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Abstract

In this paper the problem of change-point detection for the case of composite hypotheses is consid-
ered. We assume that the distribution functions of observations before and after an unknown change-
point belong to some parametric family. The true value of the parameter of this family is unknown
but belongs to two disjoint sets for observations before and after the change-point, respectively. A
new criterion for the quality of change-point detection is introduced. Modifications of generalized
CUSUM and GRSh (Girshick—Rubin—Shiryaev) methods are considered and their characteristics are
analyzed. Comparing these characteristics with an a priori boundary for the quality of change-point
detection we establish asymptotic optimality of these methods when the family of distributions before
the change-point consists of one element.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The mathematical formulation of the change-point problem as a certain extremal problem
was first considered in the report of Kolmogorov and Shiryaev at the 6th All-Union Confer-
ence on probability and mathematical statistics (Vilnius, 1960; see the reference comment
in Shiryaev (1976) The book ofShiryaev (1976fontains solutions of this problem both
for discrete and continuous time in the Bayesian and extremal formulations for the case of
the a priori known density function (d.f.) of a change-point. Earlier in workRagfe (1954)
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and Girshik and Rubin (1952Frtain heuristical (for that time) methods for solving sequen-
tial change-point problems were proposkdrden (1971found an asymptotically optimal
method of sequential change-point detection which minimizes an average delay time in
detection given an upper boundary for the average time before a “false alarm” without a
priori assumptions about the d.f. of a change-pdtotlak (1985)roved that the method of
Girshick and Rubin can be obtained as a certain limit from the method proposed by Shiryaev.
He also demonstrated that this method is asymptotically optimal in the sense of Lorden’s
criterion.Moustakides (198&)roved that Page’'s CUSUM procedure is strictly optimal (not
only asymptotically) in Lorden’s formulation of sequential change-point detection problem.
For continuous time this result was recently obtaine@hiryaev (1996)

Lai (1995, 2000andLai and Shan (1999onsidered the change-point problem in the
more general situation of dependent random variabldsaif1995)it was shown that the
Neyman—Pearson type procedure with the “moving window” of observations is asymptoti-
cally optimal. InLai and Shan (1999jifferent boundaries for the “false alarm” probability
were introduced instead of upper boundaries for the average time before the “false alarm”
and the asymptotic optimality of Page’s CUSUM method was prokad(1998, 2000)
developed information-theoretic bounds for sequential multihypothesis testing and fault
detection in stochastic systems.

Different modifications and generalizations of the CUSUM method can be found in
Basseville and Nikiforov (1993ndNikiforov (1995).

The case of composite hypotheses for the problem of sequential change-point detection
is the most interesting for applicatiorSiegmund and Venkatraman (199®nsidered a
special variant of this problem when the mathematical expectation of observed Gaussian
random variables changes from zer@ tor — . For this problem, the asymptotic optimality
in Lorden’s sense of the generalized likelihood ratio statistic was established. The general
form of this statistic can be found imai (2001) The detailed review of the literature on
this topic can be also found there.

To the best of our knowledge, the sequential change-point detection problem in the
general context of composite hypotheses, when the d.f. of observations netftenighe
change-point but alseforeit is unknown and belongs to a certain family of distributions,
was not considered in the literature. However, this problem arises in many applications, and
in particular, in change-point detection problems for dynamical systems. In our paper, we
consider this general situation of composite hypotheses.

In the sequel we introduce and analyzeew criterionof effectiveness of sequential
change-point detection which is different from all known in literature. This criterion is
based upon the a priori inequality proved Byodsky and Darkhovsky (199 see also
Brodsky and Darkhovsky, 200dn our opinion, this criterion corresponds very well to the
intuitive requirements of effectiveness of sequential change-point detection. In this respect
it is no worse than other commonly used criteria in sequential change-point problems. At
the same time, this criterion enables us to find asymptotically optimal methods of change-
point detection in a general enough situation via the a priori low boundary analogous to the
Rao—Cramer boundary in estimation problems.

In this paper, we have two major objectives:

(1) to propose a new criterion of quality for sequential change-point detection
methods.
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(2) To consider the general change-point detection problem with a change of one composite
hypothesis to another composite hypothesis. It seems to us that this statement of change-
point detection problem was not fully considered in the literature. We also think that the
methodology of our approach based upon a prioriinequalities in sequential change-point
problems is ideologically close taai (1998, 2000)

In Section 2, we explain our approach to the analysis of effectiveness of change-point
detection methods and formulate the problem for composite hypotheses. In Section 3 mod-
ifications of the generalized CUSUM and Girshick—Rubin—Shiryaev (GRSh) methods are
considered and a priori estimates of their quality with respect to (w.r.t.) a new criterion are
established. This is the main result of our paper. From this result we conclude that the gener-
alized CUSUM and GRSh methods agymptotically optimaih the case when the family

of distributionsbeforea change-point consists of one element. The a priori estimate of the
quality of change-point detection enables us to consider an effective detection procedure
in the general situation for a stationary regime of data collection. In Section 4, we give the
proof of the main result, in Section 5 some experimental results are presented.

2. A priori estimate for the quality of change-point detection. Formulation of the
problem

First, let us introduce necessary notations and formulate main assumptiorts=Let
(00, 01), 0 € O, 0 € O, 01 € O1, where® is a certain parametric set which belongs to
some open séd in the finite dimensional spac®,=OyU @1, OgN O1=0@. We observe a
sequence of independent random vectog$;2 ; with the d.f. w.r.t. some-finite measurg:
equaltof (x, Op), 0p € O before an unknown change-point, afick, 01), 01 € @1—after
this change-point. The dffis known and defined for all parameter values fidmn what
follows we denote by, 4(E,, o) the measure (mathematical expectation) corresponding
to a sequencél, 2, with the change-point at the instamtand the fixed value of the
parametel) = (0p, 01) (so the density function of observatiofs is equal tof (x, o) if
n<m and f(x, 01) if n>m). SymbolsP, 9(E ¢) correspond to an observed sequence
without change-points.

We assume that the following conditions are satisfied:

2.1.0 is a compact set;

2.2.u{x : f(x,01) # f(x,02)})>0if 01 # 0

2.3. For anyd € O, the value

def f(x, 01)
10)% / In Zo o . ),

is defined and inf.e 1(0) > 0;
2.4. For anyd € O, 0" € O P, y-distribution of the random variablg(0) = In
(f(, 01)/f(, Op)) satisfies the uniform (w.r. @ € ®) Cramer condition

SUPE, ¢- expltn(0)} < oo for || < H(0"),
0e®

where infy<.g H (0*) > 0,
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2.5. For any € O the function
(.0, 65) % / (f o, 91)) Fx, 05 u(d),

has only two zeros: 0 and (0, 0) > 0 and infycg t* (0, 05) > 0.
Supposeavis a certain change-point detection method dfh) is its decision function

such that/“(n) = 1(d“(n) = 0) corresponds to the decision about the presence (absence)

of a change at the instant ¢ fm|n{n d®(n) = 1} is the stopping time w.r.t. the natural

flow of g-algebras generated by observations.

Brodsky and Darkhovsky (200@howed that all known methods of change-point de-
tection contain a certain “large paramet&i’such that the normalized by delay time in
change-point detection tends to some deterministic limit a.&V as oo and the “false
alarm” probability tends exponentially to zero &s— oo. Taking this into account, in
what follows we add the indel to the valueg/?(n) andt?. In Section 3, we give precise
definitions of the large parametirand the decision functions, (n) for the CUSUM and
GRSh methods.

Denote the probability of the error decision by

o (0) d—EfsupPoo oldS (n) = 1}.

For any fixed value of,, a method of detectioaand the large parametht let us consider
the following value:

Em,B(T‘;\] - m)+

A Om = e ol

Brodsky and Darkhovsky (2008howed thatfor all known change-point detection meth-
ods there exists the following limit not depending om

Jim 5,00, m) % a0) (2.1)

and for anyknownmethod of detectioa the following a priori inequality takes place
A0 =1710). (2.2)

Brodsky and Darkhovsky (200@roved that (2.2) follows from the fact that for any
the value(ty, — m)*/N tendsP,, y-a.s. asN — oo to a certain deterministic limit (not
depending om), and the value:, (0) tends to zero exponentially & — oo. Moreover,
Brodsky and Darkhovsky (200©}oved that inequality (2.2) holdfof all known methods
in the general situation of dependent observations.

From inequality (2.2) it follows that the natural characteristic of quality for any method
of change-point detectioa (for anyfixed)) can be represented by the val#€’ (0). The
quality criterion of change-point detection then consists in minimization of this value. The
sense of this criterion is as follows. Itis easy to conclude (sedsgkhovsky and Brodsky,
1987) that the average time before a “false alarBy;, 7%, has the asymptotic order (as
N — o) of {aﬁ,(@)}‘l. Therefore, the characteristi€’® (0) represents the limit ratio (in
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an appropriate scale) of the average delay time in change-point detection to the average
time before a “false alarm”. Evidently, this ratio is of the main interest for any change-point
detection problem and we should try to make it as small as possible. A priori low estimate
(2.2) for this characteristic enables us to call a methbésymptotically optima(for a
given ) if the strict equality is attained for this method in inequality (2.2). This situation is
essentially the same as in Rao—Cramer inequality which provides the low boundary for the
quality of any estimate of an unknown parameter.

In our opinion, this approach to the definition of an optimal method of change-point
detection strictly corresponds to the practical sense of this problem. Moreover, in many
cases it is even more convenient than conventional definitions of change-point detection
optimality criteria when a method is found which minimizes the average delay time in
detection given an upper boundary for the average time before a “false alarm”.

For new methods of detection which we consider in this paper, it is a priori unknown
whether the limit in (2.1) exists or not. However, for any method of change-point detection
b with the large parameté\, we can always consider the value

lim sup%f (0, m)def][ 0, m).

N—o00

We will show later that
A0, my=1710) (2.3)

for any method of detection with a large parametand therefore the valug 'b(G, m) can
represent the qualitative characteristic of change-point detectioanfpsuch methodf
detection.

Now we can formulate our problem: we wish to find such a method of change-point
detection for which inequality (2.3) turns into a strict equality for any (unknown!) value of
the parametef.

3. Main result

In the sequel we consider methods based upon two classic statistics: Page’s cumulative
sums (CUSUM) and the quasi—Bayesian statistic of Girshick—Rubin—Shiryaev (GRSh).
Let us recall these stopping rules for any fixed valué.dbefine

def f(xi, 01) def Sf(xi, 01)
= ZH{f(x,m} 7= 12nka<xni=k'” f i Oo)’

Then the CUSUM rule takes the form
1°5(0) =inf{n>0: £,(0) > Ccs}
and the GRSh rule is
ORS0) El(n : 2, (0) > Corsi.

whereCcs, Cgrshare certain boundaries (thresholds of detection).
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Brodsky and Darkhovsky (200@gmonstrated that the large paramétef the CUSUM
method can be chosen As= Ccs and for the GRSh method a6=In Cgrsh and both of
these methods are asymptotically optimal and asymptotically equivalent to each other, i.e.
(for any fixed)

HCS0) = #CRSNOy = 171(0). (3.1)

Let ®7 C O be a fixedfinite subsebf #6 = p. Let us consider the following stopping
times

7ACS.P € i {n max &z, (0)>CCS}
TAGRShp def i {n gnng (9)>CGRSh} (3.2)

and let us further denote methods of detection based upon these stopping tifESas)
and(AGRSh p), respectively.

The large parameteX of the method(ACS, p) is equal toCcs and for the method
(AGRSh p) N =1In Carsh The valuesiy > (n), dyC o (n), oy 27 (), oy o (0)
are defined as usual for these methods

The quality characteristics of the methad<€s, p) and(AGRSh p) are#”

and.#"°FS" (0, m), respectively.

Now consider a sequence of expanding finite sub&etof the set® with an increas-
ing numberp of elements and such that ea€lf is a finite I/ p-net for @ asp — oo.
This is possible because of a compactness ofsethen a sequence of stopping times
TACS.p  TAGRShp s monotonously decreasing and therefore for anghere exist the
limits

ACS, p

(0, m)

def .
TACS: lim TACS,p’
I)—)OO
def .
TAGRSh: lim TAGRShp_

p—>00

The decision rul@*€S is calledthe adaptive CUSUM ruland the ruldAGRSh_the adap-
tive GRSh ruleWe use the term “adaptive”, because (as we show it later) these decision
rules are asymptotically optimal for any (unknown!) value of the paranteter

Methods of detection based upon these rules will be céfle@daptive CUSUM method
(AC9 andthe adaptive GRSh meth¢iGRSH.

Since the adaptive CUSUM and GRSh methods are introduced by means of the mono-
tonous limit procedure using growing numbers of the finjtg-het, it is natural to estimate
their quality by the following characteristics:

def
((9 m) = lim sup% (9, m),
p—>00
AGRSh(H m)d_ef“m sup PCGRsShp

pP—>00

0, m).
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In the sequel we denote W = (05, 07) € © a true (unknown) parametric point in the
change-point problem.
Our main result in this paper is the following

Theorem 3.1. Suppose condition®.1)—(2.5)are satisfied for any value of the parameter
0* € @. Then for the adaptive CUSUM and GRSh methods the following estimates hold
true:

1720 < A0 . my <110y ———
(") <O
S

- 1
1—1 * <A AGRSh . <I—1 % ]
O < A0 m) (6)—3”2 ) (33)
S

Corollary 3.1. Suppose the sél consists of a unique poifif. Then the adaptive CUSUM

and GRSh methods are asymptotically optimal

Proof. By its definition, the functiom* (0, 0p) depends only from the componeftitof the
pair 0" = (0, 07). That means iPg = {03} then

1*(-) = 1*(0p, 01, 07).

So in order to determine the poirtt, it is necessary to find the roots of the equation

[, 00\ « _

But (taking into account assumption 2.2) fox@ < 1 by virtue of Holder’s inequality,
In (/ FHe, 00 F1 GE)M(dx))

< (r In/f(x,Bl),u(dx)—l—(l—t)ln/f(x,%),u(dx)) =0

and forr > 1 for anys <t by virtue of Lyapunov inequality

1/t 1/s
( / fx 00 17 9’5)u<dx)) > ( / F 00 9’5)u<dx>)
Put heres = 1 we obtain
1/t
In (/(ft(x, 00 1 (x, 93))M(dx)) > 0.
Therefore, a unique non-zero root of Eq. (3.4) isequal to 1, i.e.
t*(gé, 01, S) =1 (3.5

Now the asymptotic optimality follows from (3.5) and (3.3)
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If we suppose that the densifi(x, 0) is smooth enough w.r.t. the paramefiethen the
functions* (-, 0") is continuous. In this case if the diameter of the@gtis small enough,
then the right-hand side of (3.3) is also small and the considered stopping rules are close
to the asymptotically optimal by virtue of Corollary 3.1. Hence we conclude that in rules
(3.2) it is expedient to take the maximum &yon the set

Qo) E'100 € 00 :|| 00 — o(n) | <3/SPDn)}. (3.6)

Where@o(n) is any asymptotically normal estimate of the true param@jeay the firstn
observations and®,, is the covariance matrix of this estimate. In other words, we need to
use the following stopping rule for the CUSUM

7ACS —inf {n >0: sup sup Z,(0) >CCS} (3.7)
0peB@q(n) 01,0
and the analogous rule for the GRSh method.

In fact, if we consider the quasi-stationary process of data collection when any change-
point is preceded by a long stationary period sometimes interrupted by “false alarms”, then
a true parametric point will be covered by the 6gif(n) with the probability close to 1, and
therefore such modified stopping rules will be close to the asymptotically optimal rule.

4. Proofs

We limit ourselves to the analysis of the adaptive CUSUM, since the analysis of the
adaptive GRSh is analogous.

Suppose that a true (unknown) parametric poirtk‘is= (03, 07).

Letbbe an arbitrary change-point detection method which depends on the large parameter
N, Ty isthe corresponding stopping time, ah@(n) is the decision function of this method.

Lemma 4.1. For any method b with the large parameter N and any fixethea following
inequalities hold

Epor(Tn —m)*

a >1710"), 4.1a
@ I IN(N oy (60%))] @) ( )
(b) if lim inf y_ oo (| IN oty (0%)|/N) > 0then
b def. . o Eqo(Ty—m)t
/ = _mr T > . )
A (0%, m) I%n_)ltr;f N o (0] 17209 (4.1b)
Proof. Let

iy (0%) L sup P g (dy (k) = 11,
k<N

% « def

By (0%) = sup Py g+ {Tn =k},
k<N

v E o+ Ty — )T A N.
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Then for any fixedn

N+m
NBy(0)= > Po g (Tn =),
k=m+1

N+m k
Y Ene ﬂ(TN=k>exp(— 3 InGF G 0)/F (xi. 63)

k=m+1 i=m+1
Ty
=Em,e*{exp(— 3 (s, ’D/f(xi,ezs»)}
i=m+1

i=m+1

Ty
> exp{—Em,g* ( Z In(f (xi, 00)/f (xi, 3))) } .

SinceE,, g+ Ty < oo, due to Wald's inequality we obtain

7y
E,..o ( 3 In(f . i)/f(xi,ez';))) = [(0")E,, g+(Ty —m).

i=m+1
Now taking into account thafy = k) C (dy (k) = 1) and so
By (0%) <an (07)
and using (4.2), we obtain

Epo-(Ty —m)*t |
_— > 0*y.
invay @y )

Since

Epor(Ty —m) _ Eor(Tn —m)*
Inoy @]~ [Inay(0%)]

4.2)

(4.3)

we get from here and (4.3) relation (4.1a) and in case liny ind, (| In oy (0%))/N > 0 we

get (4.1b). O

Lemma 4.2. The following relation holds

TACS? = min t©5(0).
fe®?

Proof. By definition, for anyd € @7 TACS? <1CS(0) and therefore

TpACS < min t°5(0).
De®?

(4.4)

(4.5)
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From the other side, IfACS.” =p then maycor L n(0) > Ccsand so there exists an element
0" € @* such that?, (0”) > Ccs. Therefore, for any elementary eventhere exists a
number i (w) < p such thaAcS? (w) > S0 “)) and so

TACSP > min ©5(0). (4.6)
0P
The conclusion of the lemma follows from (4.5) and (4.6).]
For any fixedd € @ put

k
ned:efl f(xn,91)7 S0 % (0.
yn(0) N G0 1 (0) i:zly()

For Page decision rule under fixed parametewe will use a designatiomlﬁs(n, 0)
(remember that the “large paramet&tin CUSUM is the threshold@’cs).
Then we have

Poc.gr1d$3n, 0) = 1) = Py o (km<a}3< Sk (0) > CCS) ) 4.7)

It follows from the fact that the observable sequehgg0)} is the sequence of i.i.d. under
measureP, o+ and that is why we can get (4.7) using time transformation. Similarly

SUpP, ¢+ {dﬁ,cs”’(n) =1} =supP ¢ { max max Sy (0) > Ccs} . (4.8)
n n 0cOP k<n
Taking into account that

{a) : max max Sk(9)>ch} - {co : max max Sk(9)>ch} ,
k<n 0eO®? k<n+1 0ec®”

we obtain from (4.8)
hCSP (0%) L SupP g {daCST (n) = 1} =P { sup max Si(0) > Ccs} ,
n €

oS80, 0%) L supPo g+ (d$3n, 0) = 1) = Py - {s}gp ROE Ccs} . (4.9)

Lemma 4.3. Under conditiong2.2), (2.4)and(2.5)the following relations hold

In oACSP (p* In oSS(0, 0*
im ey O g (0,0,  lim Hn ag™®, 001 )'zz*((),og).
0c® N—o00

N—oo
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Proof. The second equality was proved in Brodsky and Darkhovsky (2000, p. 261). Con-
sider the first inequality. We obtain

P g+ {supmax Sy (0) >N
.0 { kpee@l’ k() }

<Poo.pr {Z > exp(Si(0)) >exp<N>]

k=1 0cO®?

< Poo,e*{z exp(S(0')) > p~ exp(N)}

0 cor k=1

[o)0]
<p max P g {Z exp(Sk(0))=p~t exp(N)} . (4.10)
0'cO®? k=1

Brodsky and Darkhovsky (2000, p. 257) proved that the following relationship holds for
given conditions (2.2), (2.4) and (2.5)

i 1IN Poo.ge {D_re1 eXxp(Sk(0) > expu) } |

U—>00 u

=1*(0, 03). (4.11)

Moreover, convergence in (4.11) is uniform w.6.te ® due to condition (2.4). Taking this
into account from (4.9)—(4.11) we obtain

1IN AP0
||m N

N—o00 N

> lim min N1
N—oo gicer

k=1

In Py ¢~ {Z exp(Sk(0) =p~t exp(N)H

= min lim N1

In Py ¢~ {Z exp(Sk(0) = p~t exp(N)”

OiEOP N—o00 =1
= min *(0, 05) > inf 1*(0, 6) > 0. (4.12
0 ecOP 0e®

The lemma is proved. J
Proof of the Theorem. From (4.4) it follows that for anyn
Ep oo (TAS? —m)* <E,, ¢ (@507 —m)™.

Hence we obtain

-1 (7CS(OF) — + -1 CS,/n* p*
FSP @ < im (N71E, (TAC(;)) m)T) (N7 Ino§ (9,9>|>'(4_13)
N=oo  (N=1In oy P (0F) (N1 In 5§30, 6%)))
By virtue of (3.1)
N-L1E . (CS(0") — m)*+
fim w07 (207 — m) )=%'CS<0*>=1—1<9*). (4.14)

N=oo  (N-YInagS(0*, 6%)))
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Table 1
(CUSUM (g = 0.0)
Ccs 4 5 6 7 Low Upper
bound bound
0p=0 ET 185.8 436.1 1095.6 2939.1
In ET 5.22 6.08 7.00 7.99
=1 Et 7.47 9.22 11.30 12.98
Et/In ET 1.43 1.51 1.61 1.54 2.0 2.0
0L =2 Et 2.58 3.06 3.53 4.06
Et/In ET 0.49 0.51 0.50 0.50 0.50 0.50
01=3 Et 1.51 1.69 1.90 2.11
Et/In ET 0.28 0.27 0.27 0.26 0.22 0.22
Table 2
(CUSUM (g = 0.5)
Ccs 9 12 15 20 Low Upper
bound bound
0p=0.5 ET 101.0 106.6 249.5 428.4
In ET 4.62 5.08 5.52 6.06
0p=1 Et 17.32 23.30 29.34 39.47
Et/In ET 3.74 4.58 5.31 6.51 8.0 48.0
0L =2 Et 5.06 6.54 7.99 10.54
Et/In ET 1.09 1.28 1.44 1.73 0.88 5.28
0,=3 Et 2.53 3.24 3.92 5.01
Et/In ET 0.54 0.63 0.71 0.82 0.32 1.92

Taking into account (3.5) and the second equality in Lemma 4.3 we obtain

im LD aSS(0*, 0%

N—o0

Therefore from (4.12) to (4.15) it follows that

>(0%, 0f) = 1. (4.15)

_ 171"
S g myc D) (4.16)
Estimate (4.16) holds for any stopping tifié“S? and for any finite se®”. Moreover,
this estimate does not depend 6. Estimate (4.1b) holds for any method with a large

parameter and condition (b) in Lemma 4.1, and in particular for the me#08, p) due
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Table 3
(CUSUM: 0 = 0)
Ccs 4 5 6 7 Low Upper
bound bound
0p=0 ET 198.5 482.8 1184.7 3172.7
In ET 5.29 6.18 7.08 8.06
01=1 Et 7.44 9.06 11.22 13.16
Et/In ET 1.41 1.47 1.58 1.63 2.0 2.0
0L =2 Et 2.63 3.13 3.43 4.06
Et/In ET 0.49 0.50 0.47 0.50 0.50 0.50
01=3 Et 151 1.77 1.92 2.13
Et/In ET 0.28 0.29 0.27 0.26 0.22 0.22
Table 4
(CUSUM: g = 0.5)
Ccs 4 5 6 7 Low Upper
bound bound
0p=0.5 ET 189.7 450.0 1132.7 2815.5
In ET 5.25 6.11 7.03 7.94
=1 Et 20.79 28.94 35.53 46.19
Et/In ET 3.96 4.73 5.05 5.81 8.0 8.20
01=2 Et 4.10 4.94 5.74 6.53
Et/In ET 0.78 0.80 0.81 0.82 0.88 0.93
01=3 Et 1.93 1.99 2.55 2.89
Et/In ET 0.36 0.35 0.36 0.35 0.32 0.35

to (4.12). For this method it also does not depend?h Therefore, taking into account
the definition ofJZ/ACS(O*, m), we obtain the required result from (4.1b) and (4.16).

5. Experimental results

In this section, we report some results of a small simulation study we performed in order
to assess the accuracy of the lower and upper boundaries of a priori inequalities (3.3).

Data: The following data were analyzed. The Gaussian sequence was simulated with the
d.f. N(0, 1). Under the null hypothesisd:10 = g € [0, 1], under the alternative hypothesis
Hi:0=01€[1.2,5].

Methods CUSUM and GRSh methods of change-point detection were analyzed.
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Table 5
(GRSh:0p = 0)
CGRSh 100 300 500 1000 Low Upper
bound bound
0p=0 ET 169.2 457.7 784.0 1421.6
In ET 5.13 6.13 6.66 7.26
01=1 Et 7.09 9.28 10.27 11.37
Et/In ET 1.38 151 1.54 1.56 2.0 2.0
0 =2 Et 2.72 3.26 3.45 3.76
Et/In ET 0.53 0.53 0.51 0.51 0.50 0.50
01=3 Et 1.63 1.89 1.98 2.12
Et/In ET 0.31 0.30 0.29 0.29 0.22 0.22
Table 6
(GRSh:0y = 0.5)
CGRSh 300 500 1000 2000 Low Upper
bound bound
0p=0.5 ET 299.0 529.4 1065.4 1977.4
In ET 5.70 6.27 6.97 7.59
01=1 Et 22.96 27.95 32.65 37.95
Et/In ET 4.02 4.45 4.68 5.0 8.0 8.2
0 =2 Et 5.14 5.45 5.97 6.68
Et/In ET 0.90 0.87 0.85 0.88 0.88 0.93
01=3 Et 2.40 2.64 2.75 2.94
Et/In ET 0.42 0.42 0.39 0.38 0.32 0.35

Results (1) In the first test the adaptive CUSUM method (3.2) was used for detection
of a change-point. We have taken different valueg@find 2;. Results are reported in
Tables land2 . Each value in cells of these tables is obtained as the average of 5000 Monte
Carlo trials. HereET is the average time between “false alarms” (which is asymptotically
equal to ¥ p, wherepis the probability of the error decision, see Brodsky and Darkhovsky,
1987); In ET is the logarithm oET; Ezis the average delay time in change-point detection;
Et/In ET is the ratio criterion of efficiency used in inequalities (3.3).

Results presented ifable 1show that inequalities (3.3) asharpin spite of both com-
posite hypothesesd-nd H;.

Table 2shows that the adaptive CUSUM methisahot asymptotically optimah general
due to the composite hypothesig.H

(2) In the second series of experiments the methods CUSUM and GRSh with estimation

of the parametefly before a change-point were analyzed. The estirtkateas obtained as
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the average from the first 500 observations. In this case the changexpeib00. Results
are reported iTables 36.

Tables 36 show that the heuristic procedures (3.7) are close to asymptotically optimal
rules.

These experimental results allow us to make the following conclusions. In some cases
the adaptive CUSUM and GRSh rules are asymptotically optimal in spite of the fact that
the set@g consists of more than one point. This indicates that estimates (3.3harp
However, in general these adaptive rudes not asymptotically optimal

Let us emphasize that efficiency of sequential change-point detection methods with esti-
mation of the d.f. parameters before a change-pointis essentially higher than the correspond-
ing efficiency of methods without estimation @f. This is true for the case of composite
hypotheses pland H;.
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Note added in Proof

Right before proofreading the authors have found the asymptotically optimal methods
for the general case of composite hypothedgsnd H1, and in particular for the general
multipoint set®@q. One of these methods is as follows:

TdZEfmin n: inf sup Z,0)>C

00<00 9,0,

We are going to consider the problem of change-point detection for composite hypotheses
in a separate paper.
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