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ABSTRACT

Buishand, T.A., 1984. Tests for detecting a shift in the mean of hydrological time series.
J. Hydrol., 73: 51—69.

A practical problem in time-series analysis of hydrological and meteorological data is
to find statistical techniques for testing for an abrupt change in the mean at an unknown
time. Suitable techniques have been developed in the situation of a single time series,
{y-,}. Attention is paid to the likelihood ratio statistic V' and to a Bayesian statistic U.

Complications arise if we want to test for a shift in the mean using a regression on a
second correlated sequence, {xi}, because the critical values of the test statistic in general
depend on the configuration of the x;’s. For the statistic U, this problem can be solved
using techniques similar to those for testing for serial correlation in least-squares regres-
sion. A so-called bounds test can be performed on the least-squares residuals. Unfortu-
nately, there is quite a large possibility that this test is inconclusive. As an alternative to
the bounds test, the statistic U can be applied to transformed residuals. The tests are
illustrated with runoff and precipitation data for the Colorado River Basin, U.S.A., and
the River Thames at Teddington, U.K.

INTRODUCTION

A practical problem in analysing time series of meteorological and hydro-
logical data is that such time series are not always homogeneous. Sometimes
there are abrupt changes in the mean, for example, due to a station relo-
cation or the use of another measuring device. Therefore, several techniques
have been developed for testing homogeneity.

The technique to be used depends on prior knowledge about systematic
changes. For instance, traditional analysis of variance techniques can be
applied, if it is known or suspected when the changes occurred. On the other
hand, there is no well-accepted statistical method for testing shifts in the
mean occurring at unknown times. In fact, the simple case that there is only,
at most, one unknown change-point has not yet been solved statisfactorily.

In the literature (Hawkins, 1977; Worsley, 1979; Buishand, 1982),
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attention has been paid to the following model with a single shift in the
mean:

u+ e, i=1,...,m

i & 1
ut+A+e, i=m+1,...,n (1)

where the ¢;’s are independent random normal variables with zero mean and
common unknown variance ¢2; the change-point m and the parameters
# and A are also unknown. Such a shift in the mean may occur, for instance,
in water-level records due to a change in the gauge datum or in rainfall
records due to a station relocation. Statistical methods have been developed
to test the null hypothesis A = 0 against the alternative hypothesis A # 0.

A natural extension of eq. 1 is the following regression model:

a+bxi+€,~, i:1,...,m

Yi = 2
at+tA+bx; +e, i=m+1,...,n ()

Here the €;’s have the same meaning as in eq. 1; the x;’s are fixed non-
random variables. For instance, one might investigate a possible shift in mean
runoff by regressing streamflow y; on (effective) precipitation x;. Although
precipitation is a random quantity, eq. 2 may still be useful if we consider
the distribution of streamflow given precipitation. Testing A = 0 against
A # 0 presents some problems because, unlike the situation of known m, the
distribution of the test statistics depends on the configuration of the x;’s.

In this paper, methods for testing A = 0 against A # O are presented. We
start with a review of techniques for the simple model of eq. 1. Comments
are made on the likelihood ratio test and a Bayesian statistic. For the latter
the critical values are derived. Thereafter, testing for a systematic change in a
linear regression model (eq. 2) is discussed. The emphasis is on the appli-
cation of the Bayesian statistic for testing A = 0 against A # 0 in eq. 1 to
regression residuals. The techniques are illustrated with two examples at the
end of the paper.

TESTING FOR A SINGLE SHIFT IN THE MEAN

A number of tests for a shift in the mean at an unknown time (eq. 1) have
been compared by Buishand (1982). The test statistics can usually be written
in terms of the adjusted partial sums or cumulative deviations from the
mean:

S =0; S§ = »—3), k=1,...,n (3)

i
u
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in which ¥ stands for the average of y,, ¥,, ..., ¥,. It is obvious that
Sk =0.
For the model of eq. 1 a straightforward calculation gives:

—k(n—m)n'A, E=0,...,m

E(S}) = . (4)
—m(n —k)n"A, ER=m+1,...,n

and

var (S§) = k(n —k)n"'o?, E=20,...,n (5)

So the mean is zero for a homogeneous record (A = 0), positive for A <0
and negative for A > Q. The variance is maximal if # = n/2. Even for a pure
random sequence, {y; }, the values of S} can differ considerably from zero,
especially for & in the neighbourhood of n/2. For this reason, the use of
cumulative deviations is sometimes discouraged (W.M.O., 1966). On the
other hand, statistical theory indicates that tests on cumulative deviations
have optimal properties in situations of abrupt shifts in the mean.

First, we consider the likelihood ratio test (Hawkins, 1977; Worsley,
1979). The test statistic can be written as:

V= chen_1| | SE/[D,{r(n—k)}V?] (6)

where D, denotes the sample standard deviation:
Dy =nt L (=3 (7)

Large values of the statistic V lead to rejection of the null hypothesis. Note
that in eq. 6, the S;’s are weighted by a factor which is inversely pro-
portional to their standard deviation.

Let K denote the index for which the right-hand side of eq. 6 reaches its
maximum. The statistic K is the maximume-likelihood estimate of the change-
point m. The distribution of K under the null hypothesis (A = 0) can be
obtained from a recurrence relation (Hawkins, 1977). This distribution is not
uniform over the indices 1, 2, ..., n — 1. Hawkins showed that Pr(K = k) is
maximal at the end-points and minimal for % in the neighbourhood of n/2.

The preference of K for the end-points makes the statistic V sensitive to
departures from normality (a single outlier at # = 1 or K = n — 1 may lead to
rejection of the null hypothesis). A more robust statistic can be obtained by
restricting the maximisation over a subset of the indices, for instance
3<k<n—3.

Statistical inference about a shift in the mean can also be made by
Bayesian procedures. A two-sided Bayesian test for use where 02 is known
was derived by Gardner (1969). Where 62 is unknown, it seems natural to
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TABLE I

Critical values and bounds of the statistic U for testing A =0 against A#0 in
eq. 1 (m unknown)

Sample Lower Significance level « Upper
size, bound, bound,
n Umin 0.10 0.05 0.01 Umax
10 0.023 0.333 0.416 0.574 0.929
20 0.012 0.340 0.440 0.659 1.934
30 0.008 0.343 0.447 0.688 2.944
40 0.006 0.344 0.451 0.702 3.956
50 0.005 0.345 0.453 0.710 4.968
100 0.002 0.346 0.457 0.727 10.033
S 0 0.347 0.461 0.743 oo

replace 02 in the statistical expression by the sample variance. This leads to
the following statistic (Buishand, 1982):

n=-1

U = [n(n+1)1‘1k2 (Sk/Dy)? (8)
=1

provided we have a uniform prior distribution for the position of the change-
point m.

Comparing the statistics given by egs. 6 and 8, it is seen that in the latter
less weight is given to the end-points. As a consequence, the statistic V is
superior to U for a shift in the mean near the beginning and the end of the
sequence, whereas the opposite holds for changes in the middle of the
sequence (Buishand, 1982). Further, the statistic U is rather robust against
departures from normality.

Critical values of the statistic U are given in Buishand (1982), obtained by
a Monte Carlo method. It is, however, not too difficult to derive the distri-
bution of U by numerical integration, as shown in Appendix A. This
appendix also shows that U has a lower and an upper bound. The bounds
and critical values are given in Table I.

EXTENSION TO THE REGRESSION MODEL
In applied regression analysis it is often recommended that the validity of

model assumptions be checked by making plots of the least-squares
residuals:

ei=yi—&_‘5xi, i=1,...,n 9)
Here a and b stand for the ordinary least-squares estimates:
@ =y—bx b= D,,/D: (10)
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where

D=w 3 (=B Dy = 3 = H0i—3) (11)

For the e;’s, we can define the partial sums:

k
Sy = 0; S, =Y e, k=1,...,n (12)
i=1

Since the sum of the e;’s is equal to zero, S, = 0. To see whether systematic
changes have occurred, a graph of the S,’s against k can be made (the so-
called residual-mass curve). Although this technique has been recommended
in the hydrometeorological literature (Searcy and Hardison, 1960), it does
not, provide an objective test-criterion.

Unfortunately statistical arguments do not in general lead to test statistics
which depend only on the partial sums of the least-squares residuals.
Further, the tests in the previous section cannot be directly applied to the
e;’s. In this section, first we briefly discuss some complications that arise in
the application of the likelihood ratio test and then consider the critical
values of the statistic U in regression situations.

The likelihood ratio test
The likelihood ratio test for testing A = 0 against A ¥ 0, with m unknown

in eq. 2, has been derived by Maronna and Yohai (1978). Their test is
equivalent to a test based on the statistic (Potter, 1981; Worsley, 1983):

V= [ <per_, [1Sk/[Dfk(n— k) — k> &, —%)YD2}V?] (13)

where ¥, is the average of x,, ..., x, and:

D =n' Y ef (14)
i=1

The weighting factor of the partial sums S; in eq. 18 is inversely pro-
portional to their standard deviation (see Appendix B). From a comparison
between egs. 6 and 183, it is seen the latter has an extra term, k2(x, —x)%/ D2,
in the denominator. As a consequence, the likelihood ratio statistic is only
weakly related to the residual-mass curve.

The exact distribution of the statistic V' is rather intractable. Moreover, it
depends on the x;’s so that a single table of critical values is not possible. An
approximate test, based on an improved Bonferroni inequality, has been
discussed by Worsley (1983).




56

Maronna and Yohai (1978) also considered random x;’s. But, then the
distribution of the statistic V' depends on (unknown) parameters of the
distribution of the x;’s, which makes its use unattractive.

The application of the test statistic U

As an alternative to the likelihood ratio test, we may apply the statistic
U to the least-squares residuals:

U=+ DS (SL/D.) (15)
k=1

It is, however, not appropriate to use the critical values from Table I,
because the e;’s are neither independent nor identically distributed.
Although, in this case also, the distibution of U depends on the configur-
ation of the x;’s, it is possible to give bounds for the critical values (see
Appendix A). The test for A = 0 against A # 0 in eq. 2 then takes the form:

U<ug, the null hypothesis is not rejected
up, <U<uy, the test is inconclusive (16)
UZuy, the null hypothesis is rejected

Table II gives the bounds u;, and uy as a function of the sample size n. The
values for the upper bound, uy, are slightly larger than the corresponding
values in Table I; the difference decreases with n. On the other hand, the
values of the lower bound, uy,, differ considerably from those in Table I and
there is also a marked difference between u;, and uy. As a consequence, we
cannot neglect the possibility that the test is inconclusive.

When the bounds test is inconclusive, the exact critical level for the x;’s
under consideration can be calculated (see Appendix A). This requires many

TABLE II

Lower and upper bounds of the critical values of the statistic U for testing A = 0 against
A # 0 in eq. 2 (m unknown)

Sample a=0.10 a=0.05 a=0.01

size,

" UL uy uL Uy ur, uy
10 0.114 0.369 0.134 0.458 0.170 0.621
20 0.116 0.358 0.140 0.462 0.193 0.691
30 0.116 0.354 0.142 0.462 0.201 0.710
40 0.116 0.353 0.143 0.462 0.204 0.719
50 0.116 0.352 0.143 0.462 0.206 0.724

100 0.117 0.349 0.144 0.462 0.211 0.734
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additional computations, which may be a serious limitation for practical
applications. A simple alternative to the bounds test is discussed in the
following section.

THE USE OF RECURSIVE RESIDUALS

Instead of applying a test to the raw least-squares residuals we can first
make a transformation to residuals which are independent and identically
distriouted under the null hypothesis (A =0 in eq. 2). There are several
methods of transforming the e;’s to independent random variables. In testing
for homogeneity, it is preferable to use the so-called recursive residuals
(Brown et al., 1975) which are obtained as follows.

Suppose that only j <n pairs (x;,¥), . . . , (x;, ¥;) are used to estimate the
regression coefficients @ and b. For j > 2, we may write for the least-squares

estimates:

i=1

b= 5 —bEs b =| L @) —y,-)} / [l_il(xi —o‘c,-)z] an
where %; and ; are the averages over the first j observations. From the fitted
regression, we get the following prediction of y;,:
i = bl —F), i =2...,n—1 (18)
We now look at the error term:
Upb1 = Vi1 — Y41 = Yie1 — ¥ bi(xje1 — %),

i=2...,n—1 (19)

It can be shown (Brown et al., 1975) that under the null hypothesis the u;’s
are independent, with mean zero and variance given by:

Varu;y, = var yj4; +vary; + (xj+ —%;)? var b;
i
= 02[[(]"" 1)/i]1 + (%541 _fj)z/{ > (xi—fj)z}],
i=1

i=2,...,n—1 (20)

The recursive residuals are defined by:
ji-1 -1/2
uft = uj[[f/(f'“ 1] + (x; _fj—l)z/{ PES _fj—l)z}] ,
i=1

j=38,...,n (21)

Obviously, under the null hypothesis, the u}’s are independent random
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variables with mean zero and constant variance 6. The term ‘“‘recursive
residual’’ stems from the fact that the estimates a;, b; and their covariances
can be obtained recursively. There is, however, not so much need to use
recurrence relations here, because we have explicit expressions for a;, b; and
var u; which can easily be updated. It can be shown further, that the ul’s are
obtained from the e;’s by a linear transformation (Philips and Harvey, 1974).

The statistic U can be applied to the recursive residuals. Since, under the
null hypothesis, these residuals are independent and identically distributed, the
critical values in Table I can be used to look for evidence of departures from
homogeneity. If there is a single shift in the mean (A # 0 in eq. 2), then the
residuals u¥, ..., u} are not affected, whereas, for the other residuals the
mean will differ from zero. For j > m, the mean of the u}’s is not a constant,
but there is, nevertheless, an abrupt change at j = m + 1. Therefore, we may
expect that the statistic U still has reasonable power when applied to the
u’’s. As an alternative to U we can use the statistic V given by eq. 6.

The recursive residual, u}, was obtained by making a prediction of y; from
a regression fitted to the first (j — 1) pairs (x;, y;). It is, of course, also
possible to base the prediction on the last (n —j) pairs. We then have the
following estimates of the regression coefficients:

n

&) = 5 —b;E; b =| Y (x,-—x;>(y,~—.~7;)] /[ 5 (xi—x;>2},

i=j+1 i=j+1
j=1,...,n—2 (22)

where %; and 5)} are the averages over the last (n — j) observations.
We can now define a sequence of error terms:

v, = ¥ —¥ —bjlx;—%), j=1,...,n—2 (23)

giving the following set of recursive residuals:
. -12
v} =v{(n—j+1)(n—i}+ (xf—f})z/{ Z+ (xi—f})ZH )
i=j+1
i=1,...,n—2 (24)
Under the null hypothesis, the v}’s are also independent normal variables

with mean zero and constant variance 02, but they differ from the uj’s.
This leads to different values for the test statistics.
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Rescaled adjusted
partial sums

- T T
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year

Fig. 1. Residual-mass curve of annual runoff for the Colorado River near Grand Canyon,
Arizona. The term “rescaled” refers to division by the residual standard deviation, D,.

EXAMPLES

Annual precipitation and runoff for the River Colorado Basin near Grand
Canyon, Arizona, U.S. A.

As a first example to illustrate the methods decribed above, we consider
annual data for the Colorado Basin taken from Searcy and Hardison (1960).
For the 26-y. period 1921—1946, a linear regression was obtained of annual
runoff on effective precipitation (being 0.7 times the current year’s precipi-
tation plus 0.3 times the previous year’s precipitation). Fig. 1 gives the
rescaled adjusted partial sums (Sy/D.) of the least-squares residuals. This
residual-mass curve does not reveal a particular trend, which was also noticed
by Searcy and Hardison (1960). To support this graphical result, we perform
a statistical test on the Si’s. The realization of the statistic U in eq. 15 is
0.086, which is smaller than the lower bound u;, in Table II if we choose a
significance level of 5%. So we conclude that there is no statistical evidence
of systematic changes.

January precipitation and runoff for the River Thames Basin above
Teddington, U.K.

The second example refers to data from the River Thames Basin for the
80-y. period 1884—1963, taken from Cooper and Clarke (1980). A linear
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Rescaled adjusted
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]
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Fig. 2. Residual-mass curve of January runoff for the River Thames at Teddington. The
term “rescaled” refers to division by the residual standard deviation, D,.

regression was obtained of January streamflow on January precipitation. The
plot of the partial sums of the least-squares residuals is given in Fig. 2. There
are some indications of a shift in the mean, e.g., there is an apparent break in
the slope of the curve about 1910. The realization of the statistic U in eq. 15
is 0.182. Tested at the 5% level, this value is just between the bounds u;, and
uy in Table II. This means that the test is inconclusive. We therefore have to
consider the exact distribution of U under the null hypothesis. Some
numerical work gives Pr(U > 0.182) = 0.30, from which it is concluded that
the null hypothesis is not rejected at the 5% level.

As an alternative to the bounds test, a test is performed on the adjusted
partial sums, S, of the recursive residuals. For both the residuals u} and
v}, the plot of the adjusted partial sums is given in Fig. 3. The curve for the
v}*’s resembles that of the least-squares residuals in Fig. 2. The u}’s show a
slightly different plot, especially at the beginning of the sequence. This
somewhat different behaviour can readily be explained from the residual-
mass cwrve in Fig. 2. For instance, the almost linear decrease of this curve
during the first 25 years does not appear in the plot for the u}’s because
there is a constant regression relation over this period during which there is
no systematic deviation of the u’s from zero.

The realization of the test statistic U is 0.306 for the u}’s and 0.245 for
the v/’s. From Table I (with n = 78), it is seen that these values are not
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1500 l 1§20 l 1540 l 1d60

year
Fig. 3. Rescaled adjusted partial sums of recursive residuals (u;!‘ and v;?) of January runoff
for the River Thames at Teddington. The term “rescaled” refers to division by the sample
standard deviation of the recursive residuals.

significant at the 5% level. Therefore we may conclude that there is no
statistical evidence of systematic changes.

CONCLUDING REMARKS

In the beginning of this paper some statistical methods were reviewed for
testing an abrupt change in the mean of a single time series (eq. 1). For
other systematic changes, the test statistics may still have reasonable power.

It was also seen that extension to a regression relation (eq. 2) gave rise to
a number of complications. Fortunately, the simple model of eq. 1 is
adequate in many situations. The sequence (y;) in this equation can take the
following form:

Yi =X (25)




62

or
y; = Inx; —Inr; (26)

where the x;’s refer to data for the station under consideration and the
r;’s refer to a homogeneous record of a nearby station or to a regional
average. For instance, for precipitation records, the statistic U can be applied
to differences in annual amounts (eq. 25) or to differences in their logar-
ithms (eq. 26). For such data it is, in general, unnecessary to use a regression
relation, which is sometimes done (Maronna and Yohai, 1978; Potter, 1981).

The regression of streamflow data on precipitation data gives a variance
reduction which improves the power of statistical tests. For annual runoff
and effective precipitation of the Colorado Basin, the estimated correlation
coefficient p is 0.84, which reduces the variance by a factor of 1 —p? = 0.29.
For the data from the Thames Basin, a value of 0.62 was found for p, which
gives a much smaller variance reduction, (1 —p? = 0.62).

Another reason for using a regression relation between streamflow and
precipitation is to eliminate serial correlation effects. For instance, for the
annual runoff data from the Colorado River there is some evidence of serial
correlation. The estimate of the first-order serial correlation coefficient is
0.31. By taking a combination of the current year’s precipitation and the
previous year’s precipitation as an explanatory variable, a sequence of error
terms may be obtained which are nearly independent and the techniques
described in this paper can still be applied.

APPENDIX A — THE DISTRIBUTION OF THE STATISTIC U UNDER
THE NULL HYPOTHESIS

The derivation of distributional properties of the statistic U is similar to
that of the Durbin—Watson statistic for testing serial correlation in least-
squares regression. In this appendix the main lines are indicated; more details
can be found in the classical paper of Durbin and Watson (1950) or in
Hannan (1970).

We start with a short discussion on the distribution of quadratic forms in
normal variables. Then the critical values and the bounds Uy, and Upay in
Table I are derived. Finally, we examine the distribution of the statistic U
when it is applied to least-squares residuals.

The distribution of quadratic forms of normal variables

A quadratic form is defined by:
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where u = (u,, ...
symmetric matrix ; the symbol T refers to transposition.

A well-known result from matrix algebra is that every real symmetric
matrix, A, can be diagonalized by an orthogonal transformation, H:

H'AH = A = diag (A, ..., \,) (A-2)

The term ‘“‘orthogonal” implies that H is such that HTH is the n x n identity
matrix I,,. The columns of H are orthonormal eigenvectors of A; the A;’s
are the eigenvalues of A. Let u = Hv, then eq. A-1 becomes:

m

Q = v"HTAHy = vTAv = > A\w?) (A-3)

i=1

where \;, ..., A,, are the non-zero eigenvalues of A (m <n).

We now consider the case that the elements of u are independent standard
normal variables. Then the v;’s are also independent standard normal vari-
ables, so that @ in eq. A-3 is distributed as a linear combination of indepen-
dent x? -variates (Kendall and Stuart, 1969, Ch. 15).

The numerical evaluation of the distribution of @ has been discussed by
Imhof (1961). If the eigenvalues are all distinct, Pr(@Q < q) follows from:

Pr@<q) =4 — a7t | [{ sin 6w)}wp(w))] dw (a-4)
where 0

bw) = 4 3 arctan (\w) ~dqw (A5)
and |

pw) = I (1 +\w?)vs (A-6)

=1

The integral in eq. A-4 can be calculated by the trapezoidal rule over the
finite range 0 < w < 8, making use of the fact that:

q (A-T)

(ST

The upper bound, S, should be chosen such that the truncation error is small.
This can be achieved by using the following relation:

Sm/z = 2/[7Tmts ﬁ (I)\il)l/Z] (A'S)
i=1

, U,)T denotes an n x 1 column vector and A an n xn .
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in which tg denotes an upper bound for the truncation error. In this study tg
has been set equal to 0.00001.

The derivation of the critical values in Table I

Note that under the null hypothesis (A = 0 in eq. 1), the distribution of
the statistic U does not depend on u and . Therefore, for ease of notation,
¢ = 0and o =1 in this appendix.

To derive the distribution of U, the following quadratic forms are defined
in the y,’s:

n-1
Q = (1) X {stP (A-9)
and
Q, = nD? (A-10)

We first consider the second quadratic form @,, which in matrix notation
reads:

Q, = y'™My (A-11)
with

M =1, —nlssT (A-12)
where y = (¥;, ..., ¥,)T and s is the n x 1 vector of 1’s. The matrix M has

(n — 1) non-zero eigenvalues which are all equal to 1. Application of eq. A-3
gives the well-known result that @, is a x2-variate with (n — 1) degrees of
freedom.

To obtain an expression for the quadratic form @, in matrix notation,
write for the kth adjusted partial sum S§ in eq. 3:

St = yTi, (A-13)
where ¥y =(y;, —%, . .., ¥, —¥%)T =y —3¥s and iy, is the vector with the

first & elements equal to one and the other elements equal to zero. Substi-
tution of eq. A-13 in eq. A-9 gives:

n—1 n-1
Q = (n+ 1)‘1k21 OTir)? = (n+1)"&'f( ) ikif)&
= k=1
= ITp~
= y By (A-14)

where B is the n xn symmetric matrix with entries b;; = b;; = (n —i)/
(n+1),i<j. Sincey = My:

Q = y'Cy (A-15)

with C = MTBM. The

n-1
c=m+1"' ¥ ¢

k=1
with

oF = iTM = n-
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with C = M™BM. The matrix C has the form (Gardner, 1969):

n—1
C=m+1)7" ¥ epen
k=1

with
F=fM=n'(n—Fk,...,n—k,—k,...,— k)

k n—~k

It was demonstrated further in Gardner (1969), that the matrix C has
(n — 1) positive eigenvalues:

v, = 1/[4(n + 1) cos? {km/(2n)}], E=1,...,n—1 (A-16)

The corresponding eigenvectors are denoted by p;, P2,---5 Pn-1, ie.,
Cp; = v;p;. Note that v, <v, <. . .<wv,-,, since cos? x is monotonically
decreasing for 0 <x <34w. The vector s is also an eigenvector of C with
associated eigenvalue 0.

The matrices M and C have the property that they can be diagonalized by
the same orthogonal matrix, H. A rather complicated proof of this is given in
Durbin and Watson (1950); the result is, however, immediately obtained by
noting that the eigenvectors of C are also eigenvectors of M. Application of
the orthogonal transformation y = Hz gives, for quadratic forms @, and Q;:

n-1

Q, = yTCy = 2"HTCHz = Y (vi) (A-17)
i=1
n—1

Q, = y"™My = 2"H™Hz = Y 2} (A-18)

in which the z,’s are independent standard normal variates. Since U=

Q1/Q2:
U =[ bl (v,.z,?)]/["il z,?] (A-19)

and thus:

n—1 n—

1 n—1
Pr(U<u) = Pr{ Y wz?)<u Y, z,?} = Pr { Y (v; —u)z? <0}(A-20)
i=1 i=1 i=1
This probability can be computed from egs. A-4—A-6 withm=n—1,q=0
and \; = v; —u. The critical values in Table I are obtained by calculating
Pr(U <u) for different values of u. The asymptotic values (n = o) in this
table are the same as those of Smirnov’s w? for testing goodness-of-fit
(Buishand, 1982).




66

The bounds Uy, and U,y

Because v; <v, <...<v,_;:

n-—1 n—1 n—1
vy Y, 2} < Y i) <vp- )3 2} (A-21)
i=1 i=1

i=1

n-

1
Dividing each term in this inequality by £ 2?7 we obtain the following
i=1
bounds for the statistic U in eq. A-19:
Unmin = V1 and Umax = Un-1 (A-22)

The lower bound, Uy, , is attained if the vector y coincides with the eigen-
vector p; of C, whereas U = Uy, if ¥ coincides with p,,—;.
From eq. A-16 it follows that, as n — oo

Unin 1/[4(n + 1) cos? {m/(2n)}] = [4(n+ 1)]7' +0(n3) (A-23)
and
Upax = 1/[4(n + 1) cos? {n(n — 1)/(2n)}] = (n— )72 + o(n~!) (A-24)

These approximations are already quite reasonable for n = 10.

I

The distribution of U for least-squares residuals

When the statistic U is applied to least-squares residuals, either an exact
test or a bounds test can be made. To examine these tests, the vector e =

(€1, ...,e,)T of least-squares residuals is introduced and eq. 15 is written
in the form:
U = (e"Be)/(e"e) = (e"M"BMe)/(e"e) = (e"Ce)/(e"e) (A-25)
Here use has been made of the fact that e = Me (because & = 0).

Lete = (€,,...,€,)T denote the vector of the disturbance terms in eq. 2.
Standard regression theory gives the following relation between e and €:
e = Ne (A-26)
where ,
N =1, —n'ssT —xxT/(x™%)  (A-27)
with X = (x;, —%,...,x, —%)T. The matrix N projects each vector in the

n-dimensional Euclidean space onto the orthogonal complement of s and x.
For such a projection matrix it may be verified that N = NT = N2. There-
fore, substitution of eq. A-26 in eq. A-25 gives:

U = (€"NTCNe)/(e*NTNe) = (¢"NCNe)/(e"Ne) (A-28)
Both the matrices N and NCN (= NBN) have two zero and (n — 2) positive
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eigenvalues. The positive eigenvalues of N are all equal to 1, giving the well-
known result that the denominator in eq. A-28 is a x? -variate with (n — 2)
degrees of freedom. The ordered positive eigenvalues of NCN are denoted by
vk, v%, ..., Uk-, (VE is the kth smallest positive eigenvalue).

Again it is readily verified that the matrices N and NCN can be diagon-
alized by the same orthogonal matrix L (Hannan, 1970). Analogous to
eq. A-19, application of the orthogonal transformation € = Lz results in:

U= {g (vF2? ]/["f z,?] (A-29)

i=

Through the matrix N, the v}’s and the distribution of U depend on the
x,"S.

To perform an exact test, first the v}’s must be calculated by numerical
methods, and then Pr(U < u) can be obtained from Imhof’s algorithm.

For the eigenvalues v} it can be shown that:

V; SUf S U4, i=1,...,n—2 (A-30)

from which it follows that the statistic U is bounded by the two random
variables:

U, = { 22 (vi2? ] / \zz z?] (A-31)

Uy = [ b (v,-“z,?)] / ["‘izz?] (A-32)
i=1

i=1

where the 2,’s are independent standard normal variables; the v;’s are the
eigenvalues of the matrix C given by eq. A-16. This property was discovered
by Durbin and Watson (1950); a short proof can be found in Hannan (1970).

The random variables Uy, and U are identical if ¥ coincides with the eigen-
vector p,_, of C; the upper bound Uy is attained if x coincides with p,.
Neither Uy, nor Uy depend on the x;’s. The critical points of their distri-
butions in Table II are obtained in the same way as those in Table I.

From eq. A-23, it is seen that the smallest eigenvalue, v, , tends to zero if
n— oo, As a consequence, the random variable Uy has the same asymptotic
distribution as the statistic U in eq. A-19. On the other hand, the largest
eigenvalue, v,-;, remains large compared with the other eigenvalues, and
therefore the lower bound, Uy, , does not tend to the limiting value in Table I
if n > . This is in contrast with the Durbin—Watson statistic, for which the
lower bound tends to the upper bound for large n.
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APPENDIX B — THE VARIANCE OF PARTIAL SUMS OF LEAST-SQUARES
RESIDUALS

For the kth partial sum of the least-squares residuals, we may write,
analogous to eq. A-13:

S, = eTiy (B-1)
wheree = (e, ...,e,)T. Substitution of eq. A-26 gives:
S, = €"NTi, (B-2)

Eq. A-26 holds only under the null hypothesis. However, if A # 0, then the
right-hand side of eq. B-2 remains valid for the reduced partial sums
Sr. — E(Sy). Therefore, independent of A, the variance is:

varS, = E(¢"NTi,)? = E(ifNee"N7i,) = o2%iTNi, (B-3)

because E(ee”) = 02],. Substitution of eq. A-27 gives:

var S, = o2[igl,i, —n linss i — (it 2)&xTi, )/ (T %)]
2
= oz[k—n‘lkz — { f(x,.—x)J / Z(xi—f)z]
i=1 i=1
= 0%[k(n — k) —Rk*(%, —%)*/D2]/n (B-4)

The variance does not depend on the regression coefficients a, b and A, but
it is influenced by the configuration of the x,’s.
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