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SUMMARY

The quality of data collected by air pollution monitoring networks is often a�ected by inaccuracies and
missing data problems, mainly due to breakdowns and/or biases of the measurement instruments. In this
paper we propose a statistical method to detect, as soon as possible, biases in the measurement devices, in
order to improve the quality of collected data on line. The technique is based on the joint use of stochastic
modelling and statistical process control algorithms. This methodology is applied to the mean hourly ozone
concentrations recorded from one monitoring site of the Bologna urban area network. We set up the
monitoring algorithm through Monte Carlo simulations in such a way to detect anomalies in the data
within a reasonable delay. The results show several out of control signals that may be caused by problems in
the measurement device. Copyright # 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the context of air pollution prediction and control, the data collected by ambient air quality
monitoring networks play an important role. Actually they allow one to pursue several purposes
which include: (a) the assessment of concentration levels and the compliance status with air
quality standards; (b) the determination of health and environmental impacts; and (c) the
selection and monitoring of emission abatement strategies. The correctness of such analyses and
air quality control policies depends heavily on the reliability of the collected data. Unfortunately
the quality of these data sets is a�ected by several problems; among the relevant ones seem to be
missing or invalid data and measurement inaccuracies. Missing and inaccurate data may result
mainly from instruments failure, sampler biases, calibration and maintenance problems; see
Davison and Hemphill (1987) and Batterman (1992) for a discussion on these points. As noted by
Batterman (1992), these problems may be critical in interpreting air quality data.

Despite their importance, few methods which address these problems exist and rarely are in
common use. In this paper we propose an on-line statistical procedure which can be used to
detect, as soon as possible, biases in the measurement devices, in order to improve the quality of
ambient network data. The methodology is based on the joint use of stochastic models and
statistical process control algorithms. A state space model is used to describe the dynamics of the
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air pollution concentration and a GLR (Generalized Likelihood Ratio; Lorden 1971) type
algorithm is employed to monitor the innovations obtained from the stochastic model.

Change detection algorithms have been well established in automated fault detection of
controlled dynamic systems which describe industrial processes. A non-conventional sphere
where these methodologies can be usefully employed is given by monitoring of environmental
pollution processes and, in particular, of the air pollution process.

In fact, in a geographic area, the pollutants emission system is made up of industrial emissions,
tra�c and domestic heating plants. Moreover, this system is not independent of the atmospheric
conditions, which in¯uence the pollutants' concentration. The determination of a stochastic
model for this complex system allows the `common-cause of variability' to be explained,
according to the de®nition given by Alwan and Roberts (1988). It is then possible to use
monitoring algorithms to detect anomalies in the pollutants, the so-called `special causes of
variability' in the terminology of Alwan and Roberts (1988), that may be caused by problems in
the measurement device. This procedure can be made fully automatic and routinely implemented
as a complementary tool of the usual periodic control procedures of the monitoring site.

In this work we illustrate an application of the methodology to mean hourly ozone (O3)
concentration data recorded from one monitoring site of the Bologna urban area network.

The choice of O3 data is motivated by the consideration that in Italy, as well as in other
European countries, the photochemical pollutants show an increasing trend in concentration,
often exceeding the warning limits, especially in summer. So it is interesting and important to
inspect this pollutant.

For the choice of an appropriate monitoring algorithm, a GLR type algorithm is preferred,
given the lack of a priori information about the change. Moreover, we propose a method to select
the parameters for the design of the GLR rule.

The paper is organized as follows. Section 2 introduces the main statistical tools useful for the
design of a monitoring algorithm in stochastic systems. Section 3 presents a brief description of
our data and the results on model identi®cation for the ozone concentration. A method to select
the parameters of the GLR algorithm, based on the joint use of Monte Carlo simulation and
theoretical results, is proposed and illustrated through Section 4. Empirical results and some
concluding remarks are reported in Section 5.

2. MONITORING ALGORITHMS IN DYNAMIC SYSTEMS

Our monitoring problem can be stated as the problem of detecting a change in the parameters of
a stochastic system. More precisely, let us consider a sequence {Yk} of observed random variables
with density py depending upon the parameter y. Before the unknown change time t0 , y is
constant and equal to y0 . After the change, y is equal to y1 . The problem is to detect the
occurrence of the change as soon as possible, given a ®xed rate of false alarms before t0 .

Statistical change detection algorithms have been well established in statistical process control:
the most popular of them, like Shewart, CUSUM and EWMA control charts can be found in
standard quality control textbooks, e.g. Montgomery (1997). However these algorithms, based
on the assumption of {Yk} being a sequence of independent random variables, result in poor
performances when the observations are autocorrelated. In this situation one possible general
approach for change detection consists of splitting the task into: (a) a generation of `residuals',
which are ideally close to zero when no change occurs, and signi®cantly di�erent from zero after
the change; and (b) a design of decision rules which solves the change detection problem as
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re¯ected by the residuals. Natural candidates for the residuals of a given stochastic process Yk are
the innovations de®ned by ek � Yk ÿ Ey�YkjYkÿ1; . . . ;Y1�.fekg is a zero mean uncorrelated
(independent if the process is Gaussian) sequence under the no change hypothesis. Therefore,
change detection algorithms designed for uncorrelated or independent observations can be used
over the innovations of a dependent sequence after suitable modi®cations.

Once the detection change problem is stated in this way, let us consider a particular case which
is relevant for our empirical application. Let us assume that the dynamics of an observations
sequence can be modelled by a linear time invariant stochastic system represented in state space
form as

Xk�1 � FXk � GUk �Wk;

Yk � HXk � JUk � Vk;
�1�

where X,U,Y, are the state, input and observation vectors, {Wk} and {Vk} are two independent
Gaussian white noises sequences with covariance matrices Q and R, respectively, F is the
state transition matrix, H the observation matrix, G and J the control matrices. Given the initial
state X0 � N�m0;P0�, the innovations sequence can be obtained through the Kalman ®lter
recursions as

ek � Yk ÿ Ey�YkjYkÿ1; . . . ;Y1� � Yk ÿ HXkjkÿ1 ÿ JUk; �2�

where Xk�1jk � F�I ÿ KkH� � JUk � FKkYk is the one-step ahead prediction of the state; Kk �
Pkjkÿ1H

T�Sk�ÿ1 is the Kalman gain; Sk � HPkjkÿ1H
T � Q is the estimated covariance matrix of

the innovations; Pk�1jk � FPkjkF
T � Q is the estimated covariance matrix of Xk�1jk; and Pkjk �

�I ÿ KkH�Pkjkÿ1 is the estimated covariance matrix of Xkjk. Under the no changes hypothesis,
{ek} is a Gaussian independent sequence of random variables with zero mean and covariance
matrix Sk .

Let us assume that a change occurs at an unknown time instant t0 . According to Basseville and
Nikiforov (1993) we distinguish between additive changes, i.e. changes in a signal or linear system
that result in changes only in the mean value of the observations, and non-additive changes,
where changes occur in the dynamics of the signal or system. For our purposes it is su�cient to
consider only additive changes. They are introduced in the state space model (1) in the following
way:

Xk�1 � FXk � GUk �Wk � GCx�k; t0�;
Yk � HXk � JUk � Vk � XCy�k; t0�;

�3�

where G and X are gain matrices which account for the change magnitude, whereas Cx and Cy

are vectors representing the dynamic pro®le of the assumed changes. Clearly, if k5 t0,
Cx � Cy � 0. The speci®cation of the gain matrices and change pro®les depends on the a priori
knowledge on the change. It is worth noting that GCx in the transition equation and XCy in the
measurement equation represent models for detecting biases in the actuators and in the sensors,
respectively. For example, of Cx � 0, X is a scalar and Cy is a vector, the components of which
are all zero except for the jth component, which equals one for k5 t0, then the model (3)
corresponds to the onset of a bias in the jth component of Y, namely the jth sensor.
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As we explained previously, the change detection algorithm is based upon the innovations.
Therefore, we ®rst investigate the behavior of the innovations sequence which results from
the speci®ed model of change. Since the peculiarity of our application consists of detecting
changes in the air pollutant measurement device, it is su�cient to consider a particular form of
(3), given by

Xk�1 � FXk � GUk �Wk;

Yk � HXk � JUk � Vk � vIk5 t0
;

�4�

where Yk is scalar, v is the unknown change magnitude and Ik5 t0
is the indicator function

representing a step change. It can be shown that the innovation of this model is of the form

ek � eok � vr*�k; t0�; �5�

where eok refers to the innovation obtained from (4) without the change and r*�k; t0� is the
dynamic pro®le of the change. A closed-form expression for r*, assuming the steady-state
behavior of the Kalman ®lter, is given by

r*�k; t0� � Ik5 t0
ÿ

Xkÿt0ÿ1
i�0

HF
i
*FKIkÿiÿ15 t0

; �6�

where F
*
� F�I ÿ KH� and K is the steady-state Kalman gain. In summary, {ek} is a Gaussian

white noise sequence when no change occurs and a Gaussian independent sequence with mean
vr*�k; t0� after the change occurrence. Therefore, the detection of an additive change in the
observations is equivalent to solving the following hypothesis testing problem on the innovations
of the model (4):

H0 : fekg � N�0;Sk� H1 : fekg � N�vr*�k; t0�;Sk�: �7�

Many on-line change detection algorithms are based on the log-likelihood ratio. In the case of an
unknown parameter after change, it is better to employ the GLR as a generalization of the
CUSUM algorithm for this situation. The interest in this algorithm is justi®ed by its good
properties and by the possibility of adapting it to more complex situations, like the ones depicted
by (3). The decision rule of the GLR algorithm, adapted to the situation described by model (4),
specializes to

gk � max
14 j4 k

sup
v

S
k
j 5 h; �8�

where Sk
j is the log-likelihood ratio of the innovations from ej to ek and h is a conveniently chosen

threshold. Given the Gaussianity of the innovations, an explicit expression for the supv S
k
j is

sup
v

S
k
j � v̂k�j�

Xk
i�j

r*�i; j�Sÿ1i ei

 !
ÿ v̂2k�j�

2

Xk
i�j

r*2�i; j�Sÿ1i

 !
; �9�
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where Si is the variance of ei and v̂k�j� is the maximum likelihood estimate of the change
magnitude at time k, assuming a change at time j. An expression for v̂k�j� is given by

v̂k�j� �

Xk
i�j

r*�i; j�Sÿ1i ei

Xk
i�j

r*2�i; j�Sÿ1i

: �10�

The other unknown of the procedure is the change time t0 . It can be estimated with the aid of
maximum likelihood estimation, which leads to an exhaustive search of this maximum for all
possible past (i.e. before k) time instants. In order not to increase linearly the size of this search, t0
is estimated by looking for the maximum value of S inside a ®nite window of ®xed size M:

t̂0k�j� � arg max
kÿM�14 j4 k

S
k
j : �11�

This is referred to by Lai (1995) as `window-limited GLR schemes', and the underlying intuitive
idea is that older changes have already been detected. The change magnitude estimate is ®nally

v̂k � v̂k�t0k� �12�

for k � ta, where ta is the alarm time.
In summary, the algorithm consists of the following steps: (a) detection of the change; (b)

estimation of the change time and magnitude; and (c) updating the initial state and error
covariance estimates for the Kalman ®lter using the change magnitude estimate. The ®rst two
steps are basic in GLRmethodology; as for the third, the reason for updating the initial estimates
is to give the Kalman ®lter more appropriate initial values after the detection of a change than the
initial values given at the beginning of processing. For an operative solution to this problem, see
Willsky and Jones (1976).

The working of the GLR algorithm requires values for the threshold h and the window size M
to be chosen. As pointed out by Lai (1995), general criteria for satisfactory choices of h andM are
yet an open problem. A solution, suited to our case study, will be proposed in Section 4.

3. DATA AND MODEL

The data considered in this study consist of the mean hourly average of the O3 and nitrogen
dioxide (NO2) concentrations and the hourly average temperature values (T). The data are
measured at one of the sites which make up the monitoring network within the city of Bologna
(Giardini Margherita). The sample was provided by the Environmental Control O�ce of the
Municipality of Bologna from June 1993 to December 1996. The choice of the hourly frequency
is motivated by the following: (a) the peak hourly ozone concentration is the value of major
interest for comparison with o�cial air pollution standards; and (b) the on-line characteristic of
the monitoring algorithm is more e�ective with high-frequency data in order to detect the onset
of possible anomalies with more timeliness.

Figures 1±3 contain the plots of O3 , NO2 and T values respectively. It is clear from the ®gures
that there are a number of missing values in the data. In particular, the percentage signi®cant of
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missing hourly data are: 13.35% for O3 ; 12
.92% for NO2; and 1.03% for T. Moreover, from the

analysis of the data we have found the behavior of ozone concentrations for the months
from April to October di�erent when compared with the other months of the year. We therefore
have split the data into these two seasons and performed the subsequent analysis mainly on the
`ozone season', i.e. the period of more interest from a monitoring point of view, because it is
associated with higher, and thus more dangerous, values of the concentrations.

To identify a satisfactory model for the ozone data we have chosen as input variables the
T values and the NO2 hourly concentrations, which are important predictors of the ozone levels,
as checked through cross-correlation analysis. Other potentially useful input variables, like wind
speed or NO concentration, are not considered in this study because the related measurements
are not available and/or reliable. Next, we have selected as a su�ciently `regular' period for ®tting
the model the one from 9 July 1996 to 5 August 1996, with N � 660 observations.

Figure 1. O3 hourly average concentrations (mg/m3); period 6/93±12/96

Figure 2. NO2 hourly average concentrations (mg/m3); period 6/93±12/96
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The model ®tting has been performed through the maximum likelihood approach, using the
prediction error decomposition form of the likelihood function. Through a sequence of steps,
which iteratively use auto- and cross-correlation analysis, maximum likelihood estimation,
residuals analysis, and AIC evaluation, the most satisfactory result of the ®tting procedure has
led to the following model

Yt � �0 0 . . . . . . 1�Xt � Vt �13�

Xt�1 �

0 1 0 . . . . . . 0

0 0 1 0 . . . 0

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

0 0 . . . . . . 0 1

f3 0 0 . . . f2 f1

2666666664

3777777775
Xt �

0 0 . . .

0 0 . . .

. . . . . . . . .

. . . . . . . . .

g1 g2 g3

26666664

37777775
Zt

Nt

Ntÿ1

264
375 �Wt; �14�

where Yt is the log-ozone concentration at time t, Xt is the (24� 1) state vector, Zt the log-
temperature, Nt the log-NO2 hourly concentration, Vt a scalar Gaussian white noise with
variance Rt � R, Wt � �0 0 . . . . . . et�0 a (24� 1) Gaussian white noise vector with covariance
matrix

Q �

0 0 0 . . . . . . 0
0 0 0 . . . . . . 0

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .
0 0 . . . . . . 0 0
0 0 0 . . . 0 s2w

26666664

37777775:

The parameter estimates with the relative standard errors are given in Table I. The estimated
variance of the innovations is 0.0212, while estimates of the remaining variances, i.e. R and sw ,

Figure 3. T hourly average values (8C); period 6/93±12/96

Copyright # 2000 John Wiley & Sons, Ltd. Environmetrics 2000; 11: 125±137

MONITORING ALGORITHMS FOR AIR QUALITY DATA 131



are 0.0012 and 0.0185 respectively. The observed versus ®tted sequence is displayed in Figure 4,
with a correlation coe�cient of 0.914.

4. PARAMETERS CHOICE FOR THE GLR ALGORITHM

Before applying the GLR algorithm to the innovations of the model previously identi®ed, we
have to specify the threshold h and the window size M. The choice of h may be critical, in the
sense that the number of resulting alarms may be sensitive to this choice. Moreover, h depends
uponM: actually it should be chosen in such a way that detecting a selected shift with an average
delay not greater than M is possible. A general criterion for this choice of parameters could be
based on the ARL function (Montgomery 1997), which de®nes, under the no change hypothesis,
the mean time between false alarms and the mean delay for detection, once the change has
occurred. In statistical process control the generally adopted rule consists of minimizing the mean
delay for detection subject to the constraint of a ®xed mean time between false alarms. Unfort-
unately, the explicit computation of the ARL function is not analytically tractable in our situa-
tion and the optimal choice of h and M is still an open problem, as emphasized by Lai (1995).

To solve this problem we propose the following procedure based on the joint use of Monte
Carlo simulations and some known theoretical results. For the window we set the size atM � 24.
This seems a reasonable choice with hourly data allowing the detection of possible anomalies
within 1 day. This means that a failure detection with a delay greater than 24 hours should not be

Figure 4. Real vs ®tted values relative to the model (13)±(14)

Table I. Estimation results relative to the model (13)±(14)

Parameter Estimate Standard error t-value prob4 j t j
f1 1.1102 0.0321 34.624 0.0000
f2 ÿ0.3662 0.0297 ÿ12.324 0.0000
f3 0.0149 0.0070 2.146 0.0159
g1 0.3037 0.0294 10.339 0.0000
g2 ÿ0.0386 0.0159 ÿ2.420 0.0078
g3 0.0636 0.0162 3.934 0.0000
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of any usefulness for timely air pollution control policies. Conditionally on M � 24, we decided
to choose the optimal value of h by combining di�erent information.

First, a simulation experiment was performed. Employing the model previously identi®ed, the
change situations were simulated, for known change instants t0 , through 1000 replications of the
experiment for several values of h and d, where d is a normalized version of v (see equation (4)). In
this way it is possible to determine the estimated mean detection delay time M�ta ÿ t̂0�, the real
mean detection delay time M�ta ÿ t0�, and the distribution of vÃ and tÃ0 : where vÃ and tÃ0 are the
maximum likelihood estimates of v and t0 . Some results are reported in Table II, where for
di�erent combinations of h and d, the e�ective mean delay of detection is obtained.

Further, it is possible to calculate the probability PD�d; t0� of the correct detection of a change
of magnitude d at time t0 and in this way we can determine the combination of detection delay
time, kÿ t0 , and magnitude of the change, d, which are detected with a ®xed probability value for
a given threshold. Following Basseville and Nikiforov (1993), under the change hypothesis the
log-likelihood ratio S is a non-central w2 variable with one degree of freedom and non-centrality
parameter Jkt0

,

L�Sk
t0
� � w02�1; Jkt0 �; �15�

where

Jkt0
�
Xk
i�t0

dr*T�i; t0�Sÿ1i dr*�i; t0� �16�

is the Kullback divergence between the two joint distributions of the innovation sequence
�ei�i�j;...;k. In Table III are reported the detection delay time for which a change of magnitude d
will be detected with PD�d; t0�4 0�8, where PD�d; t0� is evaluated according to (15).

Finally, adapting to our situation some theoretical work by Lai (1995), one can obtain, at least
asymptotically, the order of magnitude of changes which are detected ine�ciently by the
algorithm. More precisely, Lai (1995) is able to show that a window-limited GLR scheme for
detecting a change in the mean of a normally distributed variable with known variance is
asymptotically optimal if one chooses the window size

M � g

Table II. Simulation results for the choice of h; d � normalized change; m.d. � e�ective mean delay

j d j h

11
m.d.

12
m.d.

13
m.d.

14
m.d.

15
m.d.

16
m.d.

17
m.d.

18
m.d.

19
m.d.

3.0 0 0 0 0 0 0 0 0 0
2.5 0 0 0 0 1 0 1 1 1
2.0 1 1 1 1 3 2 2 3 3
1.5 3 3 4 5 5 6 6 8 8
1 7 8 9 11 12 14 16 18 20
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and the threshold

h � log g � 1
2 log�log g� � logK � o�1�;

where g is the desired ARL under the no change hypothesis. Here K is

K � pÿ1=2
Z 1
0

xc2�x� dx; �17�

where

c�x� � 2x
ÿ2

exp ÿ2
X1
i�1

n
ÿ1F�ÿx

��������
n=2

p
�

( )

for x4 0, and F is the distribution function of the standard normal distribution. However, the
choice M � g for the window size still requires a heavy computational burden, since g is usually
large. Lai suggests trying values of M of the order of a constant times log g, i.e.

M � a log g;

but this window size is quite ine�cient for detecting changes that are smaller than
��������
2=a
p

.
These arguments can be employed in our situation, where it is required that a change in the

mean of a Gaussian innovation sequence is detected within a ®xed time interval, given by
M � 24, for the reason previously given. Comparing these quantities (Table IV) with the values
of the standardized changes

y�k; t0� � dr*�k; t0�Sÿ1=2;

it is possible to ®nd for each combination of kÿ t0 , d and h values of y�k; t0� for which the
algorithm has poor performances with ®xed M � 24. Considering that in our situation y�k; t0�
assumes steady-state values after a few lags, some of these values are reported in Table V.

The proposed procedure for choosing the threshold h can be summarized as follows: (a) the
determination of h through Monte Carlo simulations; (b) the detection probability of a change

Table III. Detection delay time for which PD�d; t0�4 0�8
d

1 1.5 2 2.5 3

h � 11 15 1 1 1 1
h � 12 16 1 1 1 1
h � 13 18 1 1 1 1
h � 14 19 3 1 1 1
h � 15 21 4 1 1 1
h � 16 23 4 1 1 1
h � 17 25 5 1 1 1
h � 18 27 6 1 1 1
h � 19 29 7 1 1 1
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for each combination of detection delay and threshold; and (c) the combination of change
magnitude and detection delay for which the algorithm has poor performances.

It is worth noting that each step of our procedure gives di�erent and complementary
information for a reasonable and operative choice of the parameters for the change detection
rule. This combination of tools is important because Lai (1995) gives asymptotic results, but our
case is of a ®nite context. This implies that the results are approximated with a consequent degree
of uncertainty. However, employing the simulation results and the probability evaluation when
the three methods are in agreement we are more con®dent with our conclusion.

For example, with h � 19 a change of magnitude d � 1 is not detected in an e�cient way
(Tables IV and V); the detection delay time, PD�d; t0�4 0�8 is 29 and the estimated mean
detection delay is about 20 (Table II), a value of the same order as the window size. These results
suggest that h � 19, withM � 24, is not a good choice for d � 1. In general it can be noted that,
with the values of the threshold considered, shifts of order d � 1 are detected with some
di�culty. A shift d � 1.5, with h � 19, is in the `e�cient zone' of detection (Tables IV and V), the
detection delay time for which PD�d; t0�4 0�8 is 7 and the estimated mean detection delay is
about 8, so we can assert that a change of order d � 1.5 is detected e�ciently.

For the application, we focus our attention on shifts of order d � 1.5. This is because to detect
a change smaller than d � 1.5, withM � 24, a threshold value less than 11 is necessary, but as we
checked through preliminary applications, these values lead to a high number of likely false
alarms.

For our purposes we chose h � 15. In this case, for d � 1.5, the mean detection delay is about
5; at delay 4 the shift is detected with probability 40.8 and Tables IV and V show that the
variation d � 1.5 is detected e�ciently.

For the performances of the algorithm under the no change hypothesis, remembering that
h� log g, we can obtain an approximation of the ARL function. In our case, with h � 15, we get
g� 3� 106.

Table IV. a and
��������
2=a
p

values with M � 24

h a
��������
2=a
p

11 2.1818 0.957427
12 2 1
13 1.846154 1.040833
14 1.714286 1.080123
15 1.6 1.118034
16 1.5 1.154701
17 1.411765 1.190238
18 1.333333 1.224745
19 1.263158 1.258306

Table V. y(k, t0) for some change values

j d j 1 1.5 2 2.5 3

y(k, t0) 0.851237 1.276856 1.702475 2.128093 2.553712
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5. APPLICATION AND CONCLUDING REMARKS

With M � 24 for the lag window and h � 15 for the threshold the GLR algorithm is applied to
our ozone data starting in early August 1996 and stopping at the end of the month. Before
illustrating the results it is important to explain the management of the monitoring, because
missing data makes the continuous functioning of the algorithm impossible. Therefore, we adopt
the following strategy. When only a few data (1 or 2) are missing, multi-step ahead predictions of
the state are obtained on the basis of the available information, while innovations and values of
the statistic gk are not calculated. When all information is again available, the last prediction is
updated and the statistic gk is calculated, starting from the next observation, thus avoiding the
errors due to multi-step ahead predictions which lead to an increase in the false alarm rate.

Figure 5, shows the behavior of the decision statistics gk , while in Figure 6, alarms and
estimation failure times are plotted directly from the observed series data. Looking at the ®gures,

Figure 5. Decision statistics for August 1996

Figure 6. Time series plot of log O3 for August 1996; time alarm � circle, estimated change time � square
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the algorithm seems to show a good ability to promptly signal alarms, probably due to the onset
of some anomalies in the measurement instruments, given that signals are often followed by
missing data. Of the six alarms detected by the algorithm in the month, four are followed by a set
of missing data. Moreover, it can be noted that alarm times and estimated change times are the
same for ®ve alarms, and only in one situation is a small delay found. This shows the e�ciency of
the algorithm in detecting anomalies within the window size M.

Tentative conclusions based on previous results have to be taken with some caution. Actually
we are simulating ex-post the on-line characteristics of the algorithm, so we cannot control
directly the situation arising due to the alarm signals.

Keeping this caution in mind, we can conclude that the on-line implementation of a
monitoring algorithm of the kind presented in this paper could lead to further improvements in
the maintenance of air pollution monitoring sites if routinely implemented as a complementary
tool to the usual periodic control procedures.
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