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This article modihies and extends the test against nonstationary stochastic seasopality proposed by Canova
and Hansen. A simplified form of the test statistic in which the nonparametric correction for sernal corre-
lation is based on estimates of the spectrum at the scasonal frequencies is considered and shown 10 have
the same asymptotic distribution as the onginal formulation. Under the null hypothesis, the distribution
of the seasonality test stanstics is not affected by the inclusion of trends, even when modified to allow
tor structural breaks, or hy the inclusion of regressors with nonscasonal unit roots. A parametric version
of the test 18 proposed, and its performance 15 compared with that of the nonparametric test using Monte
Carlo experiments. A test that allows for breaks in the seasonal pattern is then derived. It is shown that
its asymptotic distribution is independent of the break point, and its use is illustrated with a series on
U.K. marriages. A general test against any form of permanent seasonality, deterministic or stochastic, is
suggesied and compared with a Wald test for the significance of ixed scasonal dummies. It is noted that
lests constructed in a similar way can be used to detect trading-day eflects. An appealing feature of the
proposed test statistics is that under the null hypothesis, they all have asymptotic distributions belonging
to the Cramér—von Mises family,
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1. INTRODUCTION

Monthly and quarterly economic time series are often subject
to seasonal movements. These seasonal patterns tend to evolve
over time, and most seasonal adjustment procedures assume
that this is the case. However, if the seasonal pattern does not
change, 1t can be modeled by a set of dummy variables. Indeed,
a deterministic seasonal pattern can be removed without even
estimating a time series model. All that needs to be assumed is
the number of times the serics needs to be differenced to make
il stationary (see Pierce 1978; Harvey 1989, p. 203). Adjusting
series in this way may simplify the exploration of relationships
between time series.

Canova and Hansen (19935), hereafter denoted by CH, pro-
posed a test of the null hypothesis that the seasonal pattern is
deterministic against the alternative that it evolves as a non-
stationary stochastic process. The test includes a nonparametric
correction for serial correlation and seasonal heteroscedasticity.
The aim of this article is to extend the CH test in various direc-
tions. We show how to modify the test so as to allow for the
ettect of modeling breaks in the seasonal pattern. We then con-
sider a different, but related testing problem—namely, testing
for the presence of any kind of seasonal effects, whether de-
terministic, stochastic, or both. Similar techniques can be used
for detecting trading-day effects. Before describing these ex-
tensions, we examine the CH test in more detail, look at some
alternative formulations, and compare the performance of the
nonparametric and parametric tests.

Section 2 shows how a nonparametric correction for serial
corrclation can be set up in terms of the spectrum at seasonal
frequencies. This formulation is more restrictive than the CH
test mnsofar as 1t does not allow for seasonal heteroscedastic-
Ity. Subject to this proviso, its asymptotic distribution under the
null hypothesis is the same as in the original formulation, but its

interpretation is more transparent. In deriving asymptotic distri-
butions, we relax the conditions of CH by showing that the dis-
tribution is unaffected when a deterministic trend is included
in the model; regressors with unit roots can also be included
provided that they do not have seasonal unit roots.

Parametric versions of the tests against nonstationary season-
ality can be based on structural time series models, Such models
are set up in terms of unobserved components, such as trends
and cycles, which have a direct interpretation (see Harvey 1989;
Kitagawa and Gersch 1996). The use of autoregressive models
(as in Caner 1998) is less appealing in this context, because
they may yield a poor approximation to the moving average
terms typically found in the reduced forms of structural models
(see also Taylor 2002a). The evidence provided by Leybourne
and McCabe (1994) and Harvey and Streibel (1997) suggests
that when testing against the presence of a random walk compo-
nent, a parametric approach will usually give tests with a higher
power and more reliable size. We investigate whether this is the
case for seasonality tests through a series of Monte Carlo ex-
periments. The results are reported in the final section. Along
with casting light on the relationship between parametric and
nonparametric tests, these experiments provide information on
the robustness of the nonparametric test to the order of differ-
encing.

Breaks in the trend leave the asymplotic distribution unat-
fected if they are correctly modcled by the inclusion of dummy
variables; this is proved in Section 2. Structural breaks in
the seasonal pattern are also considered. Empirical results of
Canova and Ghysels (1994) suggest that seasonal mean shifts
are not uncommon in U.S. quarterly series. Neglecting these
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shifts will bias the nonstationarity tests at both the 0 and the
seasonal frequencies. Modeling breaks in the seasonal pattern
will, however, affect the distribution of the seasonality test sta-
tistics. Section 3 shows how o construct a test statistic against
stochastic seasonality. the asymptatic distribution of which is
independent of the breakpoint location.

The parametric and nonparametric tests, with the breakpoint
modification, are illustrated by an application to a quarterly se-
ries on U.K. marriages. The point about this example 18 that
there is an identifiable break in the seasonal pattern because of
a known change in the tax laws. The modified test is trying to
assess whether it is necessary to allow for stochastic season-
ality once the deterministic break has been accounted for by
intervention dummy variables.

Section 4 suggests a general test for seasonality. This takes
the same form as the test against nonstationary scasonality, ex-
cept that scasonal dummies are not fitted. The asymptotic dis-
tribution is given, and the performance of the test is compared
with that of a Wald test for the significance of fixed seasonal
dummies. Similar techniques are used to construct a test for the
presence of trading-day effects.

A unifying feature of the test statistics is that under the null
hypothesis, they all have asymptotic distributions belonging to
the Cramér—von Mises family, These distributions differ ac-
cording to the deterministic components fitted and a degrees of
freedom parameter. The same distributions arise in tests against
nonstationary trends as noted by Harvey (2001).

2. TESTING AGAINST THE PRESENCE OF A
NONSTATIONARY SEASONAL COMPONENT

In this section we develop the trigonometric form of the test
against nonstationary stochastic seasonality, show that it is lo-
cally best invariant, give nonparametric corrections for serial
correlation, and show how to set up a parametric test. We then
use Monte Carlo simulation experiments to compare the per-
formance of the parametric and nonparametric tests in small
samples.

2.1 The Testing Framework

Let vy be a scalar time series, let s denote the number
of seasons In a year and let Z; = {:"“. ...,;;,"TM,.E“]IJ be an
(s — 1) vector of trigonometric seasonal varables, that is,
zip =(cos2mjt/s, sin2mjt/s), j=1....,5", where s* =5/2 — 1
if s is even or [s/2] if 5 is odd, whereas z3/2, = (—1)" if 5 is
even. The jth pair of trigonometric terms, gj, corresponds to
the jth harmonic seasonal frequency, A;=2mj/s, j=1,... 5"
When s is even, the last element of Z;, 7j5/2);, corresponds to the
Nyquist frequency, A[s/2) = .

The test against stochastic seasonality 1s developed in the
context of the following unobserved components model:

yy= g+ 8+ & bss Lo ds (1)
=X, (2)
Se==Z, (3)
and
Ay =Av 1 + K4, (4)
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where X, is a p x | vector of linearly independent determinis-
tic regressors with associated coetficient vector #, s, 15 a time-
varying seasonal component with Z; defined as earlier, A is a
known (s — 1) % k selection matrix with rank k < s — 1, and
g, and x, are mutually uncorrelated mean 0 disturbances with
variances o2 and oW, The initial value yq is assumed to be
fixed.

The aim is to test the null hypothesis that the seasonal com-
ponent is deterministic, Hg : o7 = 0, against the alternative that
it has unit root behavior, H, : a2 > 0. Following CH, the matrix
A is used to formulate tests at subsets of the seasonal frequen-
cies Ay, ..., Ay2p- If the test 1s to be carried out at the single
frequency 4;, then we let A; denote the (2j — I)th and (2j)th
columns of I, forj < s/2 and the (2j — 1)th column of /; | if
j=41/2; I denotes an identity matrix of dimension k. When all
of the seasonal frequencies are considered, A = [, ).

2.2 Locally Best Invariant Test

Under Gaussianity, the locally best invariant (LBI) test for
the null hypothesis of deterministic seasonality for the model
(1)-(4) can be easily obtained from the results of King and
Hillier (1985) [which also show that the test is a one-sided La-
grange Multiplier (LLM) test] and Taylor (2003a).

Specifically, let e;, t =1, ..., T, be the ordinary least squares
(OLS) residuals from regressing v, on (X;, Z;)" and let 62 =
T-'3°T  ¢? be their sample variance. Let a; = 1 if j = 5/2 and
a; = 2 otherwise.

First, consider each seasonal frequency, 4;.j = 1,...,[s/2]
in turn, that 1s A = A;, in the model (1)-(4). Then, under Gaus-
sianity, the LBI test for testing Hy : 02 = 0 against Hy : 0 > 0
rejects for large values of the statistic w;, defined as

;
iy Gy
wj=£:J-T 9] Z

f=]

{

E Ejﬁﬂﬂljf -+ E Efﬂil’liﬂ) :

1=1 f=

i=1,...10s/2]. )

Note that when s is even, the test statistic at the Nyquist fre-
quency, (g2, can be written without the terms e; sin As/2i, be-
cause they are identically 0O,

A complete test against nonstationary seasonality at all fre-
quencies, (1.e., A = I,_ ) rejects for large values of the statistic
obtained by adding up the test statistics for each individual fre-
quency, namely

(6)

This test 1s LBI for a model where under the alternative hypoth-
esis, the coetficients corresponding to each seasonal frequency
rj.j=1...., 5% evolve as mutually independent random walks
with variances o, and if s is even, then the coefficient for fre-
quency 7 is a random walk with variance # /2. Thus W is an
identity matrix unless s 1s even, in which case the last element
in the main diagonal is 1/2,

el : el :
Under iy, w; — CvM(a;) and @ — CvM(s — 1), where

CvM (k) denotes a Cramér-von Mises random variable with &

5f2]

degrees of freedom and Zj | aj=s—1.Gaussianity of the ¢;’s
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is not needed; all that is required is that they be martingale dif-
ferences satisfying the conditions of Andrews (1991, p. 823) or
Stock (1994, p. 2745). The proof is a special case of Proposition
| in the next section.

2.3 Nonparametric Correction for Serial
Correlation Based on the Spectrum
at Seasonal Freguencies

Serial correlation in the stationary component of (1)-(4)
can be treated nonparametrically by replacing the sample vari-
ance, 62, in w; with an estimator of the spectrum of &, at fre-
quency A;. We denote this spectral nonparametric test statistic

by
om = G 2=t [Ty eicosyi)® + (T eisind)’
{r m 1. )
’ T28(Aj; m)
j=lye 812 €D
where
m
R(Ajim) = Z W(T, m)Ye(T)COS AT (8)

E=—in

1s the estimator of the spectral generating function, w(t, m)
is a weighting function or kernel, such as wit,m) =1 — ||/
(m+ 1), and ye(r) =T~ Z,‘r_;r+] e1€;—¢ 1s the sample auto-
covariance of the OLS residuals at lag . Alternative options
for the kernel w(., -) have been examined by Andrews (1991,
p. 821). For testing all of the seasonal frequencies, the spectral
nonparametric statistic 1s

Is/2]

wim) = wj(m).
j=1
Under the assumptions set out later, the asymptotic distrib-

utions of the foregoing test statistics under the null hypothesis
are the same as given in the preceding section.

Assumption Al. X; is a p x 1 vector of deterministic regres-
sors, and Dy 1s a (diagonal) scaling matrix such that
.
- — 1 I ' ry— |
(a) Tlﬂljﬂc- T Zl.-"l_,- XX, Dy’ =Qy
.
and
.
lim 77! % D7'X,Z, =0,

T—xa

(b)

=]
where (J, 1s a positive definite matrix.

Assumprion A2, The &;'s have the structure of a linear
process, & = Y (L)e;, where {¢} is a martingale difference
sequence satisfying the conditions of Stock (1994, p. 2745)
and Y(L) =1 4+ Y 5, ¢;L' is a polynomial in L, the con-
ventional lag operator, L*y, = y,4, k =0,1,..., satisfy-
ing (a) Y(exp{i2ni;/s}) #0 for all j =1,...,[s/2] and
(b) X o2y k|| < oc.

Assumption A3. The lag truncation parameter, m, is such
that, as T — oo, m — oo and m/T"/? — 0.
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Proposition . Let vy, be generated by the model (1)-(4) un-
der the assumptions A1-A3. Then, under Hy : o7 = 0, when
A=A, j=1,...,[s/2],

I
i o .
m_;{m] i f Bﬂj[r} Hﬁi{r:l = C"’“‘“ﬂ‘
0

when A =1,_;, w(m) i CvM(s — 1), where Bi(r) = Wi (r) —
rWi(l), and Wi(r), r € |0, 1], denotes a k-dimensional stan-
dard Wiener process. Under Hy : o> > 0 and when A = Aj,
J=1,....15/2], wj(m) and w(m) are O, (T /m).

Proposition | extends the results given by CH to allow for a
general specification for the deterministic trend u,; CH gave
as a constant level. The limiting distribution is unchanged pro-
vided that the regressors X, satisfy assumption Al. In particular,
contrary to what CH (p. 238) stated, the maodel can include lin-
ear trends. Structural breaks in the trend at known points can
also be included. Thus if X, = (1, r,d,(«)). where d,(«) is a
dummy vanable equal to | for7 > a7 with 0 < ¢ < | and equal
o O for r < T, then assumption Al is satisfied by choosing
Dy =diag(1, T, 1).

Concerning the propertics of the disturbances, ¢,, condition
(a) of assumption A2 rules out a 0 in the spectrum at any of the
seasonal frequencies 4;, j= 1. ..., [s/2], whereas condition (b)
ensures that poles do not exist in the spectrum. These conditions
are satisfied by any finite-order stationary and invertible ARMA
processes. Assumption A3 is required to achieve consistency
of the test under the (fixed) alternative 4 : r:rf > () (see Stock
1994, pp. 2797-2799).

Model (1)-(4) can be extended by including stochastic re-
gressors with nonseasonal unit roots, and following the line of
the proof of Proposition 1, it can be shown that the asymp-
totic critical values for the tests in the augmented model are
unchanged; the proof 1s omitted here but is available from the
authors on request. Such regressors were ruled out by CH, who
stated that “the explanatory variables may be any non-trending
variables that satisfy weak dependence conditions.” The gen-
eralization is of some practical importance. Note that the pres-
ence of cross-correlation between &, and the disturbance vector
driving the stochastic regressors is not important for our testing
seasonality; unless we are interested in making inferences on
the coefficient vector of the regressors, there is no need to use,
say, 4 fully modified least squares procedure instead of OLS.

In summary, the inclusion of deterministic trends and sto-
chastic integrated regressors does not affect the asymptotic dis-
tribution of the seasonal test statistics. However, the inclusion
of seasonal slopes does affect the distribution, just as it does
for tests ol seasonal unit roots, as discussed by Smith and Tay-
lor (1998) and Taylor (2003a). Given the obvious parallels with
stationarity tests, it is not difficult to see that the change in dis-
tribution is the same as when a time trend is fitted before a sta-
fionarity test statistic is constructed. The critical values, once
again from the Cramér—von Mises family, are as in table 2 of
Nyblom and Harvey (2000)). For quarterly data, the 5% critical
value for an overall test, based on 3 df, is .337. (There is actu-
ally a typographical error in the published table, with the value
printed as .332.)

Dummy variables introduced to capture breaks in the sea-
sonal pattern will also affect the distribution of test statistics.
This 1s the subject of Section 3.
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2.4 The Canova—-Hansen Test Statistic

The test statistic proposed by CH in the framework of (1)—(4)
takes the form

;
g (m) = T *trace (A’?Z(m]ﬁ}_ IA; Z S,S;A) \ (9Q)

t=|

. Zie; and Q(m) 1S a nonparametric estimator
of the “long run variance” of Z&,. that 1s,

where §;, = Zf

ﬁ{’m}: Z w{r,m}?(r]. (100

Tr=—m

where w(r,m) is a kernel as in (8), and F(r} '
EE".._H_} Zyere;—¢Z, . is the sample autocovariance matrix at
lag 7 formed from Z;e;. The main difference between (9)
and w(m) is that (9) allows for seasonal heteroscedasticity
as in Andrews (1991, p. 839); see CH (p. 240). Under the

null hypothesis Hy : 07 = 0, the asymptotic representation of

i : d
(9) corresponds to that of Proposition 2, that 18, wq(m) —

CvMirank(A)).

2.5 Parametric Tests

A structural time series model typically contains stochastic
trend and seasonal components, together with an irregular. This
model can be extended in various ways; for example, by in-
cluding a cycle, However, for many economic time series, the
flexibility of the stochastic trend is such that the model can still
adequately capture seasonal movements if a cycle 1s excluded.
We now consider how to set up a parametric test of whether the
seasonal component in a structural time series model 1s stochas-
tic.

If the process generating the nonseasonal part of the model is
known, then the LBI test against stochastic seasonality is con-
structed from a set of “smoothing errors.” As shown in Appen-
dix B, the smoothing errors are in general serially correlated,
but the form of this serial correlation may be deduced from the
specification of the model, thereby allowing construction of a
statistic with a Cramér—von Mises distribution asymptotically,
under the null hypothesis. The computation of smoothing er-
rors has been discussed by de Jong and Penzer (1998), but 1f
the model contains a serially uncorrelated irregular component,
then 1t can be shown that the smoothing errors are proportional
to the optimal estimates of this component.

An alternative possibility is to use the T standardized one-
step-ahead prediction errors, the mnovations, calculated by
treating nonstationary and deterministic components as having
fixed initial conditions. No correction is then needed; the sta-
tistic 18 of the form (5) and has the same asymptotic distribu-
tion. Calculating innovations under the assumption that the ini-
tial conditions are fixed requires that the initial conditions be
estimated, but a backward smoothing recursion can be avoided
simply by reversing the order of the observations and calculat-
ing a set of innovations starting from the filtered estimator of
the state at the end of the sample. Actually, the forward and
backward innovations are not the same. and in neither case do
the sums, weighted by cos 4;r and sin 47, equal (), so statistics
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formed from forward and backward sums are different. Fortu-
nately, the asymptotic properties are unaftected. Smoothing er-
rors do not suffer from these ambiguities.

For both the smoothing error and innovation forms of the
test, nuisance parameters normally will have to be estimated.
For stationarity tests, Leybourne and McCabe (1994) argued
that this is best done under the alternative using maximum like-
lihood. Proceeding in this way has the compensating advantage
that because there often will be some doubt about a suitable
model specification, estimation of the unrestricted model af-
fords the opportunity to check its suitability by the usual diag-
nostics and goodness-of-fit tests. Once the nuisance parameters
have been estimated, the test statistic 1s calculated from the 1n-
novations obtained with crf sel to 0. The asymptotic distribution
under the null is unaffected.

2.6 Monte Carlo Experiments

This section compares the probability of rejecting the null
hypothesis of constant seasonality for the nonparametric tests
of Sections 2.3-2.4 and for the parametric test of Section 2.5
based on a correctly specified model. The results offer guidance
in assessing the effectiveness of the two approaches as well as
establishing the reliability of the tests in terms of actual, as op-
posed to nominal, size.

The data-generation process 1s the basic structural model
(BSM), consisting of seasonal and stationary components com-
bined with a local linear trend, pt,. Thus

Vo= +Zy +e, &~NIDO,a?), t=1,....,T, )

where

Jot = Jy—1 + P10, o~ NID(©O,a;)  (12)

and

Bi=Bi—1+&, L~ NIDO,ay), (13)

with y; as in (4) with A = W = [, The relationship between this
seasonal model and the one of Harvey (1989, chap. 2) has been
discussed by Proietti (2000).

The probability of rejection depends on the seasonal signal-
to-noise ratio, ¢, = o> /o7, although in the tables we prefer (o
report the square root. Empirical size and power of the tests
are computed for a, /o, taking the values 0, .01, 025, .05, .1,
and .5. The results are for quarterly series of length T = 200.
The empirical rejection frequencies, reported in percentages,
are based on 50,000 replications and refer to tests run at the
5% significance level. Results for testing at a single frequency,
m/2 and 7 in turn, and for the joint test at both frequencies
are provided. The program was written in Ox using the SSF-
pack set of subroutines of Koopman, Shephard, and Doornik
(1999).

The first set of experiments, the results of which are given
in Tables 1, 2, and 3, is for the data-generating process (11)-
(13) with r.r{1 = (), so the trend 1s a random walk with constant
drift, B. The performance of the tests does not depend on the
value assigned to ¢, and so it can be equal to 0. The critical fac-
tor in the nuisance parameters is the level signal-to-noise ratio,
gy = a2/al, and ¢,/% is set to .1 in Table 1, .5 in Table 2, and
1.0 in Table 3.
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Table 1. Rejection Frequencies for a Random Walk Drift Plus Noise Model With oy fop = .1
Farametric tests
Model Known Model estimated BSM estimated Nonparametric tests .
5 thing Smoothing Smoothing Spectral: Levels  Spectral: FD G{-r: L evels CH: FD

ay fo  Innovalions ermrors Innovalions errors Innovations eIrors m=4 m=28 m=4 m=8 m=4 m=8 m-4 m=28

i=m/2 0 510 4.82 5.63 5.85 5.56 5.42 4,28 4.30 475 4. 47 384 324 416 3.49
010 8.52 8.10 9.36 8.97 9.23 8.80 7.31 7.23 .77 7.31 632 549 6.7 5.61

025 26,78 27.50 31.52 33.47 31.23 33.19 2475 23,93 2533 2436 2252 20.24 2329 20.42

050 60.37 64.35 74.13 77 .96 74.07 77.78  58.80 56.68 58,78 5656 5636 5243 56844 52.01

100 BB.27 92 .61 05 54 98.31 95,40 98.15  B6.82 B3.86 H6.95 8327 8549 8142 84,54 B0.45

500 96.75 100.00 98.70 100.00 98.70 100.00 98.70 06.71 g7.72 9589 9841 9550 97.21 94.37

Fe 0 5.13 4.89 8.58 8.83 6.92 6.96 4.53 4.465 646 535 453 446 6468 535
010 10.01 9.53 14.92 15.26 14.67 15.04 8.61 8.35 1124 971 861 B35 11.24 9.71

025 30.44 30.77 40.51 41.64 40.33 41.44  27.82 26.54 3149 2810 2782 26.54 3149 28.10

050 58.05 60.71 74,66 77.40 74.28 77.04 5448 50.B0 5746 5247 5448 5080 57.46 5247

100 80.04 86.91 891.25 86.00 891.00 95.7% 76.73 60.92 7889 71,23 7673 69892 7889 T1.23

500 94.05 100,00 08 43 100.00 96.50 100.00 92.12 83.20 893.08 B3iBg4 5H212 8320 593.08 B83.84

Jaint 0 501 4.60 8,58 9.79 £.00 6.91 4.98 3,895 5.28 4.55 3.1 2.45 4.29 2.83
010 10.32 10.24 15.76 16.23 15.89 16.05 8.61 8.14 10.63 9.28 7.13 5.27 8.93 8.02

025 40.93 41.668 47 .25 48.18 46.99 47.90 36.71 34.61 40.00 3652 3284 2680 3594 258.88

050 81.31 B2 .98 87.19 87.78 86.86 g87.38 77.68 74.84 7927 7570 7507 68.70 76.94 69.47

100 q7.76 98.77 99.46 99.52 99.29 09.34 96.32 04 .47 96.63 9463 9556 92.11 9585 08225

500 100.00 100.00 100.00 100.00 100.00 99.95 09993 9948 09.96 9913 99393 9907

100.00

99.53

The spectral nonparametric test and the CH test are ap-
phied both to levels and to first differences with the lag trun-
cation parameter, m, set to 4 and 8; CH used 3 and S for
T' = 50 and 150. The parametric test statistics are computed
first assuming that g, is known (with results in the columns
headed *Maodel known™) and then with 1::r;;1 and UE estimated
by maximum likelihood under the alternative hypothesis (in
columns headed “Model estimated™). In addition. the BSM
model is also estimated; thal is. the constraint that the slope
vartance 1s 0 18 not imposed (with the relevant columns headed
“BSM estimated”). The parametric test results are shown for
innovations, computed starting from a smoothed estimate of
the initial conditions, and for smoothing errors; compare Sec-
tion 2.5.

Table 2. Rejection Frequencies for a Random Walk Drift Plus Noise Model With oy Jor = .5

The main findings of Tables 1, 2, and 3 are as follows:

a. Although the empirical sizes (rows with o, /o, equal to 0)
of the paramelric tests with g, known are very close to the nom-
inal 5%, the tests with g, estimated are somewhat oversized at
frequency . The parametric joint tests for overall seasonality
are similarly oversized, with the actual sizes being around .09
in most cases. It is interesting to note that the autoregression-
based tests reported by Caner (1998, table 1) display even more
oversizing.

b. There appears a slight power advantage for a parametric
test constructed from smoothing errors, rather than from inno-
vations, when testing at a single frequency (particularly when
the smaller empirical size of the parametric test is taken into
account); for example, for A = 7 /2 in Table |, the estimated

Parameing lesls

=

Modeal known

----- [

Nonparamelnc fests

Mode! estimated BSM estimated =
Smoothing Smoothing o Smoothing Spectral: Levels  Spectral: FD  CH: Levels ~ CH: FD

ay /oy Innovations ernnomns Innovalions errors Innovations arnrons m=4 m- 8 m=4 m=8 m=4 m=8 m=4 m-8
A=N/2 0 5.34 4.90 5.54 5.98 b.42 5.1 1.06 1.92 4.77 4.63 .H6 124 423 342
010 7.73 7.35 .74 9.28 B.58 9.13 2.01 .21 7.16 6.86 1683 229 635 5.28
025 24 57 24 96 28.68 30.49 28.50 30.20 10.41 13.56 2313 2203 898 1037 21.35 18.63
050 57.16 60.63 70.62 74.25 70.46 73.99 39.18 43.43 5588 5400 3651 38.30 53.47 4922
100 B4 .46 90.98 094 .42 97.66 94,37 9/7.64 76.24 76.88 8441 8160 7437 7324 B2B1 TBA9
500 96.58 100.00 88.65 100.00 98.63 100.00 898.30 096.36 97.67 8577 4787 9508 97.20 94.31
A=l 0 5.18 4 93 9.26 9.42 B.2R B.4a7 1.47 2.40 B.13 h.18 1.47 2.40 6.13 2.18
010 9.87 9.35 14,91 15.18 14 .65 15.01 3.39 4.60 10.8B0 6.30 3.39 4.60 10.80 9.30
025 29.39 29.62 438,97 40.02 38.75 39.76 16.26 19.20 3042 2728 16.26 1920 3042 27.28
080 56.78 59.37 72.99 76.27 72.28 74.61 42.75 44 25 56.52 51.52 4275 4425 5652 5152
100 80.15 85.93 g91.14 895.19 90.91 95.08 BH.89 65 94 77919 7039 68.89 B594 77.91 70.39
500 94.41 94 .99 96.83 100.00 96.72 100.00 91.44 82.98 93.01 B83.77 9144 8298 93.01 83.77
Joint 0 5.19 4.60 9.27 9.51 B.67 8.73 .80 1.42 5.31 4 .59 55 68 429 279
010 9.71 .49 15.49 15.88 15.22 15.66 1.98 3.44 10.03 8.73 1.40 1.77 B.26 5.85
025 38 25 38.58 44.78 45.73 44 .38 45. 31 15.72 20.19 3740 33.73 1250 1357 3364 2827
050 78.81 80.40 B4.65 85.30 84.18 B84.81 &7.70 61.84 7692 73,18 5330 53.24 7414 6680
100 a7.29 98,27 99 28 99,29 99.20 99.22  91.18 90.61 9599 9390 B89.07 B7.13 9501 91.56

500 100,00 100.00 100.00 100,00 100.00 100,00 99.93 99.92 9848 9987 OBS54 9993

99.47 99.00
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Table 3. Rejection Frequencies for a Random Walk Drift Plus Noise Model With oy, jor = 1
| Parametric tesis _
Model known Model estimated B5SM sestimated Nonparamenc tests
Smoothing Smaothing Smoothing Spectral: Levels Spectral. FD CH. Levels CH: FD

ay foe Innovations BITors Innovations BIrors Innovations Brrors m=4 m=_§ m=4 m=8 m=4 m=8 m=4 m=8§8

A=m 2 0 5.3 4.83 5.33 5.69 4.949 .35 6 o 4.90 4.56 J0 -y 417 3.44
010 7.08 &.680 7.4F 7.84 7.07 7.81 a0 1.02 6.61 850 24 B1 5.64 4 64

025 19.11 19.46 22.73 24 38 2e .32 24 22 1.88 4 35 1R.50 17.66 1.56 276 16880 14.65

050 49.25 52.78 61.01 65.18 61.67 65 .66 15.46 22 57 48.37 4647 1351 1816 48235 4183

00 79.83 B6.35 91.44 95.48 91.64 95.43 52.77 60.19 7878 T7A1S5 5013 5499 7828 73.97

500 a95.77 100.00 98.26 100.00 98.24 100.00 96.92 95.14 97.52 9548 96.32 93.81 9694 9414

=T 0 5.04 4 82 9.749 9.98 9 45 9.689 38 B7 5.83 4 .91 356 R-Fi 5 B3 4 .91
010 9.20 B.90 14.65 14.97 14,32 14.55 .01 1.77 9.66 8.60 81 177 966 880

025 26.84 26.54 35.90 36,682 45.48 36.23 5.82 9.60 27.23 2457 5.82 9.60 27.23 24.57

0RO 53.92 5a.70 68.22 70.61 68.29 70.52 24 .40 30.80 b3.04 48.54 24.40 30.B0 53.04 48.54

100 78.30 83.23 £29.99 93.54 90 .54 93.51 Hd hA HH.48 fa.64 &6HAH0 5H36HH HE4B 7564 6GH.HD

.500 95.01 99.98 96,95 100.00 a7.04 99.99 89 56 81.93 0283 8365 B85 81983 9289 8365

Joint 0 4.93 4.49 9.68 9.895 927 9.48 A0 36 4.99 4.54 03 g2 4.08 2.76
M0 B 61 H.22 14.42 14.91 14.27 14.67 18 59 8.96 .72 .09 23 713 4,76

025 a32.04 31.82 38.02 38.91 38,92 38.8h <.83 6.41 J1.43 28B.24 2.00 4.4h 2784 21.55

.050 72.27 73.83 78.72 79.39 78.93 79.71 25.60 36.60 7026 66.48 2138 27.01 &7.22 5991

00 95.79 97.10 26.48 96.65 98.1¢6 98.33 72.44 78.29 9422 9167 6882 7T1.67 92,94 88,96

500 100.00 100.00 100.00 100.00 100.00 100.00 99.74 99.25 99,92 9947 99.60 98.58 99689 98.85

rcjection probability s .64 versus .60 when the model is known
and .78 versus .74 when the model is estimated. This advantage
seems to vanish for the joint tests.

c. Estimating the extra parameter, ¢, = r:rffr;r,_? in the more
general BSM model has no adverse effect on the performance
of the parametric test. On the contrary, there is a slight improve-
ment in size in that it is closer to the nominal; for example, in
Table | the empirical size of the joint test 1s .07 when a BSM 18
estimated, compared with .10 when the trend 1s a random walk
with dnft.

d. Regarding the nonparametric tests in first differences,
only a small drop in the rejection probabilities occurs when
moving from m = 4 (0 m = 8. The seasonality (est seems
less sensitive to lag length than the test of Kwiatkowski,
Phillips, Schmidt and Shin (1992); compare the comments of
CH (p. 246). However, m should not be set too small. Our sim-
ulations tor the joint test with m = () (unreported in the tables)
showed rejection frequencies of 14.5, 13.4, and 11.0 for the
models in Tables 1, 2, and 3.

¢. The nonparametrc test in levels has a much lower proba-
bility of rejection than the corresponding test in first differences
when q,l}-"rz 1s .5 or 1 (see Tables 2 and 3). This is due to the pres-
ence of a so-called unattended unit roor at trequency 0 when
the tests are run in levels, In fact, Busetti and Taylor (2003) and
Taylor (2003b) have demonstrated that, although they are con-
sistent, the nonparametric tests would suffer from a great loss
of power if that unit root were not removed by taking first dif-
ferences of the data. Indeed, these authors showed that under
the null hypothesis of deterministic seasonality, the test statis-
tics (5), (7), and (9) all converge in probability to 0. This is also
confirmed in Tables 1, 2. and 3; in Table 3, where o), /o, is equal
to 1, the joint test in levels has a size of nearly (.

f. The parametric tests show higher rejection frequencies
than the nonparametric tests, but any assessment of power must
be considered in terms of the larger size. Overall, the loss in
power resulting from using nonparametric tests is not great.
For example, in Table 3, A = /2, where the empirical size of

the innovation-based parametric test is broadly comparable to
that of the spectral nonparametric test in first differences with
m = 4, the powers for a seasonal signal-to-noise ratio of .05°
are around .60 and .50.

g. The nonparametric tests perform relatively better than the
results for stationarity tests (at the 0 frequency) would sug-
gest. This 1s because in the experiments reported in the liter-
ature (e.g., Leybourne and McCabe 1994), the process gen-
crating the stationary part of the model—typically a first-
order autoregression—interferes with the unit root process.
This problem does not arise with the data-generating processes
considered here and 1t would be unlikely to arise even if a first-
order autoregressive process were to replace the white noise ir-
regular.

The second group of experiments, reported in Tables 4 and 5,
1s for the so-called smooth trend model; the data-generating
process is given by (1 1)=(13) with n’jf = 0. The relevant signal-
to-noise ratio 1s now ¢, . The parametric model is estimated both
with and without f,:r,? set to U; the results are given in the columns
labeled “Model estimated” and “BSM estimated.” The nonpara-
metric tests are run after taking first differences and after taking
differences a second time. Although in theory, the first differ-
ence operator should be applied twice to avoid the power loss
induced by the presence of unattended unit roots, Table 4 indi-

cates that for qéf 2= .1,10 significant loss occurs if only first
differences are taken. In fact, in this case first differences may
be preferable, and becausc c;:_'ﬂ" 15 often smaller than .| for eco-
nomic time series, basing tests on first differences may be a
good strategy.

The conclusions with respect to size and power that emerge
from Tables 4 and 5 are similar to those reached for the ran-
dom walk plus drift model of Tables |, 2, and 3. The parametric
tests are somewhat oversized but have a higher probability of
rejection under the alternative. Again, there is no disadvantage
to fitting a more general local linear trend model when carrying
out the parametric tests.



426 Journal of Business & Economic Statistics, July 2003
Table 4. Rejection Frequencies for a Smooth Trend Flus Noise Mode! With o /o — .1
Farametric tests
Model known Model estimated BSM estimated Noarameing 1asis

Smoathing Smoathing Smooathing Spectral. FD'  Spectral: Double FD CH: FD CH: Double FD
ay /oy Innovations  ermors  Innovations  errors  Innovations  errors m=4 m=8 m=4 m=4 m=4 m=8 m=4d =8
L=m/2 0 5.36 4.77 5.58 5.86 6.19 6.43 422 422 235 2.96 365 329 182 222
010 8.76 B.11 9.32 9.83 10.06 10.57 715 7.05  4.20 513 .17 518  3.39 3.71
025  27.18 27.64 J1.82 33.62 33.02 3484 2411 23868 18.19 19.98 2235 1959 1579 1572
080  60.56 64.32 74 .27 77.68 75.18 7857 57.76 55.99 50.73 51.80 55.52 5145 47.95 46.82
400 B8B.37 92 50 95.54 88.30 95.59 98.36 8553 83.07 80.76 79.93 84.15 B0.36 7906 7693
500  96.78 100.00 98.68 100.00 98.66 100.00 97.70 9591 9543 04 .34 9718 9436 9461 9252
A=m1 0 5.13 4,82 B.66 B.B1 9.28 9.44 B16 527  7.41 5.87 6.16 527  7.41 5.87
010 9.99 0.43 14 B3 15,12 15,85 16.168 1085 960 1253 10.52 10.86  9.60 1253 1052
025  30.59 30.82 40.69 41.68 41,78 4278 3097 2780 3317 29.07 30.87 2780 3317 2907
050  58.03 60.74 74.38 77.03 74,98 77.95 5715 5230 58.90 53.12 5715 5230 5BO0D 5312
100 8072 86.97 91.31 95.73 91.52 8591 7883 71.02 79.90 71.80 7863 71.02 79.90 71.60
500 9406 100.00 96.32 100.00 96,38 100.00 9308 8382 9354 84.05 93.08 83.82 9354 B4.05
Joint 0 5 21 4.56 9.49 9.69 10.23 10.53 4.68 419 367 3.51 382 284 289 2.14
010 10.65 10.06 15.66 16.02 16.79 17.22 882 BBS  B.26 7.81 818 578 6.9 4.85
025  41.15 41.44 47 .45 48.25 48.95 4987 3B70 3577 3510 32.90 34.31 2798 3112 25.48
050 81,04 B2.75 87.35 87.88 87.87 B8.42 7B.58 7529 7591 73.16 75.93 68.87 72.82 66.50
100 97.82 08.77 99.46 99.53 99,46 39.54 9648 9447 9572 93.86 B5.62 9217 9470 91.15

500 100.00 100.00 100.00 100.00 ©99.83 9948 99.91 699,34 0992 09.06 99.81

100,00 100.00

98.73

Because the models used in the foregoing simulations do not
exhibit seasonal heteroscedasticily, it is not surprising that the
spectral nonparametric test performs slightly better than the CH
test. However, once seasonal heteroscedasticity is present, the
situation changes. For example, with a model consisting of a
seasonal plus white noise with variance in the four quarters of
I, 3,5, and 7, the size of a w(4) test for T = 1,000 was esti-
mated to be .080, and that of a w4 (4) test was .038. Thus the CH
size 1s closer to the nominal .05. However, with g = .025, the
estimated probability of rejection was 458 for w(4) and .662
for wa(4). Although this is a rather extreme case, it does illus-
trate the point that when seasonal heteroscedasticity is present,
the CH test not only 1s more robust with respect to size, but
also may show a higher probability of rejection away from the
null.

Table 5. Rejection Frequencies for a Smooth Trend Plus Noise Mode! With agfop =.5

S FTR

3. DETERMINISTIC BREAKS

IN THE SEASONAL PATTERN

In this section we consider testing against nonstationary sto-

chastic seasonality when there is a break in the seasonal pattern
at time [aT'], @ € [(), 1]; that is, we replace (3) with

si=Z,yr + di(@)Z,6,

(14)

where d;(@) = 1 (t > aT) is a break dummy variable. The
model now 1mplies that the coefficients of the seasonal terms
have changed from y; when ¢ < [T to ¥, + 0 when 1 > |aT].
We focus on the nonparametric tests, although of course the

same 1ssues arise with the parametric versions.

Farametric rs5{§

Nonparamelric tests

Model known Model estimated BSM eslimated @ — -
Sinod mm& Smoothing Smoothing Spectral: FO  Spectral: Double FD CH: FD CH: Double FD
ox jos Innovations  errors  Innovations  errors  Innovations  errors m=4 m=8 m=4 m= 8 m=4 m=8 m=4 m=24
A=mf2 0O 5.33 4.69 5.563 5.84 5.50 5.90 B& 1.48 2.58 316 T2 08 218 219
010 8.47 7.63 B.95 0.38 9.05 9.57 1.67 2.65 4.16 5.21 1.40 1.98 3.53 3.79
025 25.64 25.78H 30,50 32.16 30.74 32.52 9.62 12.99 17.74 19.08 8.24 9.65 15.46 15.15
050 58.43 B1.89 71.84 75.58 71,84 75.88 a7.57 4220 4542 50.46 34.94 37.30 46.87 45 58
AD0 85.49 91.48 94,79 97.81 94.70 H7.84 73.48 75.22 80.14 79.29 .77 7176 7833 16.27
500 96.55 100,00 98,50 100.00 98,41 100.00 a7.30 9553 09536 94.26 B6.76 93968 0462 9259
A== 1T 0 5.16 4.85 B.78 8.96 3,63 9.87 2.77 3.26 7.29 5.77 2.77 3.26 7.29 .77
10 10.06 9.51 15.07 15.42 16.24 16.51 H.98 B.5R 12.36 10.29 5.98 6568 12.36 10.29
025 30.02 3011 40.20 41.30 41.63 42.65 2220 2292 32.78 28.82 2220 2292 3278 2882
050 57.88 60.12 74.13 76.489 74.78 77.29 48.58 4734 5B8.51 52.94 48.08 47.34 5B.51 52.94
00 80.89 86.57 91.24 95.43 81.61 05 66 7290 68.13 79.73 71.47 7280 68813 7973 71.47
500 94.40 99.99 96.66 100.00 96 .88 100.00 92.68 8356 93.52 83.99 9263 B356 0352 83.99
Joint 0 5.20 4.22 9.47 89.80 10.10 10,37 1.07 1.42 3.67 3.50 .69 A3 3.04 2.08
010 10.32 9.40 15.88 16,28 16.67 17.03 2.54 3,63 8.24 7.74 2.03 2.09 6.73 4.78
.025 39 61 39,80 46.24 47,09 47.20 48.03 18.81 2188 34.10 32.14 15.80 1537 3038 2480
050 79 .96 81.51 B86.02 86.589 BE&.47 87.06 5098 6282 74.86 72.25 H5.H3 bH482 T2.02 65.50
100 97 .52 98.50 99.36 99.38 99.37 95940 91.15 9081 95.53 §3.34 B9.11  B7.18 9444 00.94
500 100.00 100.00 100.00 100.00 100.00 100.00 99.43 99.M 899.34 99.82 9892 9982 98.71

99.68
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It is initially assumed that the breakpoint parameter, «, is
known. Extensions to situations in which the breakpoint is un-
known are discussed 1n Section 3.3.

When there 1s a break 1n the seasonal pattern, the nonparam-
etric test statistics wj(m), w(m), and w4 (m) of the preceding
section must be constructed using the OLS residuals from re-
gressing y, on (X[, Z;, d/(«)Z;)'. Their asymptotic representa-
tions under the null hypothesis are no longer Cramér-von Mises
with a;j, s — 1, rank(A) df, but rather they depend in a rather
comphicated way on the breakpoint parameter . However, a
simple modification yields test staustics, the null limitng dis-
tributions of which are still Cramér—von Mises but with degrees
of freedom equal to 2a;, 2(s — 1) and 2 rank(A). This extends to
the seasonal case the modification to the [.BI test at frequency
0 suggested by Busetti and Harvey (2001). The parametric test
can be modified along the same lines.

3.1 Modified Test With Seasonal Break

The modified seasonal break spectral nonparametric statistic
for testing against nonstationary seasonality at frequency A; is
defined as

"y
aj 3 1= Citki

2(0j: m) (1)

w; (o; m) = J=1io Ls/2].

where

I 2 | 1
Cit = ( E f,-uu&-'.}..ji) +( E €; SIT ljf) ;

i=1 =1
ke = [aT] (1 — di(a)) + [(1 —a)T] “d(),

a; and g(i;im) are defined as in the preceding section, and
the ers are the OLS residuals from regressing y; on (X}, Z;.

di(e@)Z;)". The corresponding statistic for the test at all frequen-

[5/2]

. - W, 755
cies is then w™(a; m) = 3"

w J’-“ (a; m). The modifications to

(a)
150

trend

------- UK marriages

125 F

100
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the CH staustic, (9), and the parametric statistic are carried out
In a similar way,

Propasition 2. Let v, be generated by the model (1), (2),
(14), (4) under the assumptions Al1-A3. Then, under Hy :

r:rj:.“J =0, whenA=A;,j=1,...,[s/2], u;;i"(u; m) 4 CvM (2a;),

when A = I,_y, @*(a; m) = CvM(2s — 2). Under Hy : 62 > 0

and when A =A;. j=1,..., [s/2], w!(@; m) and @*(a; m) are
J

Op(T/m).

The idea behind the construction of (15) is to combine the
evidence in the two subsamples, {1,...,[aT]} and {[aT] +
[....,T}. Note that m}"{.ﬁ;m) = .25w;(m); thus when the
breakpoint 15 in the middle of the sample, the tests defined
by the two statistics are the same. This is important, because
the latter has properties of optimality obtained by extending
the LBI/LM test to deal with serial correlation in the stationary
component. Furthermore, for the case of testing at frequency (),
Busctti and Harvey (2001) have shown via simulation exper-
iments that for o # .5, the loss of power of the modified test
with respect to the LBI test is not great.

3.2 U.K. Marriages

The quarterly series of marriages registered in the Umted
Kingdom from 1958Q1 to 19820Q4 was extracted from various
issues of the UK. Monthly Digest of Staristics. It is shown in
Figure 1(a). The spectral nonparametric test statistic, w(m), cal-
culated from first differences, is 4.18, 2,74, and 2.11 for lags of
4, 8, and 12. This leads to a rejection ot the null hypothesis as
the 3% critical value for the CvM(3) distribution 1s 1.00. The
original CH statistic, mg4(m), gave smaller values: 1,78, 1.20,
and .96.

Estimating (11) with a random walk trend using the STAMP
6 program of Koopman, Harvey, Doornik, and Shephard (2000)

(b) S0

b
L
|

Figure 1. (a) Number of Marriages (in thousands) in the United Kingdom, 1958Q1-1982Q4 and (b) Estimates of the Individual Seasonals.
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gives

a, =0, a, = 1.61, and a, = 2.69,

with an equation standard error (the standard deviation of the
imnovations), a, of 7.91. The parametrc test statistic, con-
structed from the Kalman filter innovations, 1s 6.96 which 1s a
much firmer rejection of the null hypothesis than was given by
the nonparametric test. The reason for the rejection can be seen
in Figure |(a): there appears to be a break in the seasonal pat-
tern at the beginning of 196Y. The plot of the individual seasons
in Figure 1(b) reveals a switch from winter marriages to mar-
riages in the spring quarter. This happened because of a change
in the tax law. Up to the end of 1968, couples were allowed to
claim the married persons tax allowance retrospectively for the
entire year in which they married. Because the tax year hegins
in April, this arrangement provided an incentive to marry in the
first quarter of the calendar year rather than in the spring.

Adding a set of three seasonal break dummy variables, start-
ing in the first quarter of 1969, to take into account a complete
change in the seasonal pattern leads to the following estimates
of the parameters:

d-EZ - 242. &n — ]59. E-H-ld ﬁ-p.-; = |.3ﬁ1

with

Q(9.7) =12.54 and o =5.66,

where (J(F, f) 1s the Box-Ljung statistic based on P residual
autocorrelations but with f degrees of freedom (see Koopman
et al. 2000). The ¢ statistics for the seasonal break dummies are
—8.33,7.58, and 2.09, There is a large reduction in the estimate
of the seasonal parameter, o, which no longer needs to allow
the stochastic seasonal model to accommodate the change; the
equation standard error, a, also is considerably reduced.

The modified seasonal break nonparametric test statistics car-
ried out on the residuals obtained from regressing first differ-
ences on seasonal means and the seasonal break dummies are
2.06,1.69, and 1.58 form =4, 8, and 12 for * and 1.80, 1.57,
and 1.50 for the CH form, wy. Thus for m = 4 and 8, the null
of a constant seasonal pattern is rejected by the @* test at the
5% level of significance because the critical value for CvM(6)
is 1.69. However, the smaller values for w} lead only to a re-
jection for m = 4. The corresponding parametric test statistic,
calculated from the Kalman filter innovations, is 2,42, giving
a stronger indication that there is still stochastic seasonality
present, This 1s supported by the fact that estimating the model
with a fixed seasonal gives a significant Box-Ljung statistic of
(Y, 8) = 22.38. whereas the lourth-order residual autocorrela-
tion, r(d), is .33,

3.3 Unknown Breakpoint

It the breakpoint parameter « is unknown, then the two-
step strategy of Busetti and Harvey (2003) for testing station-
arity in the presence of a structural break can be adapted in
a straightforward manner. The idea is to estimate the break-
pomnt under the null by minimizing, over @, the error vari-
ance of an OLS regression of v, on (X, Z;, d/(a)Z;)", that is,
@ = argmin, T Zf | ef. where e, are the OLS residuals. Bai
(1997) showed that under the null hypothesis of deterministic
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seasonality this estimator is superconsistent in the sense that it
converges o the true value at rate 7 instead of the usual rate
T'2, Therefore, the null asymptotic distributions of wj’-" (a; m)
and w*(&: m) are the same as if the true value « were used,
whereas under the alternative hypothesis, the statistics diverge
regardless of the break date used due to the presence of the sea-
sonal unit roots. Hence running the secasonal break tests with
an estimated breakpoint leads to an asymptotically valid proce-
dure. Clearly, some loss of power with respect to a test based on
a known @ 1s o be expected. Busetti and Harvey (2003) used
Monte Carlo simulation experiments to evaluate this power loss
for the zero frequency stationarity tests.

4. TESTING AGAINST A PERMANENT
SEASONAL COMPONENT

The test against nonstationary seasonal components takes the
null hypothesis to be a model in which seasonality 1s determin-
1stic. Sometimes we may wish to test whether there is any sea-
sonality at all, irrespective of whether 1t 15 deterministic or sto-
chastic. One strategy, implemented in the STAMP package, is
to fit a structural time series model and then perform a test of
significance on the seasonal coefficients as estimated at the end
of the period. However, this has the disadvantage ol not being
able to indicate seasonal effects in a situation where seasonal-
ity has become less pronounced over time. This is precisely the
kind of behavior noted by CH (pp. 24-50) in their analysis of

U.S. macroeconomic series.

4.1 Tests and Their Power

Our aim is to develop tests that are powerful against the pres-
ence of deterministic seasonality and/or stochastic seasonality.
The stochastic seasonality is taken to be nonstationary, so that
the effects are permanent in that forecasts of the seasonal pat-
tern remain constant rather than dying away. We thus consider
the data-generating process (1)—(4) with A =/, | and split the
scasonal component, s, into deterministic and stochastic parts,

se=sP 4 55, (16)
“""P:r ;J"U'- (17)
and
(18)
where ypis a (s — 1) x 1 vector of fixed coefficients and
15 a vector of mean 0, serially independent disturbances with

covariance matrix o> W, independent of ¢, The null hypothesis
of no seasonality is

Ho 't vg=1k U: =),

whereas the alternative hypotheses are of deterministic season-
ality,

H‘,D v #0, cr: = (),
and stochastic seasonality,

Hf M = 0, ﬂ'ﬁ' > (),
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We show in Proposition 3 that the standard Wald test on fixed
seasonal coefficients is consistent against both alternative hy-
potheses. We also show that a test constructed in a similar way
to the tests of Section 2, but without fitting seasonal regressors,
1S consistent against both hypotheses. More specifically let ¢,
be the OLS residuals from regressing v, on (X,, Z;)" and let e,
be the residual from regressing v; on X; only. Because assump-
tion Al requires that the two sets of regressors X; and Z; be or-
thogonal in large samples, the Xs can be ignored in the analysis
of the Wald statistic, which may be wrillen as

(19)

where yy is the OLS estimator of 3 and 62 = 7! Z,_] e, 18
the estimator of nz Note that the usual form of the F statistic
18 our £ mulnphed by (I'—s+1)/2T.

The new statistic is

(20)

where cach w,. j=1,...,[s/2], is defined as in Proposition |
but using the I‘EHIdleh ¢, and with the summation running in
the reverse order, that is,

T o 2 T 2
_‘_'l — . . .
@; =aiT g™ * E (E eicosiii | + (EE,—SH]J’-.J'I ;

f=| =t 1=
«s/2),  (21)

where g% = 7! Z;.dl E‘z Using the arguments of King and
Hillier ( 1985) and Ta}f]r::r (2003a), it 1s easy to show that when
W 1s specified as after formula (6), w is the LBI test statistic
against Hf for the model in (1)—(4) with 3 = (). Note that in
the LBI statistics the summations run in reverse order, from
t to T as opposed from 1 to f; in the tests of Section | the
reverse summations can be replaced by the more usual direct
aummatmn-h becausc fitting the seasonal regressors implies that
Lr—t Z Ep == 0.

The following proposition provides the asymptotic distri-
hulum of F and o unr:ler the local altematne h}'thhﬂSEH

HP r and H: T where HI rivw=cpt/T.0f =0 and HI,T :

= 0,07 = c3/T?, where ¢ is an s — 1 vector of ones and ¢p
;mcl cs are fixed constants. This provides the basis of a power
comparison between the two tests,

Proposition 3. Let y, be generated by the model (1)—(2).
(16)—(18) with W = [, | and with the nonseasonal regres-
sors X, satisfying assumption Al of Section 1. Let Wy ,_(r),
Wi s 1(r) be independent standard Wiener processes of dimen-
stons— 1, andlet A = diag(1/2,...,1/2. 1) when s is even and
A =1/2l;—1 when y is odd. Then the following results hold:

D
a. Under HLT.

o
I = Vp o 1(0; cp) Vps—1(0; ¢p).

1
d
w— { Vp
0

. 4y i -
et el Vi ssytrienydr,

where Vp._1(r:cp) = Wo.—1(1 — ) + :;'nc:r&__'ﬁé{l —
re[0,1).

£l
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b. Under HI r

! .
F ot Ves il (,‘_5;_}“»”5__.[_1 (0; cs),

! ’
: V,g;i_.,- (7 cy) 'r’j,'1_5-._ 1 (#% Cg) dr,

(1) —>

{)

where Vg ._|(r;cs)=Wp -1 (1 — r}+r.',c;n;'f\‘—l‘ j;,l Wi 1(s)
-ds, re [0, 1].

¢. Under either H‘D or HS, F and o are Op(T).

Remark 1. The asymptotic distribution of F under H1 risa
noncentral chi-squared distribution with 5 — | df and noncen-
trality parameter equal to ::zne’m/crf.

Remark 2. Under both local alternatives (i.e., when y =
cpt/+/T and cr,f — -:':E.JTEL the asymptotic distribution of £ and
w are constructed using the process V(r; cp. cs) = Wy ;-1 (1

| L o oo | .
r} +cpA2(l — rit + cso, A2 1. Wiso(s)ds, r € [0, 1], in-
stead of either Vi ;. 1(r; ep) or Vs o (r; cg).

Remark 3. A modification of w would be to replace o2 with
&=, that is, to tit seasonal dummies when calculating the denom-
inator of the statistics in (21). This makes no difference to the
asymptotic distribution under the null and the local alternative
hypotheses.

Although the asymptotic distribution of w under the null hy-
pothesis differs tfrom that of ew, it still belongs to the Cramér—
von Mises tamily, The 5% critical values for |, 2, and 3 df—
the latter appropriate for a full test on quarterly d :
2.63, and 3.46 (sce tahle | of Nyblom 1989, p. 227). The 5%
critical value for 11 df (kindly supplied by J. Nyblom) is 9.03.
For the reasons given in subsection 2.3, the asymptotic distrib-
ution is unaffected by the inclusion ol a constant or a constant
and a time trend.

The asymptotic distributions of F and « under the local al-
ternatives H{’, and H3 . can be used to compare the power per-
formance of the two tests. This is done in Table 6. Specifically,
for a quarterly model, 5 = 4, we have generated 50,000 replica-
tions of the limiting random variables defined in Proposition 3
by replacing the continuous-time Wiener processes Wy i, and
W1.s—1 by their discrete counterparts (dividing the unit interval
into 1,000 parts). We have also considered the limiting behavior
of the  test, invariant to the presence of deterministic seasonal-
ity its asymptotic distribution against HS was given by Taylor
(2003a). Note that under both the fixed and local alternative Hﬂ
and H”T the asymptotic power of this test is equal to its nnml—
nal size.

Thus Table 6 reports, for a quarterly model, the local asymp-
totic power of the three tests at the nominal 5% significance
level across a range of values for the parameters ¢p and ¢ (with
a? set equal to 1). As expected, the Wald Lest is more powertful
under the local alternative of deterministic scasonality, whereas
@ achieves the highest power under pure stochastic seasonality,
being the LBI test for this case. For example, for e¢p = 2 and
cs = 0, the asymptotic power of the Wald test is .652, as op-
posed to .559 for the test hased on . In contrast, for cs = 4 and
cp =0, the power of the « test is 668, whereas that of the Wald
test is .627. Finally, note that under pure stochastic seasonality,
the power of the « test of Section 2 is considerably lower than
that of w.
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Table 6. Local Asymplotic Power Against Deterministic and/or Pure Stochastic Seasonality of the F, w,
and w Tests
cp=0 ¢cp=.3 ¢cp=10 cp=15 ¢ep=20 cp=25 cg=3.0 cg=325
cg=0 F 4.90 7.98 18.86 39.72 65.21 85.52 95.94 99.26
w 4.90 7.46 16.01 32.90 55.85 77.37 91.33 87.74
(1) 4.89 4.89 4.89 4.89 4.89 4.89 4.89 4.89
Ce =1 32 9.34 12.94 24.52 44.17 66.36 84.43 94.68 98.75
a 10.53 13.60 23.03 39.08 58.60 77.02 89.81 96.60
it) 6.08 6.08 6.08 6.08 6.08 6.08 6.08 6.08
Cg=2 F 2452 28.19 38.61 53.51 69.58 83.02 92.33 97.10
w  29.07 31.83 39.84 =1.65 65.16 77.85 87.75 94.21
ar - 10.32 10.32 10.32 10.32 10.32 10.32 10.32 10.32
Cg=3 F 4534 47.74 54.35 63.94 7419 83.43 90.61 95.34
w 51.48 53.38 58.28 64.92 72.91 80.79 87.45 92.66
e 18.13 18.13 18.13 18.13 18.13 18.13 18.13 18.13
Cgm=d F 62.72 63.97 67.81 73.12 79.32 B85.26 90.33 94.16
w  B8.8B3 69.70 7213 75.80 80.10 84.69 88.87 92.51
w  29.22 29.22 29.22 29.22 29.22 29.22 29,22 29.22
cg=>5 F 74.79 75.58 77.52 80.63 84.07 87.66 91.06 93.96
w  BO.10 80.58 81.76 83.56 85.84 88.55 90.97 93.16
w  41.82 41.62 41.62 41.62 41.62 41.62 41.62 41.62
cg =75 F 8959 89.82 90.27 90.93 91.87 93.01 94.15 95.31
w  92.79 92.84 93.00 93.46 94.02 94.68 95.29 95.97
w  68.11 68.11 68,11 68.11 68.11 68.11 68.11 68.11
cg =10 F  95.09 095.21 95.25 95.49 95.70 96.05 96.45 96.90
w  97.03 97.05 97.08 97.17 97 .27 97.44 97 .64 97.87
m  83.73 83.73 83.73 83.73 83.73 83.73 83.73 B83.73

The local power of the modified test, using & rather than o 2,

s, as suggested in Remark 3, the same as that of w. However,
in practice it may well have a higher power than w against de-
terminmistic seasonality. This 1s because when f:r:' = (), the prob-
ability limit of o? exceeds that of 47; indeed, because g > 7,
the modified statistic will always be greater than or equal to @.
There is a parallel with the test on % in that using o ? instead of
&% would give the LM statistic.

A second modification is also in order. As formulated in (21),
the test 1s LBI against stochastic seasonality with yp = 0. In
practice, we are more concerned with seasonal patterns that di-
minish over time. Thus our recommendation is to use the for-
ward summation just as in the « test of Section 2, because this
would be the LBI test if the data were generated backward start-
ing with yy 1 = 0. Taking these points into consideration, our
preferred statistic, w, is constructed using

2

T { 8 !
- ,T—E"——E e Y Ay
w=al " E E €;CosAL ) + E €; SIn Aji y

i=] i=1

=
(22)

When &; is serially correlated, the o test can be modified as
in Section 2.3. If the spectrum is computed using the residuals
after fitting the seasonal regressors, then the statistic is denoted
by w*(m). The test can be extended to deal with both serial
correlation and heteroscedasticity by making the amendment
of (9).

The Wald test can be carried out by fitting a model that is
unrestricted except insofar as the seasonal component is taken
to be nonstochastic; that is, o2 is set to 0. Alternatively, a non-
parametric lest can be set up using a nonparametric covariance

matrix estimator, as was done by Andrews (1991). This is es-
sentially the same correction as in (9). To be specific,

F(m) =Tyi[Q ' QmQ "1 " . (23)

where Q =7 EL[ 7,7, 1f there is no need to guard against
heteroscedasticity, the modifications are made simply using es-
timates of the spectrum as for w™*(m).

4.2 A Diminishing Seasonal Pattern in Spanish
Interest Rates

As an example, we consider the logarithm of 3-month money
market interest rate in Spain for the period 1977Q1-20010Q4:
the source 18 the Bank of International Settlements macroeco-
nomic series database. The series is depicted in Figure 2(a). It
is difficult to detect a seasonal pattern from a casual glance at
the graph, and one would not normally expect such a pattern
to be present in an interest rate series; however, the functioning
of the interbank loans market may imply some seasonality (see,
e.g., Hamilton 1996).

Fitting the BSM to the series gives a seasonal component, as
shown in Figure 2(h); the slope variance is estimated to be 0,
and the estimate of the (fixed) slope is small and insignificant.
We have used logarithms of the data only because the diag-
nostics are better: if the raw series is used, then the resulting
scasonal pattern is similar.

The chi-squared statistic for the seasonals at the end of the
series is only .09, which is clearly not significant, because the
5% critical value for a x7 is 7.81. However, the graph shows a
fairly strong seasonal pattern until the mid-1980s. The question
is whether the pattern as a whole is in any sense significant.

Setting the seasonal variance to (0 and reestimating the BSM
gives a Wald statistic of 4.76, with a p value of .19, This is still
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Figure 2. (a) Logarithm of the 3-Month Spanish Interest Rate, 1977Q1-2001Q4 and (b) Estimate of the Seasonal Component.

not significant. If the series is differenced and a nonparametric
Wald test, (23), is computed using the Newey—West covariance
matrix estimator with three lags, then a sinmlar p value (.17) 1s
obtained. On the other hand, the spectral nonparametric statistic
computed using forward summations takes the values 3.83 and
3.01 for m =3 and 6, rising to 4.64 and 3.89 for w*(m), the
preferred form in which the spectrum is estimated after fitting
seasonal regressors. Because the 5% critical value is 3.46, this
lest provides a firm rejection of the hypothesis that there is no
seasonality in the series.

Finally, for m = 3 and 6, the w(m) statistic of Section 2 takes
the values 1.17 and 1.02 (against a 5% critical value of 1.00).
This confirms the presence of stochastic seasonality.

4.3 Seasonal Adjustment

The foregoing tests can be applied to a seasonally adjusted
series to check whether the adjustment has been effective. This
assumes that the adjustment has been done by means of mov-
ing averages, rather than by regressing on seasonal dummies.
It dummies have been used, then the o test statistics have the
asymptotic distributions of Section 2.

4.4 Detection of Trading-Day Effects

Cleveland and Devlin (1980) showed that peaks at certain
trequencies in the estimated spectra of monthly time series in-
dicate the presence of trading-day cffects. Specifically, there is
a peak at a frequency of .348 x 2 radians, with the possibility
of subsidiary peaks at 432 x 27 and .304 x 27 radians. An
option in the output of the X-12-ARIMA program provides a
comparison of the estimates of these frequencies with the ad-
jacent frequencies (see Soukup and Findley 2000). However,
there is no formal test. One possibility is to construct paramet-

ric or nonparametric statistics analogous to w; and @ S0 as o
—/

carry out tests for permanent cyclical effects at one or all of the
three trading-day frequencies. Assuming that no (deterministic)
trading-day model has been fitted, the asymptotic distributions
under the null will be CvMg, with a 5% critical value of 2.63
for a test at a single frequency and 5.68 for a test at all three
frequencies.

As an cxample, we took the irregular component, obtained
from X12-ARIMA, of series sOb5S6ym, U.S. Retail Sales of
Children’s, Family, and Miscellaneous Apparel, as supplied by
the Bureau of the Census. Because the process followed by this
irregular component cannot be derived, we decided to use the
nonparametric test. The test statistic with 10 lags was 7.03 for
the single main frequency and 8.21 for all three frequencies.
Both give a clear rejection of the null hypothesis that there is
no trading-day effect.

5. CONCLUSION

The seasonality test statistic proposed by CH may be sim-
plified so that a nonparametric correction for serial correlation
is based on estimating the spectrum of the series at the rele-
vant seasonal frequency or frequencies. This test statistic then
has a very straightforward interpretation. As might be expected,
Monte Carlo experiments show a slight gain in power over the
original CH test for homoscedastic series, but a size distortion
and lower power when there is seasonal heteroscedasticity.

If 2 model is fitted, then a parametric seasonality test may
be based on the innovations or smoothing errors, but Monte
Carlo experiments show that they have similar properties. If
the main reason for fitting a model is to investigate seasonality,
then a basic structural time series model consisting of stochastic
trend, seasonal, and irregular components usually will be ade-
quate. However, it is worth noting that the innovations Lest can
be implemented for any structural time series model, including
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those that do not have a time invariant structure. Nonparamel-
ric tests require a decision about lag truncation, but our Monte
Carlo experiments show that in samples of size 200 the rejec-
tion probabilities do not fall by very much when the lag length
is increased from 4 to 8. Nonparametric tests are also dependent
on decisions regarding differencing, but an important practical
linding to emerge from the Monte Carlo experiments is that for
most economic time series, taking first differences is likely to
be a good strategy.

The Monte Carlo experiments indicate higher probabilities
of rejection from parametric tests. but any assessment of power
must be offset against the higher size. For quarterly data, there
is a tendency for parametric tests to be oversized at frequency
., and this carmes over to the joint test. The actual sizes of
the joint tests at the 3% level of significance in a sample of
size 200 are nearly 10%. On the other hand, with a lag length
of 4, the actual size of the corresponding nonparametric tests
never exceeded 5.5%. Parametric tests are attractive within the
context of a model-building exercise, but if the sole focus 1s on
testing for stochastic seasonality, then there is no overwhelming
case for preferring them ta nonparametric tests.

[f there are breaks in the seasonal pattern, then the season-
ality test may be modified so as to have an asymptotic distri-
bution that is independent of the position of the break points
under the null hypothesis that the seasonal pattern is determinis-
tic. The U.K. marriages example yields much greater values for
the parametric test statistics both with and without the seasonal
break dummy variables. In the modeled break case, the para-
metric test indicates a rejection of the null hypothesis, whereas
the conclusions from the nonparametric tests are ambivalent.

Although a fixed seasonal component is normally estimated
under the null hypothesis, there may be sitwations in which the
researcher wishes to carry out a general test against a perma-
nent seasonal component, regardless of whether it 1s determin-
istic and stochastic. We propose the use of test statistics that
have the same form as the tests against nonstationary seasonal-
ity except insofar as no fixed seasonal effects are removed when
the residuals used to construct the partial sums are formed. The
asymptotic critical values are easily obtained. We compared the
test with a Wald test carried out to determine the joint signifi-
cance of a set of seasonal dummies assumed to be constant over
time. This test can also be carried out nonparametrically. When
only deterministic seasonality is present, an analysis of local
power shows the Wald test to be more powerful than our modi-
fication of the test against nonstationary seasonality, but not by
very much, In the not uncommon situation when the seasonal
pattern is duninishing over time, the modified test against non-
stationary seasonality is slightly more attractive. Indeed, in the
example of Spanish interest rates, this test shows a clear rejec-
tion of the null hypothesis of no permanent seasonality, whereas
the Wald test does not reject. Tests against permanent seasonal
effects can also be used to detect trading-day effects by exploit-
ing the fact that these give rise to cycles at known frequencies.

An appealing feature of the proposed test statistics is that
under the null hypothesis, they all have asymptotic distributions
belonging to the Cramér—von Mises family. Thus they provide
an integrated approach to testing a wide range of hypotheses
that arise in the context of seasonal time series.
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APPENDIX A: ASYMPTOTIC REPRESENTATIONS
FOR THE SPECTRAL
NONPARAMETRIC TESTS

Proof of Proposition 1

From assumptions A1-A2, we have that under Hy, T% Dr(ﬁ —
b o . 3
B) and T (yp — yo) are Op(1) and asymptotically orthogonal.
In particular,
T2 (50 — vo) — N, G, (A.1)
where G isan (s — 1) x (s — 1) diagonal matrix whose elements

are proportional to the spectral-generating function evaluated at
the seasonal frequencies A;, j = 1,....[s/2]; when s is even,

1 1
G:dfﬂg(ig{llj. Eg{h] ..... =g{rg2-1),

| |
Eg(h-;;?:— 1), E(l.;.a'z})

whereas when s 15 odd, the last two diagonal elements of ¢ are
both equal to 5g(As/2))-

Note that asymptotic orthogonality i1s a direct consequence
of assumption A2(b), whereas the result (A.1) follows mainly
from the central limit theorem of Brillinger (1975, thm. 4.4.1)—

E S

namely, for j= 1., 8%,

7
f : Z.ﬁ:, COs At l
=1 i () jgflﬂ 0
T —idy ’ |

r —I L
Iz Zf:;smljr

=]

(A.2)

whereas when s 1s even, T_% EF_] £1COS A 2l i{, N(O, g(isp2)).
In addition, the limiting random vectors of (A.2) are also inde-
pendent across j. Furthermore, a functional central limit theo-
rem also holds: that 1s, the partial sums of £, cos A;f and & sin Ajt
weakly converge to independent Wiener processes (see Chan
and Wei 198R).

Now write the OLS residuals as

er =68 —X,(B = B)—Z (% — ), ey (B o

and for j =1, ..., [s/2], consider the (normalized) partial sum
| w[TF
process S, r(r) =T ? Li’,ﬂ Zjicer, r e [0, 1].
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We then have that, under Hy,

[Tr] [77]
-1 D ! Fy— b
St =T"1) ze,—T"' Y z:X;D7'DrT2 (B - B)
1=] 1=]
[ 1] |
-7 Z;frzﬁ'f (Y0 — W)
=1
L) 77| T !
—_ T2 Z;,-;.ﬁ:, - Z :,-;Z:(?' : ZZ;Z:
= | 1= Ji
i f
w 2 ZZ;E;"‘UF{]}
1=1
i [Tr] | I
=TI"1 Z:J':Er =gl A ijfﬁr T ”p“}q
=1 f=1

where the last expression is due to the orthogonality relation
litir sus T ZT, Zigene = 0 for j # h.

Then, using the functional central limit theorem of Chan and
Wei (1988) and the continuous mapping theorem, we have that
under Hy,

i
(a;g(4;)) 28 1(r) = By (r), rell. 1], (A.3)

where Bi(r) = Wi(r) — rWi(l) 1s a k-dimensional standard
Brownian bridge. Wi(r) is a k-dimensional standard Wiener
process, and = denotes weak convergence; furthermore Sjr(r)
18 asymptotically independent of S, 7(r) for j # h. As under Hy

and by assumption A3, g(4;, m) 5 g(4;), it then follows by
the continuous mapping theorem that the null limiting distrib-
utions of wj(m) whenA =A;, j=1,..., |s/2] and w(m) when
A=l are CvM(u;) and CvM (s — 1).

Under H; : 07 > 0, when A = A; it is easily seen that the

K
partial sum §; y(r) is U!,,-,[T%}, whereas assumption A3 implies
that g(2;; m) is Op(m) (see Stock 1994, pp. 2797-2799), Thus
both a;(m) and @ (m) are O (T /m).

Proof of Proposition 2

Consider the two subsamples {1,..., |aT]}, {«T] +1....,
| :
T). and let .'i‘iT{r‘,l = [@T] 2 Ef{”:ﬁe;, re |0, 1], and SfT{r]
; 1 Ir -
=l —a)T|7 1 Z!,il]ﬂ-]_i_l zirer, + € [0, 1], be the partial sum
processes in the first and second subsamples. Using a functional
central limit theorem as in (A.3), we have that under Hy,

f
L]

(@)™ (SPr(rY', SPr(r)') = (B (r)', BE (')

rel0, 1],
where B‘:}(r} and Hf;.{r} are independent k-dimensional stan-
dard Brownian bridges. Noticing that

e L i 5 il i X
%f‘j;k; = [T} grruc'f(.shjr(?)ﬂjlr(?) )

T

+1 -7 Y

i=[eeT]+ 1

Ao NG Y
IF{I{E(.‘;’J-‘T(?)SLT(*?:) )
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it then follows by the functional central limit theorem of Chan
and Wei (1988), the continuous mapping theorem, and the addi-
tivity property of independent Cramér—von Mises random vari-

d .. d
ables that mj’f(t:a:; m) — CvM(2a;) and w*(a: m) — CvM (25 —
2) under Hyp. Then, from the same arguments as in Proposi-
)

tion 2, under Hy : o > 0, when A = A, both mj‘."{'n': m) and

w* (u; m) are O,(T /m).

APPENDIX B: LBI TEST

When &, 1in (1) i1s generalized so as to be a linear station-
ary process, possibly consisting of more than one component,
its 7' x T matrix covariance matrix will be denoted V = oV,
where ::rff is a variance parameler. If V, 1s known, then it follows
from King and Hillier (1985) that the 1.BT test is of the form (5)
with the OLS residuals replaced by the elements of the 7 x |
vector, V. 12, where @ is the 7' x 1 vector of generalized least
squares residuals. The LBI test against stochastic seasonality at
all frequencies 1s constructed similarly. If & contains a white
noise component with variance o then it is straightforward to
show that V, !¢ is equal to the smoothed estimator of the vector
of the white noise series. More generally, when multiplied by
cr;z il becomes the 7 x | vector of smoothing errors, denoted
by u = V~'&. The smoothing errors are produced as a byprod-
uct of the smoother applied to the state-space form of the model
(see de Jong and Penzer 1998; Harvey and Streibel 1997),

With V, known, an exact test can be carmied out using nu-
merical inversion Lo construct critical values or probability val-
ues. However, V, normally will depend on unknown parame-
ters, so there are good reasons for wishing to use a statistic with
a known asymptotic distribution. If the test statistic is formed
from smoothing errors, then it is necessary to take into ac-
count their serial correlation. Following a argument similar to
that used to give (7), the denominator needs an estimator of the
spectral generating function of V=1, This is equal to 1 /g (1),
where g.(A) 18 the spectral-generating function of &;. The para-
metric test statistic is, therefore,

!

E 2 I 2
I T _ o
wj = T *ge(kj) Y chuak_ﬂ) + Zu,-sm}hj:)
=]

fe=1 =]

i=1,...,1s/2], (B.1)

where u; is the ith smoothing error. The test statistic has the
same asymptotic distribution as (5), namely, CvM(2). This re-
mains true when parameters in V,, are estimated (cf. Leybourne
and McCabe 1994; Saikkonen and Luukkonen 1993).

The foregoing correction can be made even if the model con-
lains a stochastic trend. The smoothing error series is stationary,
and although it is not (strictly) invertible, the noninvertibility
affects only the zero frequency, and the “quasi” Spectral Gen-
erating Function (sgl) of the nonseasonal part of the model can
be inverted at ;. Thus for the special case of (11) in which the
trend is a random walk, g.(4;) in (B.1) is replaced by

o i )
::r,?‘ + 2(1 —cosh)ar

I D“_-:A..E:RI.

b (B.2
2(1 —cos i) )
[ instead of the smoothing errors, the smoothed estimator of an

irregular component, &, is used, the foregoing correction factor
must be divided by &'
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APPENDIX C: ASYMPTOTIC REPRESENTATIONS
FOR THE TESTS AGAINST
PERMANENT SEASONALITY

To prove Proposition 3, we need the following lemma,

Lemma C.1. (a) Under H} ;: y0=0,07 =c5/T* > 0,

Z 223 k= s f Wi 1(r)dr,

1=[Tr] =1

rel0, l].

(b) Under Hy : yn=0,0Z > 0,
f !
'Y " Dy'x,2)Y ki 0.
=1 i=1

Proof of the Lemma

To avoid unnecessary complications in the notations, we as-
sume that T; = T'/s is an integer. Let 1* = (f — 1) /s + 1, where
i=1,..., . T. For part (i), first note that

[ I
> > (By+Rjw

j=1 n=i"~

4 | if 1* 1s an integer
Z Zl: 5 Ts -1
- E Z {Bu+Rf,u}‘ Z Ky

J=1 u=[r*] I=[r*]
otherwise,
where, foru=1, ..., f 4
& =1
B slu—1)
e N
“ Z Ki =1,
k, I=
viu—1)+j
Bu= Y iy Jemslives
i=siu—|)+1
Note that we can write, fort =1, ...,  j
e L Ul=jssg—]
: Zg it j=0

where j = rmods. Then, using the decomposition above, we
have that under the local alternative H'F‘T. for r € [0, 1],

r !
Y EZY w

f==[Tr] =]

Jlx' =[Tyr]

_Ezjz? Z T2(By + Riw) + op(1).

J=1 : u=[T;r]
By a standard functional central limit theorem, we obtain that
under H; ,,

|
T:Bi7,) = csWi (), rel0, 1],
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with Wy ;_1(r) being an s — |1 dimensional standard Wiener

process, whereas, forall j=1,...,4,
Iy
Y R0
u=[7T.r]

Thus, by an application of the continuous mapping theorem, for

e [0, 1],

T_I Z Z;Z Zﬂ:,—h:ghf Wi s—1(r)dr,

i=[Tr]

where A =5~ Z g 77 18 the diagonal matrix defined in the
statement of the prnpnsumn
For part (b), first note that

>7=0
41

Then, proceeding similarly as betore, we have that

r r
% D DXz Y ki
=] i=]

EL1)

“Zw Zn, XuZ/(Bu + R;u) +0p(1) (C.2)
foc] Y =1
| 1
—_Zﬂ_lxmxu ‘f"”’p“}
T =1

where the second equality uses (C.1) and

¥
= !
Ru=) ZiRu
=

Now k,, u=1,..., T is an independent sequence, because
each element is made as a weighted sum of s nonoverlapping
disturbances «;, t = |, ..., T. Thus part (b) of the lemma is
proved by applying to (C.3) a law of large numbers for inde-
pendent heteroscedastic sequences,

(C.3)

Proof of Proposition 3

Lety, be gﬂperated by the model (1)—~(2),(16)—(18)with W =
Iy 1; and let B and j be the OLS estimators of 8 and yy from

regressing y, on (X;, Z;)'; and let g be the OLS estimator from
regressing v, on X;. Then

(ﬁ ﬁ) _____ 415
Yo — Yo ‘

where
T T \‘
r-1y or'xxpy'  T7'Y Dr'xz
A s r=1 =]
T T !
T~ Z ZX 7! 13 77 }
= t=1

-1 ZD'U(, (a; +zfzx£)

B I*"I

T~ ZZ, (e, + Z:Zu'f)
f=1 =]
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and
sy

’
B-p=|T"Y D;'xx,D;'

=]

1 f
TS D' Xl e+2) xi+Zwo
r=] j=]

The OLS residuals for the two regressions can be written as

f
e=e+Z Y ki-X(B-B —Z(Go—w)  (CH
=]
and
'
e, =6+7 ) xi+Ziyo—X/(B~ P (C.5)

=]

By the orthogonality of the regressors Z; and X, of assump-
tion Al, it can be straightforwardly shown that g = ﬁ + op(1).
Furthermore, by the functional central limit theorem of Chan
and Wei (1988), we have the following weak convergence re-
sulf:

.
o, 'A T2 Y Zig = Wou1(1—n), rel0,1], (C.6)
1=[Tr]

where Wy ;1 (r) and A are defined in the statement of the
proposition. Note that

lim
F— 0

.
T~ Y ZE = A

=1

Consider the local alternative Hﬁr DYy = fﬂr;’-ﬁ, cr,'f = (],
We have that § = f§ + op(1),

1 Eoe o |
o, 'AN2T py = W, (1) +eno, 'ATe=Vp s 1(0; cp),

and ¢, = & + 0p(1). Then F > Vp,_1(0; cp)' Vi, 1 (05 cp);
note that because Wy (1) 18 a standard s — | dimensional nor-
mal, the asymptotic distribution of F is a noncentral chi-squared
distribution with s — 1 degrees of freedom and noncentrality pa-
rameter equal to c5,o, “'AL.

Furthermore, from (C.6) and (C.5),

.
I |
o 'ATITT 2 Y Zie = Wo (1= )+ epa, AT —
r=[Tr]

= Vp.s-1(r;cp), rel0, 1],

_ id | :
and because ¢; = & + a,(1), @ — ‘fﬂ Vs 1(r cp)'Vp s—1 X

(r; ep)dr.

Under the fixed alternative H’, using similar arguments it is
not difficult to show that yp is Op(1), 6° and o ? are 0, (1), and
ZLFZIQI is Op(T). Thus both F and w arc O, (T).

Consider the local alternative Hf‘?u By (C.6) and using part
(a) of the lemma, we have that

P —

|
- I " e |
o 'AITIPy — Wo,s—1(1) +cso, Iﬂf[ Wi c—1(r)dr
()

= Vs.5s-1(0; c5).
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: e 2 d
As under Hig.T' ¢; = & + op(l), 1t easily follows that F —
Vs o 10 f'.!.'}ﬂlvb',.': 1(0: ¢y).
Using similar arguments, we also have that

l I

z
o, 'ATITTI Y Zie, = Wosi(1— 1)

t=[Tr]
|
+ csa, ] 1"151 f Wi s—1(s)ds
;
= Vg —1(r: cs), rel0,1]

o Eo p
and g% = 7 LL, e? — 2. Thus

[5/2]
b= L1
Jj=1
T T T '
o
2 AR | 5 ZHTIE'E ZZ{E,‘ EZ{E,‘
=] f=1 i=t
o ]
o Vs.s—1(r; €5) Vs s—1(r; cs) dr.
0

Finally, under the fixed alternative H f, from part (b) of the
lemma, we first obtain that both ﬁ — B and g —p are op(1).

Then, as ZL Ze, 18 UF{T% ) and yy is GP{T'-I’}, and 5” and o *
are (p(1), 1t easily follows that both the Wald statistic F and
the statistic w are O,(T).

[Received December 2000, Revised November 2002, ]
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