We show that
invariance principles provide rates of convergence for the simulation. Bounds for the rate of convergence of cumulative
sum (CUSUM), moving sum (MOSUM) and maximally selected (weighted) CUSUM statistics are examples for our
method.
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1 INTRODUCTION

Let X1, X2, . . . , Xn be independent random variables with distribution functions (d.f.’s)
F(1), F(2), . . . , F(n). Let Tn = Tn(X1, X2, . . . , Xn) be a test statistic for the testing problem

H0: F(1)(x) = · · · = F(n)(x) for all x

against

H1: F(1)(x) = · · · = F(m)(x), F(m+1)(x) = · · · = F(n)(x) for all x

and F(m)(x0) �= F(m+1)(x0) with some x0 and m < n.

Typically, the null hypothesis H0 is rejected for (say) large values of Tn . The basic problem
is then to obtain critical values for Tn , i.e. to determine the (upper) (1 − α)-quantiles of the
d.f. of Tn, where α is the level of the test. However, the distribution function of Tn is usually
unknown and asymptotic results even if they are available, may not be suitable in practice
due to dependence on unknown parameters and slow rates of convergence. To overcome these
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difficulties, resampling procedures have become a very popular tool for simulating the d.f. of
Tn . Antoch and Hušková (2001) advocated the application of permutations as an alternative
method to approximate the d.f. of Tn. Let R = (R1, R2, . . . , Rn) be a random permutation of
(1, 2, . . . , n), independent of X = (X1, X2, . . . , Xn). We define the statistic T ∗

n = T ∗
n (R) =

Tn(X R1, . . . , X Rn ), in which we just shuffle the original observations in the computation of the
test statistic. Using N independent permutations R1, . . . , RN , independent of each other and
also of X, we obtain the permuted statistics T ∗

n (R1), . . . , T ∗
n (RN ). The function

Hn,N(x) = 1

N

∑
1≤i≤N

I {T ∗
n (Ri) ≤ x}

is used to approximate

Hn(x) = PH0{Tn ≤ x}.

In this paper, we are interested in the magnitude of the difference |Hn,N(x) − Hn(x)|.
Proving limit theorems for Tn , a typical result says that there are random variables ξ1, ξ2, . . .

such that

PH0{|Tn − ξn | ≥ qn} ≤ qn, (1)

i.e. the Prokhorov–Lévy distance between Tn and ξn is not greater than qn. Similar results can
be obtained for T ∗

n . Let PX, EX, and varX denote conditional probability, expected value, and
variance with respect to X. There are random variables ξ∗

1 , ξ∗
2 , . . . such that

PX{|T ∗
n − ξ∗

n | ≥ zn} ≤ zn, zn = zn(X) (2)

and

PX{ξ∗
n ≤ t} = PH0{ξn ≤ t} for almost all realizations of X. (3)

The rate of convergence of |Hn,N(x) − Hn(x)| to 0 will depend on the modulus of continuity
of Fn(x) = PH0{ξn ≤ x}, that is on

mn(δ, x) = sup
y: |x−y|≤δ

|Fn(x) − Fn(y)|.

We note that we do not require any continuity properties of the d.f. of Tn ; we need only that
Tn can be approximated with random variables having a smooth distribution function. Our
examples will illustrate that it is usually easier to compute the modulus of continuity of the
distribution function of ξn than that of Tn .

THEOREM 1.1 If Eqs. (1)–(3) hold, then for any λ ≥ 0 and N ≥ ((4/3)λ)2 we have

PX{|Hn,N(x) − Hn(x)| ≥ λN−1/2 + qn + mn(qn, x) + zn + mn(zn, x)}
≤ 2exp(−λ2) for almost all realizations of X. (4)

Proof Conditionally on X, T ∗
n (R1), . . . , T ∗

n (RN ) are independent, identically distributed
random variables. Using the Bernstein inequality (cf. Serfling, 1980, p. 95) we conclude that

PX

{∣∣∣∣∣
∑

1≤i≤N

(I {T ∗
n (Ri ) ≤ x} − PX{T ∗

n ≤ x})
∣∣∣∣∣ ≥ Nt

}
≤ 2 exp

(
− N2t2

N/2 + (2/3)Nt

)
,
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since |I {T ∗
n (Ri ) ≤ x} − PX{T ∗

n ≤ x}| ≤ 1 and varX I {T ∗
n (Ri ) ≤ x} ≤ 1/4. Choosing t =

λ/N1/2 and observing that

N2t2

N/2 + (2/3)Nt
≥ λ2

we conclude

PX

{
|Hn,N(x) − PX{T ∗

n ≤ x}| ≥ λ

N1/2

}
≤ 2 exp(−λ2). (5)

By Eq. (1) we have

|PH0{Tn ≤ x} − Fn(x)| = |PH0{Tn ≤ x} − PH0{ξn ≤ x}| ≤ qn + mn(qn, x) (6)

and similarly Eqs. (2) and (3) imply

|PX{T ∗
n ≤ x} − Fn(x)| = |PX{T ∗

n ≤ x} − PX{ξ∗
n ≤ x}| ≤ zn + mn(zn, x). (7)

Now Eq. (4) follows from Eqs. (5)–(7).

COROLLARY 1.1 If there is a random variable ξ such that

Tn
D−→ ξ under H0, (8)

T ∗
n

DX−→ ξ for almost all realizations of X, (9)

and

x is a point of continuity of the distribution function of ξ, (10)

then, as min(n, N) → ∞,

|Hn,N(x) − Hn(x)| = oPX(1)

for almost all realizations of X.

Proof By the Skorokhod–Dudley–Wichura representation theorem, there are random
variables ξn and ξ∗

n such that Eqs. (1) and (2) hold with some qn → 0 and zn → 0 a.s. Hence
the result follows from Theorem 1.1.

Theorem l.1 gives the following upper bound for the rate of convergence.

COROLLARY 1.2 If Eqs. (1)–(3) hold, then

|Hn,N(x) − Hn(x)| = OPX(N−1/2 + qn + mn(qn, x) + zn + mn(zn, x))

for almost all realizations of X.

Note that through the above permutation argument we get an approximation for the critical
values corresponding to the null distribution, even if the observed data do not follow H0. We
shall see in the examples that Eqs. (2) and (3) hold under H0 and under H1. This means that
Hn,N(x) always approximates Hn(x), the d.f. of the test statistic under the null hypothesis,
even if H1 holds.
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In the next three sections, we discuss some examples for Theorem 1.1. The last two sections
contain technical results on the maximum of a Gaussian process and approximations of linear
rank statistics.

2 CUSUM STATISTICS

For the sake of simplicity, we consider the location model with a change after an unknown
time point m, i.e.

Xi = µ + δ I {i > m} + ei , i = 1, . . . , n, (11)

where 1 ≤ m ≤ n, µ, and δ = δn > 0 are unknown parameters and I {A} denotes the indicator
function of a set A. It is assumed that |δ| ≤ D0 with some D0 > 0. Assume, moreover, that

e1, . . . , en are independent, identically distributed random variables (i.i.d. r.v.’s)

with Eei = 0, 0 < σ 2 = var ei , and E |ei |ν < ∞ with some ν > 2. (12)

We are interested in testing the hypotheses

H0: m = n against H1: m < n.

Our test statistic is the (so-called) CUSUM statistic defined as

Tn = max
1≤k≤n

1

n1/2σ̂n

(
S(k) − k

n
S(n)

)
,

where, for later use, we set

S(x) =
∑

1≤i≤x

Xi (x ≥ 0),

the empty sum being 0, and

σ̂ 2
n = 1

n

∑
1≤i≤n

(
Xi − 1

n
S(n)

)2

. (13)

On assuming Eqs. (11) and (12), we have that

Tn
D−→ ξ under H0, (14)

where ξ = sup0≤t≤1 B(t) and {B(t), 0 ≤ t ≤ 1} denotes a Brownian bridge (cf. Billingsley,
1968; Csörg"o and Horváth, 1997). Analogously to Antoch and Hušková (2001), it follows from
Hušková (1997) that the corresponding permutation statistic T ∗

n satisfies

T ∗
n

D−→ ξ for almost all realizations of X. (15)

Since

P{ξ ≤ x} = 1 − e−2x2
, 0 ≤ x < ∞, (16)
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we get that

|Hn,N(x) − Hn(x)| = oPX(1), as min(n, N) → ∞, (17)

for almost all realizations of X.
Next we consider the rate of convergence in Eq. (17). In view of Eq. (12) we have

EH0 |X1|ν < ∞. (18)

By the Komlós et al. (1975a, b; 1976) approximation (cf. also Borovkov, 1973) there are
Brownian bridges {Bn(t), 0 ≤ t ≤ 1} such that

PH0

{∣∣∣∣ 1

n1/2σ
max

1≤k≤n

(
S(k) − k

n
S(n)

)
− sup

0≤t≤1
Bn(t)

∣∣∣∣ ≥ C1n−(ν−2)/(2(1+ν))

}

≤ C1n−(ν−2)/(2(1+ν)) (19)

with some constant C1. Using the Rosenthal (cf. Petrov, 1995, p. 56) and the Markov inequal-
ities we get for all x > 0 that

PH0

{∣∣∣∣1n S(n) − EH0 X1

∣∣∣∣
2

≥ x

}
≤ C2

nν/2

(nx1/2)ν

with some constant C2 and therefore

PH0

{∣∣∣∣1n S(n) − EH0 X1

∣∣∣∣
2

≥ C3n−ν/(2(1+ν))

}
≤ C3n−ν/(2(1+ν)). (20)

If 4 ≤ ν < ∞, then applying again the Rosenthal and Markov inequalities we obtain that

PH0

{∣∣∣∣∣1n
∑

1≤i≤n

(Xi − EH0 X1)
2 − σ 2

∣∣∣∣∣ ≥ x

}
≤ C4

nν/4

(nx)ν/2

and therefore

PH0

{∣∣∣∣∣1n
∑

1≤i≤n

(Xi − EH0 X1)
2 − σ 2

∣∣∣∣∣ ≥ C5n−ν/(2(2+ν))

}
≤ C5n−ν/(2(2+ν)) . (21)

If 2 < ν < 4, then replacing the Rosenthal inequality with the von Bahr–Esseen inequality (cf.
Petrov, 1995, p. 82) we conclude

PH0

{∣∣∣∣∣1n
∑

1≤i≤n

(Xi − EH0 X1)
2 − σ 2

∣∣∣∣∣ ≥ x

}
≤ C6

n

(nx)ν/2

and therefore

PH0

{∣∣∣∣∣1n
∑

1≤i≤n

(Xi − EH0 X1)
2 − σ 2

∣∣∣∣∣ ≥ C7n−(ν−2)/(2+ν)

}
≤ C7n−(ν−2)/(2+ν) . (22)
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It follows from Eq. (16) that

PH0

{
sup

0≤t≤1
Bn(t) ≥ (log n)1/2

}
≤ 1

n2
. (23)

Putting together Eqs. (19)–(23) we obtain that

PH0{|Tn − ξn | ≥ qn} ≤ qn, (24)

where ξn = sup0≤t≤1 Bn(t) and qn = C8n−(ν−2)/(2(1+ν)) .
Next we establish an analogue of Eq. (24) for T ∗

n , assuming that the X1, . . . , Xn follow the
model Eqs. (11) and (12). This means that Eq. (2) will be established for T ∗

n under the null
as well as under the alternative. Using Lemma 6.1 below for each n, there are U (n)

1 , . . . , U (n)
n ,

independent, identically distributed random variables, uniform on [0, 1] such that

PX

{
max

1≤k≤n

∣∣∣∣∣S∗(k) − k

n
S∗(n) −

(∑
1≤i≤k

ξi,n − k

n

∑
1≤i≤n

ξi,n

)∣∣∣∣∣ ≥ x

}

≤ C9

x2
max
1≤i≤n

∣∣∣∣Xi − S(n)

n

∣∣∣∣
( ∑

1≤i≤n

(
Xi − S(n)

n

)2
)1/2

, (25)

where

S∗(k) =
∑

1≤i≤k

X Ri

and

ξi,n = X
[nU (n)

i ]+1
.

Since the permuted version of Tn is

T ∗
n = 1

n1/2σ̂n
max

1≤k≤n

(
S∗(k) − k

n
S∗(n)

)
,

Eq. (25) implies that

PX

{∣∣∣∣∣T ∗
n − 1

n1/2σ̂n
max

1≤k≤n

(∑
1≤i≤k

ξi,n − k

n

∑
1≤i≤n

ξi,n

)∣∣∣∣∣ ≥ zn,1

}
≤ zn,1, (26)

where

zn,1 = C10


 1

σ̂ 2
n n

max
1≤i≤n

∣∣∣∣Xi − S(n)

n

∣∣∣∣
( ∑

1≤i≤n

(
Xi − S(n)

n

)2
)1/2




1/3

.
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By Sakhanenko (1980; 1984; 1985) there are Wiener processes {W ∗
n (x): x ≥ 0} such that

PX

{
max

1≤k≤n

∣∣∣∣∣
∑

1≤i≤k

(ξi,n − EXξ1,n) − σ̂n W ∗
n (k)

∣∣∣∣∣ ≥ x

}

≤ C11

xν

∑
1≤i≤n

EX|ξi,n − EXξi,n|ν

= C11

xν

∑
1≤i≤n

∣∣∣∣Xi − S(n)

n

∣∣∣∣
ν

. (27)

Hence by Eqs. (26), (27), and Lemma 1.1.1 of Csörg"o and Révész (1981) we have

PX

{∣∣∣∣∣ 1

n1/2σ̂n
max

1≤k≤n

(∑
1≤i≤k

ξi,n − k

n

∑
1≤i≤n

ξi,n

)
− sup

0≤t≤1
B∗

n (t)

∣∣∣∣∣ ≥ zn,2

}
≤ zn,2, (28)

where

zn,2 = C12

σ̂
1/(1+ν)
n

n−ν/(2(1+ν))

(∑
1≤i≤n

∣∣∣∣Xi − S(n)

n

∣∣∣∣
ν
)1/(1+ν)

+ 2n−1/2(log n)1/2,

and B∗
n (t) = n−1/2(W ∗

n (nt) − tW ∗
n (n)) is a Brownian bridge. Putting together Eqs. (26) and

(28) we conclude that

PX{|T ∗
n − ξ∗

n | ≥ zn} ≤ zn,

where zn = zn,1 + zn,2 and ξ∗
n = sup0≤t≤1 B∗

n (t). Hence Corollary 1.2 yields

|Hn,N(x) − Hn(x)| = OPX(N−1/2 + qn + zn) (29)

for almost all realizations of X. By the assumptions and by the strong law of large numbers
we have

max
1≤i≤n

∣∣∣∣Xi − S(n)

n

∣∣∣∣
( ∑

1≤i≤n

(
Xi − S(n)

n

)2
)1/2

= O(n(ν+2)/(2ν)) a.s. (30)

and therefore

zn,1 = O(n−(ν−2)/(6ν)) a.s. (31)

Similarly,

zn,2 = O(n−(ν−2)/(2(1+ν))) a.s.

We also conclude from Eq. (29) that

|Hn,N(x) − Hn(x)| = OPX(N−1/2 + n−(ν−2)/(6ν)) (32)

for almost all realizations of X.
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Remark Checking carefully the proof of Eq. (32), one can see that this assertion remains
true even if the observations X1, . . . , Xn in Eq. (11) follow the more general model

Xi = µi + ei , i = 1, . . . , n, (33)

where |µi | ≤ D1 (with some D1 > 0) are unknown parameters, and e1, . . . , en are as
in Eq. (12).

3 MOSUM STATISTICS

We assume models (11) and (12) again, but make now use of the (so-called) moving sum
(MOSUM) statistic defined as

Tn(h) = 1

h1/2σ̂n
max

1≤k≤n−h

(
S(k + h) − S(k) − h

S(n)

n

)
,

where h = h(n) satisfies

h = cnκ with some c > 0 and
ν + 2

2ν
< κ <

ν + 3

2ν + 1
. (34)

We refer to Antoch and Hušková (1989), Hušková (1994), Steinebach (1994) and Steinebach
and Eastwood (1996) for further MOSUM procedures. Under H0 by the Komlós, Major and
Tusnády (1975a, b; 1976) approximation we can find a Wiener process {W (x): x ≥ 0} such
that

PH0

{
h−1/2 max

0≤x≤n−h

∣∣∣∣ 1

σ

(
S(x + h) − S(x) − h

S(n)

n

)
− (W (x + h)

−W (x) − h
W (n)

n

)∣∣∣∣ > C1

( n

hν/2

)1/(1+ν)
}

≤ C1

( n

hν/2

)1/(1+ν)

. (35)

Since W (n)/n1/2 is standard normal for any n, the usual upper bound for the tail of the standard
normal distribution function together with Eq. (34) yields

P

{
h1/2 |W (n)|

n
≥ C2

( n

hν/2

)1/(1+ν)
}

≤ C2

( n

hν/2

)1/(1+ν)

. (36)

Let U(t) = W (t + 1) − W (t). It is easy to see that for any n

h−1/2 sup
0≤x≤n−h

(W (x + h) − W (x))
D= sup

0≤t≤n/h−1
U(t).

Clearly, {U(t): t ≥ 0} is a stationary Gaussian process with EU(t) = 0 and

EU(t)U(s) =
{

1 − |t − s|, if |t − s| ≤ 1,

0, if |t − s| > 1.

The Fernique (1975) inequality yields that

PH0

{
sup

0≤t≤n/h−1
U(t) ≥ C3

(
log

(
hν/2

n

))1/2
}

≤ C4

( n

hν/2

)1/(1+ν)

(37)
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with some constants C3 and C4. Putting together Eqs. (20)–(22), and Eqs. (35)–(37) we get
that

PH0

{∣∣∣∣Tn(h) − h−1/2 max
0≤x≤n−h

(W (x + h) − W (x))

∣∣∣∣ ≥ C5

( n

hν/2

)1/(1+ν)
}

≤ C5

( n

hν/2

)1/(1+ν)

. (38)

Let

a(n) =
(

2 log
(n

h
− 1

))1/2

and

b(n) = 2 log
(n

h
− 1

)
+ 1

2
log log

(n

h
− 1

)
− 1

2
log π.

Our test statistic is

Tn = a(n)Tn(h) − b(n).

By Eq. (38) we have that

PH0{|Tn − ξn| ≥ qn} ≤ qn (39)

with ξn = a(n)h−1/2 max0≤x≤n/h−1(W (x + h) − W (x)) and

qn = C6

(
log

n

h

)1/2 ( n

hν/2

)1/(1+ν)

.

The permutation counterpart of Tn(h) is

T ∗
n (h) = 1

h1/2σ̂n
max

1≤k≤n−h

(
S∗(k + h) − S∗(k) − h

S∗(n)

n

)
.

We assume that X is given. We show again that Eq. (2) holds for T∗
n (h) under the null hypothesis

as well as under the alternative. Using Eq. (25) we obtain that

PX

{
h−1/2 max

1≤k≤n−k

∣∣∣∣S∗(k + h) − S∗(k) − h
S∗(n)

n

−
( ∑

1≤i≤k+h

ξi,n −
∑

1≤i≤k

ξi,n − h

n

∑
1≤i≤n

ξi,n

)∣∣∣∣∣ ≥ zn,1

}
≤ zn,1, (40)

where

zn,1 = C7h−1/3

(
max
1≤i≤n

∣∣∣∣Xi − S(n)

n

∣∣∣∣
2 ∑

1≤i≤n

(
Xi − S(n)

n

)2
)1/6

and by Eq. (30)

zn,1 = O(h−1/3(n−(ν−2)/(6ν)). (41)
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The approximation in Eq. (27) implies that

PX

{
h−1/2 max

1≤k≤n−h

∣∣∣∣∣
( ∑

1≤i≤k+h

ξi,n −
∑

1≤i≤k

ξi,n − h

n

∑
1≤i≤n

ξi,n

)

−σ̂n

(
W ∗

n (k + h) − W ∗
n (k) − h

n
W ∗

n (n)

)∣∣∣∣ ≥ zn,2

}
≤ zn,2, (42)

where

zn,2 = C8h−ν/(2(1+ν))

( ∑
1≤i≤n

∣∣∣∣Xi − S(n)

n

∣∣∣∣
2
)1/(1+ν)

.

By Eqs. (36), (40), (42), and Lemma 1.1.1 of Csörg"o and Révész (1981) we have

PX

{∣∣∣∣T ∗
n (h) − h−1/2 sup

0≤x≤n−h
(W ∗

n (x + h) − W ∗
n (x))

∣∣∣∣ ≥ zn,3

}
≤ zn,3, (43)

where

zn,3 = max(1, σ̂n)(zn,1 + zn,2) + 2h−1/2(log n)1/2.

Defining

T ∗
n = a(n)T ∗

n (h) − b(n)

and

ξ∗
n = a(n)h−1/2 sup

0≤x≤n−h
(W ∗

n (x + h) − W ∗
n (x)) − b(n),

we conclude that

PX{|T ∗
n − ξ∗

n | ≥ zn} ≤ zn, (44)

where

zn = a(n)zn,3.

Then we obtain that

zn
a.s.= O

((
log

n

h

)1/2
(( n

hν/2

)1/(1+ν) +
(

n(ν+2)/ν

h2

)1/6
))

.

Lemma 5.1 below yields that

mn(η) ≤ C9η
γ for any γ <

1

3
,

where mn(η) denotes the modulus of continuity of the d.f. of ξ∗
n . So by Corollary 1.2 we have

that

Hn,N(x) − Hn(x) = oPX

(( n

hν/2

)τ1 +
( n

h2

)τ2 + N−1/2
)

(45)

for any τ1 < 1/(3(1 + ν)), τ2 < 1/18 for almost all realizations X.
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4 WEIGHTED CUSUM STATISTIC

Assume model Eqs. (11) and (12) of Section 2 again. A very often used weighted version of
the CUSUM statistic is

T̃n = n1/2

σ̂n
max

1≤k≤n

1

(k(n − k))1/2

(
S(k) − k

n
S(n)

)
,

where σ̂n is given by Eq. (13), i.e. the partial sums S(k) − kS(n)/n are normalized by the
estimated standard deviation. For a survey of the results on the maximally selected CUSUM
and its connection to the likelihood ratio test we refer to Csörg"o and Horváth (1997). If
Eq. (18) holds, Gombay and Horváth (2002) constructed a sequence of Brownian bridges
{Bn(t), 0 ≤ t ≤ 1} such that for any 0 < α < 2/3 and 0 < β < α/2

PH0

{
sup

(log log n)α/n≤t≤1−(log log n)α/n

∣∣1/σn1/2(S(nt) − t S(n)) − Bn(t)
∣∣

(t (1 − t))1/2

≥ C1(log log n)−β

}
≤ C2(log log n)ν(β−α/2). (46)

Using the Hájek–Rényi–Chow inequality (cf. Chow, 1960)

PH0

{
max

1≤k≤(log log n)α

1

σk1/2
|S(k) − EH0 S(k)| > (log log n)1/2

}

= PH0

{
max

1≤k≤(log log n)α

1

σνkν/2
|S(k) − EH0 S(k)|ν > (log log n)ν/2

}

≤ (σ log log n)−ν/2




∑
1≤k≤(log log n)α−1

{k−ν/2 − (k + 1)−ν/2}EH0|S(k) − EH0 S(k)|ν

+(σ log log n)−αν/2 EH0|S((log log n)α) − EH0 S((log log n)α)|ν} . (47)

By Theorem 2.10 in Petrov (1995) we have that

EH0|S(k) − EH0 S(k)|ν ≤ C3kν/2 (48)

and therefore Eq. (47) yields

PH0

{
max

1≤k≤(log log n)α

1

σk1/2
|S(k) − EH0 S(k)| > (log log n)1/2

}

≤ C4(log log n)−ν/2 log log log n. (49)

Also, Eq. (48) implies

PH0

{
max

1≤k≤(log log n)α

∣∣∣∣k1/2

σn
(S(n) − E S(n))

∣∣∣∣ ≥ (log log n)1/2

}

≤ C5(log log n)−ν/2 log log log n. (50)
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Putting together Eqs. (49) and (50) we obtain that

PH0

{
max

1≤k≤(log log n)α

n1/2

σ(k(n − k))1/2

(
S(k) − k

n
S(n)

)
> (log log n)1/2

}

≤ C5(log log n)−ν/2 log log log n (51)

and by symmetry

PH0

{
max

n−(log log n)α≤k<n

n1/2

σ(k(n − k))1/2

(
S(k) − k

n
S(n)

)
> (log log n)1/2

}

≤ C5(log log n)−ν/2 log log log n. (52)

Similar arguments show that for any κ > 0

PH0

{
sup

1/n≤t≤(log log n)α/n

Bn(t)

(t (1 − t))1/2
> (log log n)1/2

}
≤ C6(log log n)−κ (53)

and

PH0

{
sup

1−(log log n)α/n≤t<1−1/n

Bn(t)

(t (1 − t))1/2
> (log log n)1/2

}
≤ C6(log log n)−κ . (54)

Using Lemma 3.3 of Gombay and Horváth (2002) we conclude that

PH0

{
sup

1/n≤t≤1−1/n

Bn(t)

(t (1 − t))1/2
≤
((

3

2

)
log log n

)1/2
}

≤ C7n−2. (55)

Putting together Eqs. (46) and (51)–(55) we conclude that for any κ > 0

PH0

{
sup

1/n≤t≤1−1/n

Bn(t)

(t (1 − t))1/2
�= sup

(log log n)α≤t≤1−(log log n)α/n

Bn(t)

(t (1 − t))1/2

}

≤ C8(log log n)−κ (56)

and

PH0

{
max

1≤k<n

(
n

k(n − k)

)1/2 (
S(k) − k

n
S(n)

)

�= max
(log log n)α≤k<n−(log log n)α

(
n

k(n − k)

)1/2 (
S(k) − k

n
S(n)

)}

≤ C9((log log n)ν(β−α/2) + log log log n(log log n)−ν/2). (57)

If

ξ̃n = sup
1/n≤t≤1−1/n

Bn(t)

(t (1 − t))1/2
,
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then Eqs. (46), (57) and Eqs. (21), (22) yield

PH0

{
|T̃n − ξ̃n| ≥ C10(log log n)−β

}
≤ C9((log log n)ν(β−α/2) + log log log n(log log n)−ν/2) (58)

for any 0 < α < 2β. Let

Tn = a(n)T̃n − b(n),

and

ξn = a(n)ξ̃n − b(n),

where the normalizing sequences {a(n)} and {b(n)} are from Section 3. By Eq. (58) we get
that

PH0{|Tn − ξn| > qn} ≤ qn (59)

with qn = C12(log n)−ν/2.
Now we shall establish Eq. (59) for T ∗

n under the null as well as under the alternative
hypothesis. We condition with respect to X. Lemma 6.2 and Eq. (30) yield that

PX

{
max

1≤k<n−1

n1/2

(k(n − k))1/2

∣∣∣∣∣S∗
k − k

n
S∗

n −
(∑

1≤i≤k

ξi,n − k

n

∑
1≤i≤n

ξi,n

)∣∣∣∣∣
≥ C13(log log n)−κ

}
a.s.= O((log log n)−κ )

for any κ > 0. By Sakhanenko (1980; 1984; 1985) for any n there are independent Wiener
processes {W ∗

n,1(x), 0 ≤ x < ∞}, {W ∗
n,2(x), 0 ≤ x < ∞} and random variables τn such that

PX

{
sup

k−1≤y<k

∣∣∣∣∣
∑

1≤i≤k

(ξi,n − EXξi,n) − σ̂n W ∗
n,1(y)

∣∣∣∣∣ ≥ x

}
≤ τn

k

xν
, 1 ≤ k ≤ n

2
, (60)

and

PX

{
sup

k−1≤y<k

∣∣∣∣∣
∑

k<i≤n

(ξi,n − EXξi,n) − σ̂n W ∗
n,2(y)

∣∣∣∣∣ ≥ x

}
≤ τn

k

xν
,

n

2
≤ k ≤ n, (61)

with

τn = O(1) a.s. (62)

Following the arguments in the proof of Lemma 3.1 of Gombay and Horváth (2002) we
conclude that by Eqs. (60)–(62) we can construct Brownian bridges {B∗

n (t), 0 ≤ t ≤ 1} such
that

PX

{
sup

(log log n)α/n≤t≤1−(log log n)α/n

∣∣1/σ̂nn1/2
(∑

1≤i≤nt
ξi,n − t

∑
1≤i≤n ξi,n

)− B∗
n (t)

∣∣
(t (1 − t))1/2

≥ C14(log log n)−β

}
= O((log log n)ν(β−α/2)) a.s. (63)
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for any 0 < β < 2α. It is easy to see that

EX

∣∣∣∣∣
∑

1≤i≤k

(ξi,n − EXξi,n)

∣∣∣∣∣
ν

≤ τ ∗
n kν/2, 1 ≤ k ≤ n

and

τ ∗
n = O(1) a.s.

Thus we can follow the proofs of Eqs. (49)–(59) resulting in

PX{|T ∗
n − ξ∗

n | > zn} ≤ zn

with

zn
a.s.= O((log log n)−ν/2),

where

T ∗
n = a(n)

n1/2

σ̂n
max

1≤k<n

S(k) − (k/n)S(n)

(k(n − k))1/2

and

ξ∗
n = sup

1/n≤t≤1−1/n

B∗
n (t)

(t (1 − t))1/2
.

Next we observe that (cf. Csörg"o and Horváth, 1997, p. 366)

sup
1/n≤t≤1−1/n

Bn(t)

(t (1 − t))1/2

D= sup
0≤t≤2 log(n−1)

U∗(t)

and

sup
1/n≤t≤1−1/n

B∗
n (t)

(t (1 − t))1/2

DX= sup
0≤t≤2 log(n−1)

U∗(t),

where U∗(t) is an Ornstein-Uhlenbeck process. We say that U∗(t) is an Ornstein-Uhlenbeck
process if U∗(t) is Gaussian with EU∗(t) = 0 and EU∗(t)U∗(s) = exp(−|t − s|/2). So
Corollary 1.2 and Lemma 5.1 yield that

Hn,N(x) − Hn(x) = oPX((log log n)−ν/2 + N−1/2) (64)

for almost all realizations of X. It is known that Tn goes in distribution to a random variable
with distribution function exp(− exp x). Gombay and Horváth (2002) indicate that the rate of
convergence to the double exponential distribution is essentially o((log log n)−1/2), so the
permutation method gives a faster convergence.

5 CONTINUITY OF THE DISTRIBUTION FUNCTION OF
THE MAXIMA OF GAUSSIAN PROCESSES

Let {X (t), 0 ≤ t < ∞} be a stationary Gaussian process with E X (t) = 0 and let

r(h) = E X (t)X (t + h).
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We assume that there are C > 0 and 0 < α ≤ 2 such that

r(h) = 1 − C|h|α + o(|h|α) as h −→ 0 (65)

and

r(t) log t −→ 0 as t −→ ∞. (66)

Let

a(T ) = (2 log T )1/2 (67)

and

b(T ) = 2 log T + 2 − α

2α
log log T + log

(
C1/α Hα2(2−α)/(2α)

(2π)1/2

)
, (68)

where Hα is a certain strictly positive constant (H1 = 1, H2 = π−1/2). Next we define

FT (x) = P

{
a(T ) sup

0≤t≤T
X (t) − b(T ) ≤ x

}
.

It is well known (cf. Leadbetter et al., 1983) that

lim
T →∞

FT (x) = exp(−e−x) for all x .

In this section we show that FT (x) is Lipschitz continuous on [0,∞) of order δ < α/(2 + α).

LEMMA 5.1 If Eqs. (65) and (66) hold, then there is L > 0 such that for any x0, y0 ≥ 0

|FT (x0) − FT (y0)| ≤ L|x0 − y0|η f or all |x0 − y0| ≤ 1 (69)

with any η < α/(2 + α).

Proof We can assume without loss of generality that T = n is an integer. For any x0 < y0

let

xn = x0 + b(n)

a(n)
and yn = y0 + b(n)

a(n)
.

By the stationarity of X (t) we have

Fn(y0) − Fn(x0) ≤ n P

{
xn < sup

0≤t≤1
X (t) ≤ yn

}
. (70)

For any q > 0 to be specified below and integer j we write

P

{
xn < sup

0≤t≤1
X (t) ≤ yn

}
= P

{
xn < max

0≤ jq≤1
X ( jq) ≤ yn

}

+
(

P

{
sup

0≤t≤1
X (t) > xn

}
− P

{
max

0≤ jq≤1
X ( jq) > xn

})

−
(

P

{
sup

0≤t≤1
X (t) > yn

}
− P

{
max

0≤ jq≤1
X ( jq) > yn

})
.

(71)
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By the Bonferroni inequality and Feller’s (1968, p. 175) estimates for the standard normal
distribution function we get

P

{
xn < max

0≤ jq≤1
X ( jq) ≤ yn

}
≤
([

1

q

]
+ 1

)
P{xn < X (0) ≤ yn}

≤
([

1

q

]
+ 1

)
ϕ(xn)

xn

(
1 −

(
xn

yn
− xn

y3
n

)
ϕ(yn)

ϕ(xn)

)
, (72)

where ϕ denotes the standard normal density function. We note that

∣∣∣∣ϕ(yn)

ϕ(xn)
− 1

∣∣∣∣ =
∣∣∣∣exp

(
y2

n − x2
n

2

)
− 1

∣∣∣∣ ≤ 1

2
(y2

n − x2
n) ≤ yn(yn − xn) = O(1)xn(yn − xn)

and ∣∣∣∣ xn

yn
− xn

y3
n

− 1

∣∣∣∣ ≤ |yn − xn|
yn

+ 1

y2
n

+ |yn − xn|
y3

n

= O(1)
yn − xn

xn
,

where the O(1)-term holds uniformly in x0, y0 ≥ 0.
On choosing q = Ax−2/α

n with A = (y0 − x0)
γ , 0 < γ < 1, we get from Eq. (72) that

P{xn < max
0≤ jq≤1

X ( jq) ≤ yn} = O

(
x2/α

n

A

ϕ(xn)

xn
xn(yn − xn)

)

= O

(
x2/α

n

ϕ(xn)

a(n)

)
(y0 − x0)

1−γ . (73)

Next we note that for any B > 0

0 ≤ P

{
sup

0≤t≤1
X (t) > xn

}
− P

{
max

0≤ jq≤1
X ( jq) > xn

}

≤ P

{
xn − B

xn
≤ max

0≤ jq≤1
X ( jq) ≤ xn

}

+ P

{
max

0≤ jq≤1
X ( jq) ≤ xn − B

xn
, sup

0≤t≤1
X (t) > xn

}
. (74)

Choosing B = Aβ with some β > 0, Lemma 12.2.6 of Leadbetter et al. (1983) yields that

lim
n→∞

P{xn − (B/xn) < max0≤ jq≤1 X ( jq) ≤ xn}
x2/α

n ϕ(xn)/xn

= (eβ − 1)C1/α Hα(A). (75)

Hence

P

{
xn − B

xn
< max

0≤ jq≤1
X ( jq) ≤ xn

}
= O

(
x2α

n

ϕ(xn)

xn

)
(y0 − x0)

βγ .
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Following the proof of Lemma 12.2.5 of Leadbetter et al. (1983, p. 229) with β < α/2 we get
that

P

{
max0≤ jq≤1 X ( jq) ≤ xn − (B/xn) sup

0≤t≤1
X (t) ≥ xn

}

x2/α
n ϕ(xn)/xn

≤ C1

qx2/α
n

∫ −B

−∞
exp(−C2 A−αz2) dz

= O(Aα/2−1�(−C2 B A−α))

= O(Aα−1−β exp(−C2 A2β−α))

= O((y0 − x0)
µ) for any µ > 0,

due to the Feller’s (1968) bound for the normal distribution. Thus we have

0 ≤ P

{
sup

0≤t≤1
X (t) > x

}
− P

{
max

0≤ jq≤1
X ( jq) > x

}

= O

(
x2/α

n

ϕ(xn)

xn

)
(y0 − x0)

βγ . (76)

Correspondingly, since xn/yn → 1, as n → ∞, we get

0 ≤ P

{
sup

0≤t≤1
X (t) > yn

}
− P

{
max

0≤ jq≤1
X ( jq) > yn

}

= O

(
x2/α

n

ϕ(xn)

xn

)
(y0 − x0)

βγ . (77)

We choose γ = 1/(1 + β), so by Eqs. (71), (73), (76) and (77) we have that

P

{
xn < sup

0≤t≤1
X (t) ≤ yn

}
=
{

O

(
x2/α

n

ϕ(xn)

xn

)
+ O

(
x2/α

n

ϕ(xn)

a(n)

)}
(y0 − x0)

β/(1+β)

for any β < α/2. Since x2/αϕ(x) decreases for x2 > 2/α and xn ≥ C3b(n)/a(n) ≥ C4a(n)

we conclude that

x2/α
n ϕ(xn)

(
1

a(n)
+ 1

xn

)
= O

(
a(n)2/α−1 exp

{
− (b(n)/a(n))2

2

})
.

Using the definitions of a(n) and b(n) one can verify that

1

2

(
b(n)

a(n)

)2

= 1

2

(
a(n) + 2 − α

2α

log log n

a(n)
+ O

(
1

a(n)

))2

= log n + log(log n)(2−α)/(2α) + O(1)

and therefore

a−1+2/α
n exp

{
− (b(n)/a(n))2

2

}
= O

(
1

n

)
,

completing the proof of the lemma.
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6 APPROXIMATIONS OF LINEAR RANK STATISTICS

Let u1, u2, . . . , un be independent, identically distributed random variables, uniformly
distributed on [0, 1], and r1, r2, . . . , rn be the corresponding ranks. The scores are
an(1), . . . , an(n) and we assume that

ān = 1

n

∑
1≤i≤n

an(i) = 0.

We obtain upper bounds for the difference between

Vk =
∑

1≤i≤k

an(ri )

and

Zk =
∑

1≤i≤k

an([nui ] + 1) − k

n

∑
1≤i≤n

an([nui ] + 1).

LEMMA 6.1 For any x > 0

P

{
max

1≤k≤n
|Vk − Zk | ≥ x

}
≤ C1

x2
max
1≤i≤n

|an(i)|
(∑

1≤i≤n

a2
n(i)

)1/2

(78)

with some constant C1.

Proof Let u(·) = (u1,n, u2,n, . . . , un,n) be the order statistics of u1, u2, . . . , un . The σ -algebra
generated by r1, . . . , rk is denoted by Bn,k . Following the arguments in Hušková (1997),
we use the fact that conditionally on u(·), {(Vk − Zk)/(n − k),Bn,k, k = 1, 2, . . . , n − 1} is
a martingale. By the Hájek-Rényi inequality for martingales (cf. Chow, 1960) we have

P

{
max

1≤k≤n−1
|Vk − Zk | ≥ x |u(·)

}

= P

{
max

1≤k≤n−1
(n − k)

∣∣∣∣ 1

n − k
(Vk − Zk)

∣∣∣∣ ≥ x |u(·)
}

≤ 1

x2

{ ∑
1≤k≤n−1

((n − k)2 − (n − k − 1)2)
1

(n − k)2
var(Vk − Zk |u(·))

+ var(Vn−1 − Zn−1|u(·))

}
. (79)

Lemma 2.1 of Hájek (1961) yields

Evar(Vk − Zk |u(·)) ≤ (E(var(Vk − Zk |u(·)))2)1/2

≤ C2
k(n − k)

n
max
1≤i≤n

|an(i)|
(∑

1≤i≤n

a2
n(i)

)1/2

(80)

with some constant C2. Hence Eq. (79) yields Eq. (80).
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Next we consider the standardized version of Lemma 6.1.

LEMMA 6.2 For any x > 0 we have

P

{
max

1≤k≤n−1

n1/2

(k(n − k))1/2
|Vk − Zk | ≥ x

}
≤ C3 log n

nx2
max
1≤i≤n

|an(i)|
(∑

1≤i≤n

a2
n(i)

)1/2

(81)

with some constant C3.

Proof Following the proof of Lemma 6.1, the Hájek–Rényi–Chow (cf. Chow, 1960)
inequality implies

P

{
max

1≤k≤n−1

n1/2

(k(n − k))1/2
|Vk − Zk | ≥ x |u(·)

}

= P

{
max

1≤k≤n−1

(
n(n − k)

k

)1/2 ∣∣∣∣ 1

n − k
(Vk − Zk)

∣∣∣∣ ≥ x |u(·)

}

≤ 1

x2

{ ∑
1≤k≤n−1

(
n(n − k)

k
− n(n − k − 1)

k + 1

)
1

(n − k)2
var(Vk − Zk |u(·))

+ n

n − 1
var(Vn−1 − Zn−1|u(·))

}

≤ C3 log n

nx2
max
1≤i≤n

|an(i)|
(∑

1≤i≤n

a2
n(i)

)1/2

, (82)

where in the last step we used Eq. (80).
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