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ABSTRACT: Probabilistic methods for modeling the distribution of regimes and their shifts over time
are developed by drawing on statistical decision and limit theory of random sums. Multi-annual
episodes of opposite sign are graphically and numerically represented by their duration, magnitude,
and intensity. Duration is defined as the number of consecutive years above or below a reference line,
magnitude is the sum of time series values for any given duration, and intensity is the ratio between
magnitude and duration. Assuming that a regime shift can occur every year, independently of prior
years, the waiting times for the regime shift (or regime duration) are naturally modeled by a geomet-
ric distribution. Because magnitude can be expressed as a random sum of Nrandom variables (where
N is duration), its probability distribution is mathematically derived and can be statistically tested.
Here we analyze a reconstructed time series of the Pacific Decadal Oscillation (PDO), explicitly
describe the geometric, exponential, and Laplace probability distributions for regime duration and
magnitude, and estimate parameters from the data obtaining a reasonably good fit. This stochastic
approach to modeling duration and magnitude of multi-annual events enables the computation of
probabilities of climatic episodes, and it provides a rigorous solution to deciding whether 2 regimes
are significantly different from one another.

KEY WORDS: Climatological probabilities - Environmental change - Proxy records - Pacific Decadal
Oscillation - Random sums
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1. INTRODUCTION

Visual identification of particularly relevant episodes
in a climatological time series is a quite common and
often useful practice in scientific research and litera-
ture. For instance, the plot of an environmental para-
meter (temperature, moisture, wildfire frequency, tree-
ring indices, pollen percentages, etc.) over time is often
used as a starting point to describe which historical
periods were most remarkable (warmer, cooler, wetter,
drier, with more fires, with fewer fires, etc.). Such clas-
sification of multi-annual events is usually subjective,
and our efforts began as an attempt at ranking climatic
episodes. We then proceeded to answer questions
related to the probability of observing episodes of a
given size and/or of one episode being ‘more remark-
able’ than another. Although we study temporal pro-
cesses, time series analysis methods do not provide
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solutions to our inquiries, as they help with other
important issues, for example, deciding whether a pro-
cess has changed significantly over time in terms of its
mean or covariance structure (e.qg. de Jong & Penzer
1998, Harvey 1990, and references therein). Our
methodology does not detect change in a time series,
because the change is explicitly identified. We define
regimes (or episodes) as time periods being continu-
ously above or below a reference line. In other words,
we consider the time series process as fluctuating
around a constant level, and the covariance structure
of the process is irrelevant to our model. Our problem
and approach are similar to those used in hydrology to
summarize drought properties (see Dracup et al. 1980,
Sedeghipour & Dracup 1985), as discussed in Section 2
below.

The method we propose is an application of the lim-
its of random sums that is capable of yielding probabil-
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ity statements on regimes and regime shifts even for
heavy-tailed processes, e.g. processes with finite mean
but without finite variance. In fact, random sums have
been successfully applied to modeling financial asset
returns, which exhibit high volatility (Mittnik & Rachev
1993, Rachev & SenGupta 1993, Kozubowski & Rachev
1994, Kozubowski & Panorska 1999, Kozubowski &
Podgérski 2001). Other extensive applications of ran-
dom sums are in reliability and queuing theories (e.g.
Kalashnikov 1997). We begin by quantifying multi-
annual time series events in terms of 3 random vari-
ables (parameters). First, duration is the number of
years the series remains continuously above (or below)
its reference line. Second, magnitude is the sum of all
series values for a given duration; hence it is equiva-
lent to the area under (or above) the curve. Third,
intensity is the ratio between magnitude and duration;
therefore it is equal to the average magnitude. Compu-
tation of the 3 parameters for every multi-annual event
is straightforward, and it allows for objective ranking
of the events themselves. For instance, the event with
the longest duration or the largest magnitude (absolute
or positive or negative) or the highest intensity can be
easily identified (Fig. 1). At the same time, compar-
isons between events can be carried out using any 1 (or
a combination) of the 3 numerical parameters. A useful
classification scheme is based on ranking events
according to duration, then to magnitude, and then to
intensity. The sum of the 3 ranks assigned to an event
provides a numerical score, and the entire classifica-
tion scheme offers a quantitative solution to the need
for identifying the ‘strongest’, ‘greatest’, or ’'most
remarkable' periods, which would otherwise be
selected differently by different observers. An exam-
ple of the procedure is given below, and summarized

1
1
1
1
1
1
1
1
t
]
]
)
i

I )
] 1
] [}
b [}
] 1
i 1
1 1
1 1
1 |
1 t
1 I
1 ]
1 ]
) J
I 1
I 1
I 1
t 1
' I
1 |
1 ]
| ]
I ]
I ]
I !
i 1
] 1
] i

FREPITNY SOy P —

i
S e B L B RS |
1910 1920 1930 1940 1950 1960 1970 1980 1990

Year

Fig. 1. Time-series plot showing the duration (dashed lines)

and magnitude (solid areas) of multi-annual events in a ficti-

tious annual record: 1922-1944 has the longest duration,

1944-1960 the largest magnitude, and 1960-1965 the highest
intensity

in Table 1. It should be noted that our procedure
extends runs analysis, which has been widely applied
in water resources research to describe drought prop-
erties. Dracup et al. (1980) provide a clear description
of how the truncation level (what we call a reference
line) is chosen. They also explain in detail the meaning
and computation of drought duration, severity (what
we call magnitude), and magnitude (what we call
intensity).!

2. STOCHASTIC MODEL

While it is useful to quantify the relative importance
of multi-annual events in a time series, a stochastic
framework was required to answer questions about
the probability of occurrence and statistical signifi-
cance of differences between regimes. In particular,
our objectives are to provide answers to the following
questions: (1) What is the probability of an episode
being larger than a given amount? (2) Is the differ-
ence between 2 episodes statistically significant?
(3) Do positive episodes behave differently from nega-
tive ones? Because our questions are probabilistic,
they can only be answered using a distributional
model for the duration and magnitude of episodes. As
previously mentioned, we note that common time
series methods (including cusum-like tests) do not
provide such models. We thus answered our questions
by means of a comprehensive and ‘natural’ (as being
derived naturally from the definition of regime dura-
tion, magnitude, and intensity) stochastic model of the
distribution of episodes and regime shifts observed
through time.

First, assuming that at each time step (e.g. a year) the
regime can shift independently of prior time steps with
a time-invariant probability, p, the waiting time for the
shift (i.e. the event duration) is naturally modeled by a
geometric random variable, N, with the following
probability function:

P(N=x) = pd-p)*" x=12..

Magnitude can then be expressed as a random sum of
N random variables ¥, X;, where N is the duration of
an event and X; are the series values. It follows from
the limit theory for random sums (Brown 1990, Kalash-
nikov 1997, Kozubowski & Panorska 1998) that if the
number of terms in the summation, N, follows a geo-
metric distribution with mean 1/p, then under certain
conditions when the number of terms increases (p — 0),

10ur terminology applies to any type of negative or positive

episodes, whereas the term ‘severity’ entails a negative con-
notation that is appropriate for drought, but not necessarily
for other phenomena
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the distribution of the appropriately scaled random
sum converges to an exponential law with the follow-
ing probability density function:

f(x) = le”"/“ x>0

where [ is the expected value. For example, if the sum-
mands X; are independent of N and satisfy the weak
law of large numbers (WLLN}), i.e.

> X

L IS RN W (in probability) for n —
n

then the scaled random sum p(zi‘ X,) converges to
an exponential random variable with mean y as p — 0.
Consequently, for small values of p, the sum Z¥; X; can
be approximated by an exponential distribution, as is
the case when X are iid variables with finite mean. It
should be noted, however, that we are only making the
assumption that the WLLN holds, which is weaker
than assuming that the summands are iid random vari-
ables. In Appendix 1, we provide a formal proof of the
above convergence result and a discussion of assump-
tions under which the exponential approximation
holds. To summarize, the exponential distribution is
the natural model for regime magnitude. A caveat
exists for any limit-based approximation technique on
the rate of convergence that provides an estimate of
the distance between the approximated quantity and
the approximation (limit). In our case, this translates
into the following question: How small does p have to
be for the exponential approximation of the random
sum to be reasonable? Like any other rate of conver-
gence problem, this is a difficult mathematical ques-
tion, and there are few results and only for special
cases (Brown 1990, Kalashnikov 1997; see Appendix 1
for additional details). In practice, it is recommended to
employ goodness-of-fit statistics for the exponential
match to the distribution of regime magnitude. Fur-
thermore, magnitude differences can then be statisti-
cally described and thus rigorously tested for signifi-
cance because the difference between 2 independent,
exponential random variables has a symmetric or
asymmetric Laplace distribution {Kotz et al. 2001)
depending on whether the means of the exponential
distributions are the same or different. The probability
density function of the Laplace distribution is:

Ky

1 k (e forx20

(x;0,k) = — -
f ) o1+k?| -4y

eko™ for x <0

c>0k>0

where ¢ and k are scale and skewness parameters,
respectively. When k = 1, we have the classical sym-
metric Laplace distribution with mean 0 and variance
26?. The likelihood ratio test for:

Ho k=1versus Hi: k=1

rejects the null hypothesis if the value of the statistic S
given by:

2
(\/2 max{x;,0} + JZ maX{—Xj,O}]

j=1 j=1

S(xy,...,X,) = n|2- ~ -
zmax{xj.0}+2max{—xj,0}

j=1 j=1

is greater than some constant c appropriately chosen to
obtain the desired level of significance. To compute
p-values or critical regions for the test when the sam-
ple size n is large, we use the fact that the limiting dis-
tribution of S under the null hypothesis is x{, and for
small n we use its exact distribution, as shown in
Kozubowski & Panorska (2002). To date we have
focused on duration and magnitude because intensity,
as defined within our framework, converges to a con-
stant random variable.

While related to drought studies (Dracup et al. 1980,
Sedeghipour & Dracup 1985, Touchan et al. 1999), our
models provide a considerable improvement and ex-
pansion of those techniques whose main objective is
the estimation of a drought frequency curve, usually
obtained by runs analysis combined with numerical
{(Monte Carlo) simulation. Such an approach does not
provide a probabilistic comparison between episodes
(for instance, droughts) of different duration, because
it cannot answer distributional questions on the magni-
tude of a drought. An explicit call for stochastic model-
ing of drought magnitude is present in Sedeghipour &
Dracup (1985), because by modeling magnitude one
can compare episodes of different duration. To com-
pare droughts of different duration, Sedeghipour &
Dracup (1985) proposed using ‘standardized droughts'
but they conceded that exceedance probabilities
obtained from their method could be improved by
assigning a probability distribution to the drought
record—a distribution they had not yet discovered.
Our methodology provides a unified, probabilistic
model for both duration and magnitude of multi-
annual events that are either negative (such as dry
spells) or positive (such as wet spells).

3. APPLICATION TO THE PACIFIC DECADAL
OSCILLATION

The ranking system and stochastic framework de-
scribed above are applied here to a reconsiructed time
series of the Pacific Decadal Oscillation (PDO; Fig. 2).
The PDO time series consists of a total of 48 multi-
annual events, 24 above and 24 below the median ref-
erence line (Table 1). The total event score, computed

; Jg‘
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2 series, 1 for positive events (M,..., M) and 1 for
negative events (My,..., M), with n equal to 24 in

PDO (reconstructed)
(=]

1650 1700 1750 1800 1850 1900 1950 2000

Year

Fig. 2. Annual values of the reconstructed Pacific Decadal

Oscillation (PDO) index from 1661 to 1991 (Biondi et al. 2001)

plotted as deviations from the overall median (0.138). Positive

(warm) and negative (cold) episodes were numerically
ranked and statistically analyzed

as the sum of ranks (in ascending order) based on
duration, absolute magnitude, and absolute intensity,
shows that the most remarkable event was 1947-1977,
followed by 1895-1905 and 1906-1924. The 1678-
1703 event, which could have been subjectively con-
sidered as the greatest one, is in fourth position. The 3
strongest episodes occurred in the 20th century, con-
firming previous results showing that the 1900s were
anomalous compared to the previous 2! centuries
{Biondi et al. 2001).

To compute episode probabilities and assess statisti-
cal significance of differences between PDO events
using our stochastic model, we first tested the good-
ness-of-fit of the model distributions to the PDO data.
The fit of geometric distributions to PDO durations was
tested separately for positive and negative events
using the chi-square goodness-of-fit test (D'Agostino &
Stephens 1986). The test could not reject the null
hypothesis that the distributions of durations are in fact
geometric (both p-values > 0.2; Fig. 3). This result
allowed us to compute climatological probabilities of
event duration. For instance, the longest event in the
PDO series of Fig. 2 spanned 31 yr (1947-1977), and
the probability of exceeding such a duration is 0.0076.
In other words, the chance that a PDO event should
last longer than 31 yr is very small (below 1%). Such
information is useful in forecasting or computing the
likelihood of a regime shift.

We then turned our attention to the event magni-
tude, and again we started by testing how well the
exponential distribution represents the magnitude of
positive and negative events. We assume that the
number of positive events is equal to the number of
negative events, as is the case for the PDO (Table 1).
Their magnitudes can be formally described as 2

the PDO time series. An assumption implicitly
included in our approach is that the positive and neg-
ative magnitudes can be treated as sets of indepen-
dent observations. The p-values (20.1) of the autocor-
relation and partial autocorrelation functions (Box &

Table 1. Multi-annual Pacific Decadal Oscillation (PDO)
events. The 3 strongest episodes (given in bold) occurred
during the 20th century

Start End Duration Magnitude Intensity Score
1661 1664 4 1.76 0.44 71
1665 1672 8 -7.75 -0.97 24
1673 1675 3 0.74 0.25 108
1676 1677 2 -0.52 -0.26 115
1678 1703 26 12.37 0.48 19
1704 1712 9 -2.86 -0.32 62
1713 1713 1 0.19 0.19 127
1714 1717 4 -1.39 -0.35 83
1718 1727 10 2.50 0.25 65
1728 1743 16 -6.76 -0.42 30
1744 1750 7 4.81 0.69 38
1751 1758 8 -8.24 -1.03 22
1759 1763 5 0.59 0.12 104
1764 1766 3 -0.79 -0.26 102
1767 1769 3 0.78 0.26 104
1770 1770 1 -0.01 -0.01 137
1771 1775 5 1.03 0.21 95
1776 1784 9 ~-4.65 -0.52 38
1785 1788 4 1.64 0.41 77
1789 1789 1 -0.11 -0.11 132
1790 1794 5 4.09 0.82 41
1795 1797 3 -1.03 -0.34 94
1798 1806 9 2,72 0.30 65
1807 1814 8 -2.42 -0.30 69
1815 1819 5 2.06 0.41 65
1820 1825 6 -4.61 -0.77 39
1826 1829 4 0.93 0.23 100
1830 1830 1 -0.35 -0.35 110
1831 1840 10 4.20 0.42 42
1841 1850 10 -6.59 —-0.66 25
1851 1856 6 3.03 0.50 51
1857 1860 4 -1.35 -0.34 86
1861 1862 2 0.24 0.12 124
1863 1866 4 -1.89 ~-0.47 69
1867 1870 4 1.97 0.49 65
1871 1884 14 -5.60 -0.40 38
1885 1894 10 5.22 0.52 30
1895 1905 11 -8.55 -0.78 14
1906 1924 19 11.23 0.59 16
1925 1925 1 -0.11 -0.11 134
1926 1927 2 0.16 0.08 130
1928 1930 3 -0.71 -0.24 110
1931 1931 1 0.01 0.01 139
1932 1936 5 -1.90 -0.38 72
1937 1946 10 3.92 0.39 49
1947 1977 31 -21.89 -0.71 8
1978 1988 11 7.03 0.64 22
1989 1991 3 -1.24 -0.41 86
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5 10 15 20 25
Duration (N, years) of Positive Events
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Duration (N, years) of Negative Events

Fig. 3. Empirical (solid line) and hypothesized (dashed line)
geometric cumulative density function (CDF) of duration for
positive and negative PDO episodes

Jenkins 1976), and the minimum value of the Akaike
information criterion (Akaike 1974), support the inde-
pendence assumption. The goodness-of-fit between
the magnitude series My,..., M, or My,..., M and
the exponential distribution (Fig. 4) was tested using
the Kolmogorov-Smirnov test (D'Agostino & Stephens
1986). The test results could not reject the null
hypothesis that both samples follow exponential dis-
tributions (both p-values > 0.3), Computing climato-
logical probabilities was deferred until we tested the
positive and negative magnitude series for significant
differences in their distributions, which was the last
step in fitting our model to the PDO series. To decide
whether the magnitude series follow a common or dif-
ferent exponential distribution is equivalent to testing
their Laplace distributed difference for symmetry. The
test for symmetry described in the previous section
assumes that we have 2 independent exponentially
distributed samples. We checked that assumption
using the Pearson, Spearman, and Kendall correlation
coefficients (Conover 1980}, which were not signifi-
cant (p-values > 0.1). The lack of dependence
between positive and negative magnitudes was also
supported by their scatterplot (Fig. 5). The symmetry
test yielded an S statistic for the PDO magnitudes of
0.52 with p-value of 0.48. Because the difference
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Fig. 4. Probability histogram and fitted exponential distribu-
tion for positive and negative magnitudes of PDO episodes

between PDO magnitudes can be modeled as a sym-
metric Laplace distribution (Fig. 6), the positive and
(absolute value of) negative magnitudes are modeled
by a common exponential distribution. An estimate of
the common mean magnitude is given by the average
of the mean positive (3.05) and negative (3.81 in
absolute value) magnitudes, equal to 3.43. As for
duration, the distributional models for magnitudes
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Fig. 5. Scatterplot of negative vs positive magnitude of PDO
episodes, ordered according to time
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Fig. 6. Probability histogram and fitted symmetric Laplace
distribution for the difference between positive and negative
magnitudes of PDO episodes

enable estimation of climatological probabilities re-
lated to the magnitude of PDO events. For instance,
the 1947-1977 event had the greatest magnitude
(21.89 in absolute value), and the chance of exceeding
such a value is minuscule (0.17 %). Finally, we could
estimate climatological probabilities of any size differ-
ence between 2 multi-annual PDO events. For exam-
ple, the chance that the difference between the mag-
nitudes of 2 events exceeds the observed difference
between the (absolute) magnitudes of the 19471977
and 1906-1924 events is rather small (2.2 %]).

An issue that arises at this point is whether the
results of our analysis are sensitive to the choice of
reference line. Indeed, our approach shares a known
shortcoming of other runs analyses of temporal data,
i.e. a single observation crossing the reference line
can turn a long episode into 3 shorter episodes.
Although we do not offer a remedy, we investigated
the following question: How different would our
models be if we used a mean or zero reference line?
We considered both cases and obtained the same
models, as those
detailed above for the median reference line. The
reason for this empirical consistency is perhaps more
fundamental than chance alone. Choosing a refer-
ence line, albeit somewhat arbitrary, is nevertheless
dictated by the nature of the process and the scien-
tific questions that need to be answered. Therefore,
suitable reference lines are likely to be close to one
another, as was the case for the PDO data (either 0 or
the mean 0.083 or the median 0.138). Since the statis-
tical methods we employed are fairly robust, our sto-
chastic analysis vielded consistent results for similar
reference lines.

It should also be emphasized that error affects any
observation and/or reconstruction of an environmen-
tal process. However, our focus is on stochastic mod-

with very similar parameters,

eling of what was actually observed/reconstructed.
We cannot know whether the true process consists of
a lot of short-lived episodes and frequent regime
changes instead of a few long episodes tainted by
noise. Our model is applicable to (and can be tested
on) both scenarios, as long as the regime duration is
compatible with the limit theory of random sums. If
the investigator so desires, s/he has the option to
smooth the data before applying the models pre-
sented here. Any smoothing or other manipulation of
the data will reflect the belief of the investigator and
may be dictated by the needs of the particular ques-
tion being addressed. We decided to minimize data
pre-processing, and let the models speak for them-
selves,

4. CONCLUSION

We have described an innovative and practical
approach to the analysis of regime shifts based on a
minimum set of parameters that fully describe multi-
annual events. By applying statistical methods for
random sums and their limits to duration and magni-
tude of climatic episodes, we provide a rigorous
approach to the estimation of climatological probabil-
ities, such as the likelihood of a regime exceeding
any given duration. These models enable us to quan-
tify the probability of occurrence and statistical sig-
nificance of multi-annual events, and they help us
decide whether 2 episodes are significantly different
from one another. Testing whether the distributional
properties of magnitude and duration for a time
series are different from those of another time series
can also be used to test for significant differences
between time series of the same parameter, such as
different PDO time series, either instrumental (Man-
tua et al. 1997) or reconstructed. The stochastic
framework described here can be applied to any time
series, including heavy-tailed processes, that has a
reference line and can be expressed as a number of
events of known duration and magnitude. Future
extensions of this work could include the relaxation
of independence between N and X; or the removal of
the assumption that the WLLN holds at all, which
happens when X; have an infinite mean. Further
work could also extend the model to the analysis of 2
or (possibly) more time series at once.
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Appendix 1. Mathematical supplement

Since the proof of convergence under the assumption of
the weak law of large numbers (WLLN}) is not easily avail-
able in the literature, we provide it below. Our results are
more gemneral than those mentioned without proof by
Brown (1990) for the special case of geometric convolution.

Lemma. Let X;, X,, ... be a sequence of random variables
satisfying a WLLN,

%ZX,—(I—)“ as n— oo (A1)
i=1
(where —5 stands for convergence in distribution).
Assume that (N,) is a sequence of integer-valued random

variables independent of the X|'s and such that as n — o

n

N, — « (in probability) and —5z (A2)

where Z is a non-negative random variable. Then,

Ny
%ZX,—‘[—)uZ as n— oo (A3)

i-1

Proof. First, we show that
N,
1 M

Vz X;—L 1 (in probability) (A4)
-1

that is for each & > 0 and each 1 > 0 there exists some inte-
ger k such that

|

Lete >0 and n > 0. By Eq. (A1), there exists an integer N,
such that

e
P,(}—I;ZX. “u

i=1

Niy

1
N—ZX,“H

noj-1

> a] <1 whenever n>k (A5)

>s)<g foralln > N, (A6)

Since N,—£—o0, for the above N, there exists an integer N,
such that for each n > N; we will have

PN, < Ny) <g (A7)

Let now k = max{N,, N;}. Then, for n > k, we will have

N N
1 & 1 &
Plim—2Xi—-ul>e| =P —¥Y X, - >¢, N, <N,

(NZ1 : ) [NZ ! °]

1
+P,(*2X,—]J.>8,NH>N0)

N” i=1

= I+l (A8)

Note that by Eq. (A7) we have

Nn
NLZX, —u>en, SNDJSP,(N,, §N0)<g (A9)

n =1

I:P,(

On the other hand, utilizing the independence of the Ny's
and the X/'s, we obtain

Ny
I = P,( 1 ZX,-—p >£,NH>N0)

N, 3

1%
(N—ZXI' —H

n j=1

1J
[TZXI' -u|>e N, :jJ
=

>€,Nn:1’]

P
J=No+1

P
J=Np+1

Il

1¢ . _
hy P,(—.ZXI- -u >£JH(Nn:J) <> I, =p<d
J=Ny+t =1 j=Ny+1 2

(A10)
where the above inequalities hold because of Eq. (A6). This
proves Eq. (A5). Next, by virtue of Egs. (A2) & (A4), as n — oo,

1& N, 1 &
=X == > Xi—25uZ (in probability) (A11)
g n N, 3

and the result has been proven.

Note that the above result holds when the Xj's are iid vari-
ables with finite mean y, although it does not require that
the X/'s be iid. For instance, the result holds if the Xj's form
a stationary sequence with autocovariance function con-
verging to zero, since such sequence satisfies the WLLN
(e.g. Brockwell & Davis 1991). Let us also note that the
condition of independence of the N,'s and the Xi's can be
relaxed for geometric sums if the strong law of large num-
bers holds (Brown 1990).

With regard to the rate of convergence, available theo-
rems use multiple ways of measuring closeness of 2 distri-
butions, and results are often difficult to use in practice.
Following Brown (1990), let X/'s be positive iid variables
with finite mean p; and finite second moment EX{ = p,,
and let N be a geometric random variable with mean 1/p
and independent of the X|'s. Then, the error bound can be
stated in terms of the distance between the cumulative

N
distribution functions of the random sum Y = z X, and
i=1
its limiting exponential distribution Z, as follows:

\P(YSt)—P(ZSt)IS(p/q)max{l+ = l,—‘%q}
2u7 9wy

where g=1-p.
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