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Abstract

In this paper the problem of change-point detection for the case of composite hypotheses is consid-
ered. We assume that the distribution functions of observations before and after an unknown change-
point belong to some parametric family. The true value of the parameter of this family is unknown
but belongs to two disjoint sets for observations before and after the change-point, respectively. A
new criterion for the quality of change-point detection is introduced. Modifications of generalized
CUSUM and GRSh (Girshick–Rubin–Shiryaev) methods are considered and their characteristics are
analyzed. Comparing these characteristics with an a priori boundary for the quality of change-point
detection we establish asymptotic optimality of these methods when the family of distributions before
the change-point consists of one element.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The mathematical formulation of the change-point problem as a certain extremal problem
was first considered in the report of Kolmogorov and Shiryaev at the 6th All-Union Confer-
ence on probability and mathematical statistics (Vilnius, 1960; see the reference comment
in Shiryaev (1976)). The book ofShiryaev (1976)contains solutions of this problem both
for discrete and continuous time in the Bayesian and extremal formulations for the case of
the a priori known density function (d.f.) of a change-point. Earlier in works ofPage (1954)
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and Girshik and Rubin (1952)certain heuristical (for that time) methods for solving sequen-
tial change-point problems were proposed.Lorden (1971)found an asymptotically optimal
method of sequential change-point detection which minimizes an average delay time in
detection given an upper boundary for the average time before a “false alarm” without a
priori assumptions about the d.f. of a change-point.Pollak (1985)proved that the method of
Girshick and Rubin can be obtained as a certain limit from the method proposed by Shiryaev.
He also demonstrated that this method is asymptotically optimal in the sense of Lorden’s
criterion.Moustakides (1986)proved that Page’s CUSUM procedure is strictly optimal (not
only asymptotically) in Lorden’s formulation of sequential change-point detection problem.
For continuous time this result was recently obtained byShiryaev (1996).

Lai (1995, 2000)andLai and Shan (1999)considered the change-point problem in the
more general situation of dependent random variables. InLai (1995)it was shown that the
Neyman–Pearson type procedure with the “moving window” of observations is asymptoti-
cally optimal. InLai and Shan (1999)different boundaries for the “false alarm” probability
were introduced instead of upper boundaries for the average time before the “false alarm”
and the asymptotic optimality of Page’s CUSUM method was proved.Lai (1998, 2000)
developed information-theoretic bounds for sequential multihypothesis testing and fault
detection in stochastic systems.

Different modifications and generalizations of the CUSUM method can be found in
Basseville and Nikiforov (1993)andNikiforov (1995).

The case of composite hypotheses for the problem of sequential change-point detection
is the most interesting for applications.Siegmund and Venkatraman (1995)considered a
special variant of this problem when the mathematical expectation of observed Gaussian
random variables changes from zero to� or−�. For this problem, the asymptotic optimality
in Lorden’s sense of the generalized likelihood ratio statistic was established. The general
form of this statistic can be found inLai (2001). The detailed review of the literature on
this topic can be also found there.

To the best of our knowledge, the sequential change-point detection problem in the
general context of composite hypotheses, when the d.f. of observations not onlyafter the
change-point but alsobeforeit is unknown and belongs to a certain family of distributions,
was not considered in the literature. However, this problem arises in many applications, and
in particular, in change-point detection problems for dynamical systems. In our paper, we
consider this general situation of composite hypotheses.

In the sequel we introduce and analyze anew criterionof effectiveness of sequential
change-point detection which is different from all known in literature. This criterion is
based upon the a priori inequality proved byBrodsky and Darkhovsky (1990)(see also
Brodsky and Darkhovsky, 2000). In our opinion, this criterion corresponds very well to the
intuitive requirements of effectiveness of sequential change-point detection. In this respect
it is no worse than other commonly used criteria in sequential change-point problems. At
the same time, this criterion enables us to find asymptotically optimal methods of change-
point detection in a general enough situation via the a priori low boundary analogous to the
Rao–Cramer boundary in estimation problems.

In this paper, we have two major objectives:
(1) to propose a new criterion of quality for sequential change-point detection

methods.
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(2) To consider the general change-point detection problem with a change of one composite
hypothesis to another composite hypothesis. It seems to us that this statement of change-
point detection problem was not fully considered in the literature. We also think that the
methodology of our approach based upon a priori inequalities in sequential change-point
problems is ideologically close toLai (1998, 2000).

In Section 2, we explain our approach to the analysis of effectiveness of change-point
detection methods and formulate the problem for composite hypotheses. In Section 3 mod-
ifications of the generalized CUSUM and Girshick–Rubin–Shiryaev (GRSh) methods are
considered and a priori estimates of their quality with respect to (w.r.t.) a new criterion are
established. This is the main result of our paper. From this result we conclude that the gener-
alized CUSUM and GRSh methods areasymptotically optimalin the case when the family
of distributionsbeforea change-point consists of one element. The a priori estimate of the
quality of change-point detection enables us to consider an effective detection procedure
in the general situation for a stationary regime of data collection. In Section 4, we give the
proof of the main result, in Section 5 some experimental results are presented.

2. A priori estimate for the quality of change-point detection. Formulation of the
problem

First, let us introduce necessary notations and formulate main assumptions. Let� =
(�0, �1), � ∈ �, �0 ∈ �0, �1 ∈ �1, where� is a certain parametric set which belongs to
some open setU in the finite dimensional space,�=�0 ∪�1, �0 ∩�1 =∅. We observe a
sequence of independent random vectors{�k}∞k=1 with the d.f. w.r.t. some�-finite measure�
equal tof (x, �0), �0 ∈ �0 before an unknown change-point, andf (x, �1), �1 ∈ �1—after
this change-point. The d.f.f is known and defined for all parameter values fromU. In what
follows we denote byPm,�(Em,�) the measure (mathematical expectation) corresponding
to a sequence{�k}∞k=1 with the change-point at the instantm and the fixed value of the
parameter� = (�0, �1) (so the density function of observations�n is equal tof (x, �0) if
n�m andf (x, �1) if n > m). SymbolsP∞,�(E∞,�) correspond to an observed sequence
without change-points.

We assume that the following conditions are satisfied:
2.1.� is a compact set;
2.2.�{x : f (x, �1) �= f (x, �2)} > 0 if �1 �= �2;
2.3. For any� ∈ �, the value

I (�)
def=

∫
ln

f (x, �1)

f (x, �0)
f (x, �1)�(dx),

is defined and inf�∈� I (�) > 0;
2.4. For any� ∈ �, �∗ ∈ � P∞,�∗ -distribution of the random variable�(�) = ln

(f (·, �1)/f (·, �0)) satisfies the uniform (w.r. t.� ∈ �) Cramer condition

sup
�∈�

E∞,�∗ exp{t�(�)} < ∞ for |t | < H(�∗),

where inf�∗∈�H(�∗) > 0,
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2.5. For any�∗
0 ∈ � the function

�(t, �, �∗
0)

def= ln
∫ (

f (x, �1)

f (x, �0)

)t

f (x, �∗
0)�(dx),

has only two zeros: 0 andt∗(�, �∗
0) > 0 and inf�∈� t∗(�, �∗

0) > 0.
Supposea is a certain change-point detection method andda(n) is its decision function

such thatda(n) = 1(da(n) = 0) corresponds to the decision about the presence (absence)

of a change at the instantn, 	a def= min{n : da(n) = 1} is the stopping time w.r.t. the natural
flow of �-algebras generated by observations.

Brodsky and Darkhovsky (2000)showed that all known methods of change-point de-
tection contain a certain “large parameter”N such that the normalized byN delay time in
change-point detection tends to some deterministic limit a.s. asN → ∞ and the “false
alarm” probability tends exponentially to zero asN → ∞. Taking this into account, in
what follows we add the indexN to the valuesda(n) and	a . In Section 3, we give precise
definitions of the large parameterN and the decision functionsda

N(n) for the CUSUM and
GRSh methods.

Denote the probability of the error decision by


a
N(�)

def= sup
n
P∞,�{da

N(n) = 1}.

For any fixed value of�, a method of detectiona and the large parameterN, let us consider
the following value:

Ka
N(�, m) = Em,�(	

a
N − m)+

| ln 
a
N(�)| .

Brodsky and Darkhovsky (2000)showed thatfor all known change-point detection meth-
ods, there exists the following limit not depending onm

lim
N→∞ Ka

N(�, m)
def= Ka(�) (2.1)

and for anyknownmethod of detectiona the following a priori inequality takes place

Ka(�)�I−1(�). (2.2)

Brodsky and Darkhovsky (2000)proved that (2.2) follows from the fact that for anym
the value(	a

N − m)+/N tendsPm,�-a.s. asN → ∞ to a certain deterministic limit (not
depending onm), and the value
a

N(�) tends to zero exponentially asN → ∞. Moreover,
Brodsky and Darkhovsky (2000)proved that inequality (2.2) holds (for all knownmethods)
in the general situation of dependent observations.

From inequality (2.2) it follows that the natural characteristic of quality for any method
of change-point detectiona (for anyfixed�) can be represented by the valueKa(�). The
quality criterion of change-point detection then consists in minimization of this value. The
sense of this criterion is as follows. It is easy to conclude (see alsoDarkhovsky and Brodsky,
1987) that the average time before a “false alarm”E∞,�	

a
N has the asymptotic order (as

N → ∞) of {
a
N(�)}−1. Therefore, the characteristicKa(�) represents the limit ratio (in
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an appropriate scale) of the average delay time in change-point detection to the average
time before a “false alarm”. Evidently, this ratio is of the main interest for any change-point
detection problem and we should try to make it as small as possible. A priori low estimate
(2.2) for this characteristic enables us to call a methoda∗ asymptotically optimal(for a
given�) if the strict equality is attained for this method in inequality (2.2). This situation is
essentially the same as in Rao–Cramer inequality which provides the low boundary for the
quality of any estimate of an unknown parameter.

In our opinion, this approach to the definition of an optimal method of change-point
detection strictly corresponds to the practical sense of this problem. Moreover, in many
cases it is even more convenient than conventional definitions of change-point detection
optimality criteria when a method is found which minimizes the average delay time in
detection given an upper boundary for the average time before a “false alarm”.

For new methods of detection which we consider in this paper, it is a priori unknown
whether the limit in (2.1) exists or not. However, for any method of change-point detection
bwith the large parameterN, we can always consider the value

lim sup
N→∞

Kb
N(�, m)

def= K̄
b
(�, m).

We will show later that

K̄
b
(�, m)�I−1(�) (2.3)

for any method of detection with a large parameter, and therefore the valuēK
b
(�, m) can

represent the qualitative characteristic of change-point detection forany such methodof
detection.

Now we can formulate our problem: we wish to find such a method of change-point
detection for which inequality (2.3) turns into a strict equality for any (unknown!) value of
the parameter�.

3. Main result

In the sequel we consider methods based upon two classic statistics: Page’s cumulative
sums (CUSUM) and the quasi–Bayesian statistic of Girshick–Rubin–Shiryaev (GRSh).

Let us recall these stopping rules for any fixed value of�. Define

Rn(�)
def=

n∑
k=1

n∏
i=k

{
f (xi, �1)

f (xi, �0)

}
, Ln(�)

def= max
1�k �n

n∑
i=k

ln
f (xi, �1)

f (xi, �0)
.

Then the CUSUM rule takes the form

	CS(�) = inf {n�0 : Ln(�)�CCS}
and the GRSh rule is

	GRSh(�)
def={n : Rn(�)�CGRSh},

whereCCS, CGRShare certain boundaries (thresholds of detection).
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Brodsky and Darkhovsky (2000)demonstrated that the large parameterNof the CUSUM
method can be chosen asN =CCS and for the GRSh method asN = ln CGRSh, and both of
these methods are asymptotically optimal and asymptotically equivalent to each other, i.e.
(for any fixed�)

KCS(�) = KGRSh(�) = I−1(�). (3.1)

Let �p ⊂ � be a fixedfinite subsetof #� = p. Let us consider the following stopping
times

T ACS,p def= min

{
n : max

�∈�p
Ln(�)�CCS

}
,

T AGRSh,p def= min

{
n : max

�∈�p
Rn(�)�CGRSh

}
(3.2)

and let us further denote methods of detection based upon these stopping times as(ACS, p)

and(AGRSh, p), respectively.
The large parameterN of the method(ACS, p) is equal toCCS and for the method

(AGRSh, p) N = ln CGRSh. The valuesdACS,p
N (n), d

AGRSh,p
N (n), 
ACS,p

N (�), 
AGRSh,p
N (�)

are defined as usual for these methods.
The quality characteristics of the methods(ACS, p) and(AGRSh, p) areK̄

ACS,p
(�, m)

andK̄
AGRSh,p

(�, m), respectively.
Now consider a sequence of expanding finite subsets�p of the set� with an increas-

ing numberp of elements and such that each�p is a finite 1/p-net for � asp → ∞.
This is possible because of a compactness of set�. Then a sequence of stopping times
T ACS,p, T AGRSh,p is monotonously decreasing and therefore for any� there exist the
limits

T ACS def= lim
p→∞ T ACS,p,

T AGRShdef= lim
p→∞ T AGRSh,p.

The decision ruleTACS is calledthe adaptive CUSUM ruleand the ruleTAGRSh—the adap-
tive GRSh rule. We use the term “adaptive”, because (as we show it later) these decision
rules are asymptotically optimal for any (unknown!) value of the parameter�.

Methods of detection based upon these rules will be calledthe adaptive CUSUMmethod
(ACS) andthe adaptive GRSh method(AGRSh).

Since the adaptive CUSUM and GRSh methods are introduced by means of the mono-
tonous limit procedure using growing numbers of the finite 1/p-net, it is natural to estimate
their quality by the following characteristics:

K̄
ACS

(�, m)
def= lim sup

p→∞
K̄

ACS,p
(�, m),

K̄
AGRSh

(�, m)
def= lim sup

p→∞
K̄

AGRSh,p
(�, m).
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In the sequel we denote by�∗ = (�∗
0, �

∗
1) ∈ � a true (unknown) parametric point in the

change-point problem.
Our main result in this paper is the following

Theorem 3.1. Suppose conditions(2.1)–(2.5)are satisfied for any value of the parameter
�∗ ∈ �. Then for the adaptive CUSUM and GRSh methods the following estimates hold
true:

I−1(�∗)�K̄
ACS

(�∗, m)�I−1(�∗) 1

inf
�∈�

t∗(�, �∗
0)

,

I−1(�∗)�K̄
AGRSh

(�∗, m)�I−1(�∗) 1

inf
�∈�

t∗(�, �∗
0)

(3.3)

Corollary 3.1. Suppose the set�0 consists of a uniquepoint�
∗
0.Then theadaptiveCUSUM

and GRSh methods are asymptotically optimal.

Proof. By its definition, the functiont∗(�, �∗
0) depends only from the component�∗

0 of the
pair�∗ = (�∗

0, �
∗
1). That means if�0 = {�∗

0} then

t∗(·) = t∗(�∗
0, �1, �

∗
0).

So in order to determine the pointt∗, it is necessary to find the roots of the equation

ln
∫ (

f (x, �1)

f (x, �∗
0)

)t

f (x, �∗
0)�(dx) = 0. (3.4)

But (taking into account assumption 2.2) for 0< t < 1 by virtue of Hölder’s inequality,

ln

(∫
f t (x, �1)f

1−t (x, �∗
0)�(dx)

)

<

(
t ln

∫
f (x, �1)�(dx) + (1 − t) ln

∫
f (x, �∗

0)�(dx)

)
= 0

and fort > 1 for anys < t by virtue of Lyapunov inequality(∫
f t (x, �1)f

1−t (x, �∗
0)�(dx)

)1/t

>

(∫
f s(x, �1)f

1−s(x, �∗
0)�(dx)

)1/s

.

Put heres = 1 we obtain

ln

(∫
(f t (x, �1)f

1−t (x, �∗
0))�(dx)

)1/t

> 0.

Therefore, a unique non-zero root of Eq. (3.4) is equal to 1, i.e.

t∗(�∗
0, �1, �

∗
0) ≡ 1. (3.5)

Now the asymptotic optimality follows from (3.5) and (3.3).�
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If we suppose that the densityf (x, �) is smooth enough w.r.t. the parameter�, then the
function t∗(·, �∗) is continuous. In this case if the diameter of the set�0 is small enough,
then the right-hand side of (3.3) is also small and the considered stopping rules are close
to the asymptotically optimal by virtue of Corollary 3.1. Hence we conclude that in rules
(3.2) it is expedient to take the maximum by�0 on the set

�0(n)
def={�0 ∈ �0 :‖ �0 − �̂0(n) ‖ �3

√
Sp(Dn)}, (3.6)

where�̂0(n) is any asymptotically normal estimate of the true parameter�∗
0 by the firstn

observations andDn is the covariance matrix of this estimate. In other words, we need to
use the following stopping rule for the CUSUM

	̃ACS = inf

{
n�0 : sup

�0∈�0(n)

sup
�1∈�1

Ln(�)�CCS

}
(3.7)

and the analogous rule for the GRSh method.
In fact, if we consider the quasi-stationary process of data collection when any change-

point is preceded by a long stationary period sometimes interrupted by “false alarms”, then
a true parametric point will be covered by the set�0(n) with the probability close to 1, and
therefore such modified stopping rules will be close to the asymptotically optimal rule.

4. Proofs

We limit ourselves to the analysis of the adaptive CUSUM, since the analysis of the
adaptive GRSh is analogous.

Suppose that a true (unknown) parametric point is�∗ = (�∗
0, �

∗
1).

Letbbe an arbitrary change-point detection method which depends on the large parameter
N, TN is the corresponding stopping time, anddN(n) is the decision function of this method.

Lemma 4.1. For any method b with the large parameter N and any fixed m, the following
inequalities hold:

(a)
Em,�∗(TN − m)+

| ln(N
N(�∗))| �I−1(�∗), (4.1a)

(b) if lim inf N→∞(| ln 
N(�∗)|/N) > 0 then

K̄
b
(�∗, m)

def= lim inf
N→∞

Em,�∗(TN − m)+

| ln 
N(�∗)| �I−1(�∗). (4.1b)

Proof. Let


̃N(�∗) def= sup
k �N

P∞,�∗{dN(k) = 1},

�̃N(�∗) def= sup
k �N

P∞,�∗{TN = k},

T̃N
def= m + (TN − m)+ ∧ N.



B. Brodsky, B. Darkhovsky / Journal of Statistical Planning and Inference 133 (2005) 123–138131

Then for any fixedm

N �̃N(�∗)�
N+m∑

k=m+1

P∞,�∗(TN = k),

N+m∑
k=m+1

Em,�∗


I(TN = k) exp


−

k∑
i=m+1

ln(f (xi, �
∗
1)/f (xi, �

∗
0))







= Em,�∗


exp


−

T̃N∑
i=m+1

ln(f (xi, �
∗
1)/f (xi, �

∗
0))







� exp


−Em,�∗


 T̃N∑

i=m+1

ln(f (xi, �
∗
1)/f (xi, �

∗
0))





 .

SinceEm,�∗ T̃N < ∞, due to Wald’s inequality we obtain

Em,�∗


 T̃N∑

i=m+1

ln(f (xi, �
∗
1)/f (xi, �

∗
0))


 = I (�∗)Em,�∗(T̃N − m). (4.2)

Now taking into account that(TN = k) ⊂ (dN(k) = 1) and so

�̃N(�∗)� 
̃N(�∗)

and using (4.2), we obtain

Em,�∗(T̃N − m)+

| ln(N 
̃N(�∗))| �I−1(�∗). (4.3)

Since

Em,�∗(TN − m)

| ln 
N(�∗)| �
Em,�∗(T̃N − m)+

| ln 
̃N(�∗)| ,

we get from here and (4.3) relation (4.1a) and in case lim infN→∞(| ln 
N(�∗)|)/N > 0 we
get (4.1b). �

Lemma 4.2. The following relation holds

T ACS,p = min
�∈�p

	CS(�). (4.4)

Proof. By definition, for any� ∈ �p T ACS,p �	CS(�) and therefore

T ACS
p � min

�∈�p
	CS(�). (4.5)
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From the other side, ifT ACS,p=n then max�∈�pLn(�)�CCSand so there exists an element
�(i) ∈ �p such thatLn(�

(i))�CCS. Therefore, for any elementary event� there exists a
number 1� i(�)�p such thatT ACS,p(�)�	CS(�(i(�))) and so

T ACS,p � min
�∈�p

	CS(�). (4.6)

The conclusion of the lemma follows from (4.5) and (4.6).�

For any fixed� ∈ � put

yn(�)
def= ln

f (xn, �1)

f (xn, �0)
, Sk(�)

def=
k∑

i=1

yi(�).

For Page decision rule under fixed parameter� we will use a designationdCS
N (n, �)

(remember that the “large parameter”N in CUSUM is the thresholdCCS).
Then we have

P∞,�∗{dCS
N (n, �) = 1} = P∞,�∗

(
max
k �n

Sk(�)�CCS

)
. (4.7)

It follows from the fact that the observable sequence{yn(�)} is the sequence of i.i.d. under
measureP∞,�∗ and that is why we can get (4.7) using time transformation. Similarly

sup
n

P∞,�∗{dACS,p
N (n) = 1} = sup

n
P∞,�∗

{
max
�∈�p

max
k �n

Sk(�)�CCS

}
. (4.8)

Taking into account that

{
� : max

k �n
max
�∈�p

Sk(�)�CCS

}
⊆

{
� : max

k �n+1
max
�∈�p

Sk(�)�CCS

}
,

we obtain from (4.8)


ACS,p
N (�∗) def= sup

n
P∞,�∗{dACS,p

N (n) = 1} = P∞,�∗
{

sup
k

max
�∈�p

Sk(�)�CCS

}
,


CS
N (�, �∗) def= sup

n
P∞,�∗{dCS

N (n, �) = 1} = P∞,�∗
{

sup
k

Sk(�)�CCS

}
. (4.9)

Lemma 4.3. Under conditions(2.2), (2.4)and(2.5) the following relations hold:

lim
N→∞

| ln 
ACS,p
N (�∗)|
N

� inf
�∈�

t∗(�, �∗
0), lim

N→∞
| ln 
CS

N (�, �∗)|
N

= t∗(�, �∗
0).
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Proof. The second equality was proved in Brodsky and Darkhovsky (2000, p. 261). Con-
sider the first inequality. We obtain
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Brodsky and Darkhovsky (2000, p. 257) proved that the following relationship holds for
given conditions (2.2), (2.4) and (2.5)
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k=1 exp(Sk(�)) > exp(u)
} |

u
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0). (4.11)

Moreover, convergence in (4.11) is uniform w.r.t.� ∈ � due to condition (2.4). Taking this
into account from (4.9)–(4.11) we obtain
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The lemma is proved. �

Proof of the Theorem. From (4.4) it follows that for anym

Em,�∗(T ACS,p − m)+ �Em,�∗(	CS(�∗) − m)+.

Hence we obtain
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By virtue of (3.1)

lim
N→∞

(N−1Em,�∗(	CS(�∗) − m)+)

(N−1| ln 
CS
N (�∗, �∗)|) = KCS(�∗) = I−1(�∗). (4.14)
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Table 1
(CUSUM�0 = 0.0)

CCS 4 5 6 7 Low Upper
bound bound

�0 = 0 ET 185.8 436.1 1095.6 2939.1
ln ET 5.22 6.08 7.00 7.99

�1 = 1 E	 7.47 9.22 11.30 12.98
E	/ ln ET 1.43 1.51 1.61 1.54 2.0 2.0

�1 = 2 E	 2.58 3.06 3.53 4.06
E	/ ln ET 0.49 0.51 0.50 0.50 0.50 0.50

�1 = 3 E	 1.51 1.69 1.90 2.11
E	/ ln ET 0.28 0.27 0.27 0.26 0.22 0.22

Table 2
(CUSUM�0 = 0.5)

CCS 9 12 15 20 Low Upper
bound bound

�0 = 0.5 ET 101.0 106.6 249.5 428.4
ln ET 4.62 5.08 5.52 6.06

�1 = 1 E	 17.32 23.30 29.34 39.47
E	/ ln ET 3.74 4.58 5.31 6.51 8.0 48.0

�1 = 2 E	 5.06 6.54 7.99 10.54
E	/ ln ET 1.09 1.28 1.44 1.73 0.88 5.28

�1 = 3 E	 2.53 3.24 3.92 5.01
E	/ ln ET 0.54 0.63 0.71 0.82 0.32 1.92

Taking into account (3.5) and the second equality in Lemma 4.3 we obtain

lim
N→∞

| ln 
CS
N (�∗, �∗)|

N
� t∗(�∗, �∗

0) ≡ 1. (4.15)

Therefore from (4.12) to (4.15) it follows that

K̄
ACS,p

(�∗, m)� I−1(�∗)
inf �∈� t∗(�, �∗

0)
. � (4.16)

Estimate (4.16) holds for any stopping timeT ACS,p and for any finite set�p. Moreover,
this estimate does not depend on�p. Estimate (4.1b) holds for any method with a large
parameter and condition (b) in Lemma 4.1, and in particular for the method(ACS, p) due
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Table 3
(CUSUM:�0 = 0)

CCS 4 5 6 7 Low Upper
bound bound

�0 = 0 ET 198.5 482.8 1184.7 3172.7
ln ET 5.29 6.18 7.08 8.06

�1 = 1 E	 7.44 9.06 11.22 13.16
E	/ ln ET 1.41 1.47 1.58 1.63 2.0 2.0

�1 = 2 E	 2.63 3.13 3.43 4.06
E	/ ln ET 0.49 0.50 0.47 0.50 0.50 0.50

�1 = 3 E	 1.51 1.77 1.92 2.13
E	/ ln ET 0.28 0.29 0.27 0.26 0.22 0.22

Table 4
(CUSUM:�0 = 0.5)

CCS 4 5 6 7 Low Upper
bound bound

�0 = 0.5 ET 189.7 450.0 1132.7 2815.5
ln ET 5.25 6.11 7.03 7.94

�1 = 1 E	 20.79 28.94 35.53 46.19
E	/ ln ET 3.96 4.73 5.05 5.81 8.0 8.20

�1 = 2 E	 4.10 4.94 5.74 6.53
E	/ ln ET 0.78 0.80 0.81 0.82 0.88 0.93

�1 = 3 E	 1.93 1.99 2.55 2.89
E	/ ln ET 0.36 0.35 0.36 0.35 0.32 0.35

to (4.12). For this method it also does not depend on�p. Therefore, taking into account

the definition ofK̄
ACS

(�∗, m), we obtain the required result from (4.1b) and (4.16).

5. Experimental results

In this section, we report some results of a small simulation study we performed in order
to assess the accuracy of the lower and upper boundaries of a priori inequalities (3.3).
Data: The following data were analyzed. The Gaussian sequence was simulated with the

d.f. N(�, 1). Under the null hypothesis H0: �=�0 ∈ [0, 1], under the alternative hypothesis
H1: � = �1 ∈ [1.2, 5].
Methods: CUSUM and GRSh methods of change-point detection were analyzed.
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Table 5
(GRSh:�0 = 0)

CGRSh 100 300 500 1000 Low Upper

bound bound

�0 = 0 ET 169.2 457.7 784.0 1421.6
ln ET 5.13 6.13 6.66 7.26

�1 = 1 E	 7.09 9.28 10.27 11.37
E	/ ln ET 1.38 1.51 1.54 1.56 2.0 2.0

�1 = 2 E	 2.72 3.26 3.45 3.76
E	/ ln ET 0.53 0.53 0.51 0.51 0.50 0.50

�1 = 3 E	 1.63 1.89 1.98 2.12
E	/ ln ET 0.31 0.30 0.29 0.29 0.22 0.22

Table 6
(GRSh:�0 = 0.5)

CGRSh 300 500 1000 2000 Low Upper

bound bound

�0 = 0.5 ET 299.0 529.4 1065.4 1977.4
ln ET 5.70 6.27 6.97 7.59

�1 = 1 E	 22.96 27.95 32.65 37.95
E	/ ln ET 4.02 4.45 4.68 5.0 8.0 8.2

�1 = 2 E	 5.14 5.45 5.97 6.68
E	/ ln ET 0.90 0.87 0.85 0.88 0.88 0.93

�1 = 3 E	 2.40 2.64 2.75 2.94
E	/ ln ET 0.42 0.42 0.39 0.38 0.32 0.35

Results: (1) In the first test the adaptive CUSUM method (3.2) was used for detection
of a change-point. We have taken different values ofh0 andh1. Results are reported in
Tables 1and2 . Each value in cells of these tables is obtained as the average of 5000 Monte
Carlo trials. HereET is the average time between “false alarms” (which is asymptotically
equal to 1/p, wherep is the probability of the error decision, see Brodsky and Darkhovsky,
1987); lnET is the logarithm ofET; E	 is the average delay time in change-point detection;
E	/ ln ET is the ratio criterion of efficiency used in inequalities (3.3).

Results presented inTable 1show that inequalities (3.3) aresharpin spite of both com-
posite hypotheses H0 and H1.

Table 2shows that the adaptive CUSUM methodis not asymptotically optimalin general
due to the composite hypothesis H0.

(2) In the second series of experiments the methods CUSUM and GRSh with estimation
of the parameter�0 before a change-point were analyzed. The estimate�̂0 was obtained as
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the average from the first 500 observations. In this case the change-pointm = 500. Results
are reported inTables 3–6.

Tables 3–6 show that the heuristic procedures (3.7) are close to asymptotically optimal
rules.

These experimental results allow us to make the following conclusions. In some cases
the adaptive CUSUM and GRSh rules are asymptotically optimal in spite of the fact that
the set�0 consists of more than one point. This indicates that estimates (3.3) aresharp.
However, in general these adaptive rulesare not asymptotically optimal.

Let us emphasize that efficiency of sequential change-point detection methods with esti-
mation of the d.f. parameters before a change-point is essentially higher than the correspond-
ing efficiency of methods without estimation of�0. This is true for the case of composite
hypotheses H0 and H1.
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Note added in Proof

Right before proofreading the authors have found the asymptotically optimal methods
for the general case of composite hypothesesH0 andH1, and in particular for the general
multipoint set�0. One of these methods is as follows:

T
def= min

{
n : inf

�0∈�0

sup
�1∈�1

Ln(�)�C

}

We are going to consider the problem of change-point detection for composite hypotheses
in a separate paper.
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