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ABSTRACT

In this paper, I extend to a multiple-equation context the linearity, model selec-
tion and model adequacy tests recently proposed for univariate smooth transi-
tion regression models. Using this result, I examine the nonlinear forecasting
power of the Conference Board composite index of leading indicators to predict
both output growth and the business-cycle phases of the US economy in real
time. Copyright © 2004 John Wiley & Sons, Ltd.
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INTRODUCTION

Much effort has been devoted to evaluating how well linear and nonlinear models use macro-
economic indexes in forecasting both output growth and business-cycle phases. On the one hand,
the linear univariate specifications have followed extensions of the seminal analysis of Box and
Jenkins (1976), and the most significant linear multivariate approaches have been the works of Auer-
bach (1982), Braun and Zarnowitz (1989), and Diebold and Rudebusch (1991). On the other hand,
several recent studies have found evidence in favour of forecasting these features with nonlinear
alternatives. First, many authors use univariate models for output growth, such as the Markov switch-
ing (MS) model of Hamilton (1989), the smooth transition regression (STR) models of Terdsvirta
and Anderson (1992) and Teridsvirta (1995), and the threshold autoregressive (TAR) models of Tiao
and Tsay (1994), Potter (1995), and Pesaran and Potter (1997). Second, other authors extend these
univariate specifications to include economic indicators that may help in computing forecasts, for
example, Filardo (1994, 1999), Granger et al. (1993), Hamilton and Perez-Quiros (1996), Krolzig
(1997, 2000), Estrella and Mishkin (1998), Blix (1999), Warne (2000), Beine et al. (2002), and
Camacho and Perez-Quiros (2002). Finally, recent developments try to characterize the business-
cycle asymmetries by a dynamic factor model with regime switching as in Diebold and Rudebusch
(1995), Kim and Nelson (1998), Chauvet (1998, 1999), Fukuda and Onodera (2001), Kim and
Murray (2002), and Chauvet and Potter (2002).

In this paper, I develop both theoretical and empirical contributions to the previous literature. With
respect to my theoretical contributions, I propose a vector autoregressive extension of the STR model
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proposed by Granger and Terdsvirta (1993). By analogy, I call it the vector smooth transition regres-
sion (VSTR) model. The primary principle for estimation is maximum likelihood, which leads to
simple linearity and model selection tests. In line with the univariate proposal of Eitrheim and
Terdsvirta (1996), I also extend to the multiple-equation context the tests for examining the ade-
quacy of VSTR models to the data. Finally, I consider the ability of recent model selection tech-
niques in order to formally select one model from the family of VSTR, according to its output growth
and business-cycle predictive performance.

With respect to my empirical contributions I find that a logistic-VSTR specification of US real
gross domestic product (GDP) and the Conference Board composite index of leading indicators (CLI)
is the best real-time forecasting VSTR model of output growth and business-cycle phases during the
period 1978.1-2002.2. Note that each of the real-time forecasts is computed with the information
that a forecaster would have had available at the time of the forecast, which requires the previous
evaluation of two intriguing questions. The first one is related to the long-term relationship between
GDP and CLI. Using the series of outputs ending in 1993.3 and 1999.4 and the respective indicator
series, Hamilton and Perez-Quiros (1996) and Huh (2002) conclude that these series are cointegrated.
However, Granger et al. (1993) and Camacho (2000) fail to detect cointegration between the series
of outputs ending in 1989.2 and 1997.4 and the corresponding indicator series. In this paper, I find
that these puzzling conclusions may be due to the main historical revisions of the CLI series.
The second one refers to the 1984.1 structural break in the volatility output growth recently docu-
mented by Kim and Nelson (1999) and McConnell and Perez-Quiros (2000). These authors date the
breakpoint using series of outputs ending in 1997.1 and 1999.2 respectively, but this information
was not available at the time of each real-time forecast. Using a real-time exercise, I find that there
is no strong evidence to consider 1984.1 as a breakpoint in the variance of output growth until
1995.3.

The plan of the paper is as follows. The next section presents the baseline model and highlights
the economic interpretation of the VSTR specification of GDP and CLI. The following section deals
with the extension to the multiple-equation framework of linearity tests, model selection procedures
and model adequacy tests. In addition, this section includes a brief discussion about the techniques
used for comparing the forecasting performance of these nonlinear models. We then consider the
empirical results, and a final section contains concluding remarks and suggests directions for future
research.

THE BASELINE MODEL

Consider the following vector autoregressive generalization of the STR model proposed by Granger
and Teridsvirta (1993):

Y = ﬂy"Ar + (B)"At )F; (Dty ) +toye +uy
X = ﬁ;At +(B;At)F;c (Dtx)+axet—l + Uy (D)

"Thus, 1 focus the multiple-equation STR models on an alternative view of the monetary policy analysis of Weise (1999)
and the Granger causality from money to output of Rothman et al. (2001).
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where y; and x, are the rates of growth of GDP and CLL A, = (1, y,1, X1, - - -, y,_,,,Nx,_,,)N' =(1, X)),
ﬁ‘;‘ = (nw ai, ?l’ L) ap’ bp)a ﬂ)’c = (nxv Cis dl’ L cp’ dp)v ﬂ; = (ﬁfw al’ bh LI ap’ bp)’ ﬁ:c = (ﬁx’ El’
dy, ..., C, dy). In case of cointegration, the equilibrium error ¢, =y, — p, — px, is included in the

VSTR representation following Rothman et al. (2001). Finally, consider the serially uncorrelated
series of errors

U = (uyn uxt)’ ~ N[O, Q] (2)

where the variance Q is Q, from the beginning of the sample until 1984.1 and Q, since this date,
reflecting the recently documented structural break in the variance of output.

The key component of a VSTR model is the transition function F. By convention, it is bounded
between zero and one. If F is zero, then the baseline model becomes a linear VAR (VARa), with
parameters 3, and 3. On the other hand, if F is one, then the VSTR model becomes another linear
VAR (VARD), with parameters 3, + B, and B, + B.. Hence, F may be interpreted as a filtering
rule that locates the model between these two extreme regimes. This section presents a brief dis-
cussion about the economic interpretation of VSTR models, depending on the form of the transition
function.

Logistic transition function
In this case, F is the following monotonically increasing function:

E(D;)=——7%- 3)

where ¥ is the smoothness parameter, i =y, x. I refer to D,; as a switching expression which may
present two alternative forms. First, D, may be the difference between a proposed transition vari-
able z;, which is usually a lagged value of y and x, and an estimated threshold g;, that is

D;=z;—& “4)

I call a logistic VSTR model with switching expression (4) logistic VSTR (LVSTR(z,, z,,)). Note
that, as ¥ approaches infinity, F; converges to the Heaviside function. In this extreme case, the base-
line model generalizes to a VAR the SETAR model proposed by Tsay (1989). Second, D, may be
the weighted average of the ¢, lagged deviations from a linear path:

ql ~
D, = Z Wil )
j=1

where XL,w; = 1, and ¥, is the estimated residual of the ith equation from a linear path. Similarly,
a logistic VSTR model with D, as in (5) represents the LVSTR-deviated (LVSTR-D(g,, g,)) models.

Applied to GDP and CLI rates of growth, logistic models have a nice economic interpretation.
Assume that 3 and y are both greater than zero. In logistic models, VARa (F close to zero) is inter-
preted as the linear path which models extreme recessionary periods, whereas VARD (F close to one)
can be seen as the linear model associated with great expansions. To see this, note that in extreme
contractions (expansions) the transition variable is lower (higher) enough than the threshold in
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LVSTR models, and the actual GDP is lesser (greater) enough than a linear path in LVSTR-D models
to keep the transition function close to zero (one). Thus, the transition function locates the model
either near to or far from recessions, depending on the switching expression’s values.

Exponential transition function
Consider the exponential transition function

E(D;)=1-e"" (6)

where i =y, x. Assume the following alternative forms for the switching expression. First, let D, be
the squared difference between the transition variable and the threshold:

D, =(z; — gi)z (7N

I denote an exponential model with switching expression (7) as exponential VSTR (EVSTR(z,, z,.)).
Second, let D, be the weighted sum of the ¢ lagged squared deviations from a linear path:

4i ~
D, = Z Wij 193,7_,- ®)
j=1

where w; and 1§i have been defined in (5). I refer to these models as EVSTR-deviated
(EVSTR-D(g,. ¢,)).

Applied to GDP and CLI, exponential models have different economic interpretations to logistic
models. Now, VARa can be associated with a middle ground, whereas troughs and peaks have similar
dynamic structures associated with VARD. That is to say, if either the transition variable is different
to the threshold in the EVSTR, or the model deviates from a linear path in the EVSTR-D, then F
becomes different from zero, and the model smoothly approximates from the middle ground to any
of the extreme situations represented by VARb (F = 1).

SPECIFICATION OF VSTR MODELS

The aim of this section is to describe a battery of model selection rules in order to obtain one non-
linear specification from the set of VSTR models outlined in the previous section. Note that, since
I base the estimation of VSTR upon the maximum likelihood principle, any test may be carried out
through standard likelihood ratio tests except for the case of nuisance parameter problems. Addi-
tionally, I restrict the analysis to the case of z, =z, =z and ¢, = q, = q.?

In the spirit of the seminal methodology of Tsay (1989), I describe in Figure 1 a stepwise proce-
dure for modelling VSTR specifications. First, I specify a linear VAR and its maximum lag length
using standard linear techniques. Second, I apply linearity and model selection tests for each candi-
date to be the switching expression. Third, I apply the model adequacy tests to the estimated models.

?In deviated models, this implies that the system is deviated from the linear path according to the same number of lagged
deviations for both GDP and CLI. In the remaining cases, this implies that the same transition variable locates the entire
system between regimes.
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LinearVAR(p)
(Schwartz)

Propose w

Linearity tests

Non linear Linear

Model selection

LVSTR LVSTR-D EVSTR EVSTR-D

Model evaluation

Tests SI, Test NRN, Tests PC |

MSE, TPE, DM

One model

Figure 1. Description of VSTR selection

Note: This figure describes the specification of VSTR models in four steps. First, a linear VAR and its maximum lag length
are specified. Second, linearity tests are applied for the w the researcher proposes. Third, for each w for which linearity was
rejected, model selection tests are carried out. Finally, the validity of these models is evaluated by testing their adequacy
(tests of serial independence of errors, test of no remaining nonlinearity and tests of parameter constancy), and by checking
the accuracy of the resulting models at anticipating both output growth (MSE) and turning points (TPE), formally tested
through Diebold and Mariano (DM) tests. The procedure concludes with the selection of one nonlinear specification.

Finally, since this procedure finds nonlinear models as rejections of linearity, I select the final model
according to its ability to forecast output growth and business-cycle phases.

Linearity and model selection tests
The application of linearity and model selection tests requires the a priori selection of a set of vari-

ables to include in the switching expression. This implies selecting the value of g in deviated models,
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Table I. Linear approximation of VSTR models

z belongs to X;

Logistic models Exponential models
3 2
Vi =&yt z&;hX,wh + Uy Yi=E&ypt Zﬁ;hX,wh + Uy
h=0 h=0
3 2
X =0+ 2 ERXW" + 0y X =0+ D EnXw" + 0y
h=0 h=0

z does not belong to X, and deviated models

Logistic models Exponential models

! 2
i = 2(8thh +§)’,;,X,Wh)+ Dy, v = Z(gthh +§;hX1Wh) + o,
h=0 =
. 2
= Z(gxhwh + 5;}’X’Wh)+ U Xt = Z(EXhWh + é;hX,Wh) +Vy
h=0 h=0

Note: This table applies to the case z, = z, = z and ¢, = ¢, = ¢. Variable w is the
(square) weighted deviation from the linear path in deviated models whereas it is
the transition variable in other VSTR models.

and lagged values of y and x in the remaining cases. In addition, the natural way of choosing an
appropriate maximum value of ¢ and maximum lag of x and y is to base the decision upon the fre-
quency of the data.’

Following Luukkoven et al. (1988), I base both linearity and model selection tests on suitable
Taylor series expansions of the transition functions around the point y= 0. Table I shows the dif-
ferent models’ linearizations according to the different models’ specifications. In the case of logis-
tic models with the transition variable belonging to the set of explanatory variables, I avoid the
identification problem by using a third-order linear approximation. In deviated models, I need a
second-order approximation for discriminating between logistic and exponential models. In the
remaining cases, I approximate the transition function with a first-order Taylor approximation.

A possible null hypothesis of linearity is Hy: Y= 0 and the alternative H,:y> 0. This choice leads
to the nuisance parameters problem since the model is not identified under the null. As a conse-
quence, the classical distribution theory does not work in this context. To overcome this problem, I
use the linear approximations of the transition function to describe the linearity tests presented in
Table II. These tests are based on standard LM-type tests on the auxiliary regressions depicted in
the first column. The null of linearity proposed in the second column of this table consists of getting
a linear VAR model under the null.

If linearity is rejected, the model selection tests must decide between logistic and exponential tran-
sition functions. In line with the univariate proposal of Granger and Terésvirta (1993), Table III
shows the sequence of nested hypothesis tests that should be applied to the auxiliary regressions of

?For example, with monthly (quarterly) data, it is convenient to try for a maximum value of g and a maximum lag of x and
yof 12 (4).
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Table II. Linearity tests

7 belongs to X,

Auxiliary regressions Null of linearity

3
h
Ve = gyO + ZS;hX[W + Uy;
h=0

= 5il=§i2=§i3:0

3
§ h
Xi = Sx() + é)lchxtw + Uy
h=0

z does not belong to X, and deviated models

Aucxiliary regressions Null of linearity
2
V= Z(gthh +<§;hX1Wh) + Uy, &E1=6=0
h=0
2
X = Z(GX;,wh +ELX W)+ 0y §i1=8=0

h

I
=1

Note: See Table I for parameter definitions.

Table II. According to the results obtained by these tests, the last column of Table III shows the final
decision about the nature of the transition function.*

Testing the adequacy of VSTR models
Eitrheim and Terdsvirta (1996) propose three kinds of tests for evaluating the adequacy of the esti-
mated single-equation STR model. Specifically, they consider that a model with serially independ-
ent errors (test SI), with parameter constancy (test PC) and with no remaining Nonlinearity (test
NRN) may be considered as adequate for fitting the data. This section extends these tests to a
multiple-equation framework.

To derive the test SI, I consider an alternative representation of the baseline model that takes into
account the possibility of serial dependence in the errors:

Y, =G(A,¥)+U, ©)
W’_here Ut = (uyt’ uxt)’, Yt = (yn xt)’s G(Qoz’ lP) = (Gy(q)ta le)’ Gx((pts lI")c))’? Gi((pta \Pl) = ﬂ%r +
(BiA)F(D,). In addition, ¥; = (B, B. ¥, &) is the (p/2 x 1) vector of unknown parameters contained

in both the autoregressive lags and in the transition function, with i =y, x. Instead of (2), errors are
assumed to evolve as

*For example, a proposed z = x,_; (which belongs to X,) for which Test 1 and Test 2 are not rejected, but Test 3 is rejected,
signals a logistic transition function.
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Table III. Model selection tests

z belongs to X, Choice
Hypoth. Test 1 Test 2 Test 3
H, &s=0 &i=0, &i=0,
j=2,3 j=12,3
H, Ex#0 E#0 20
§=0 &=0
j=2,3
Reject .. - Logistic
Accept Reject Accept Exponential
Accept Accept Reject Logistic
Accept Reject Reject No decision
z does not belong to X, and deviated models Choice
Hypoth. Test 1
H, €=0,£=0
H, €:#0,5,#0
Accept Logistic
Reject Exponential

Note: See Table I for parameter definitions

U, =®(L)U, +g,, ¢ ~NI0,T] (10)

where ¢, is serially independent, and T is the (2 x 2) matrix I'l from the beginning of the sample
until the breakpoint 1984.1, and the (2 X 2) matrix I', since this date. Here, ®(L) = (®,L +. ..
+ @,L") indicates a (2 X 2) matrix polynomial in the lag operator L. Under the null hypothesis of
serial independence of errors, that is Hy:®, =...= ®, = 0, the Lagrange multipliers (LM) test
statistic

1 4 - ’ -
LM:?mtb(MdﬂD_Md)‘P(M‘P‘P) lMtw) Mg (11)

follows a y* limiting distribution with 4r degrees of freedom. In the Appendix, I derive the follow-
ing simple expression of this test. Let V, be the (2r x 1) matrix (v;, v;)", where v, = (U, - - - ,
u;,-,)’, and let Z, be the (p/2 X 2) matrix (z,, z.,), where z; is 0G/0¥; = dG(A,, ¥))/0¥;, with i =y, x.
Thus, considering that a bar below any expression refers to its maximum likelihood estimate under
the null, and that ® denotes the Kronecker product, the LM test may be implemented with the
estimates

Mq,q,:%Z(t*z,@z,), M == (21" 2,) (12)
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Table IV. Test of parameter constancy

Aucxiliary regressions Null of constant parameters

Vi = 0500 + 05100t + ...+ 0500, i =...=0,=0
d & i 3 5k
[0y06,0 + 65180t + ... + 036y t* |y + 0y

X = 0%000, + 02100t + . ..+ 0000t fi=-=0=0

(07060 +06ut + ...+ 0 bt* | F + 0,

Note: See Table 1 for parameter definitions.

Testing parameter constancy is an important way of checking the adequacy of VSTR models since
they are estimated assuming constant parameters. The test PC is obtained under the assumption that
the transition function has constant parameters, whereas both §; and 8; may change over time. |
consider that the change may be possibly nonmonotonic and not necessarily symmetric, that is
B(t) = B + AH(1) and B(1) = Bi + AyH(t), with i = y, x, and

H;(t)=(+exp{—y,(t" +siqpt*™ +...+sat + s,~0)})_l -0.5 (13)

where substracting one-half is useful just in deriving the tests. After linear approximations of H,,
Table IV describes a simple LM-type test against the null of time-varying parameters. This test is
based on imposing the null (second column) that the varying parameters are not significant in the
auxiliary regressions described in the first column.

Finally, to obtain the test NRN it is useful to rewrite the baseline model allowing for additive mis-
specification as follows:

Yo = BIA, +(BIA,)F (D) +(6/A)F (D)) +u,
Xt = ﬂ):Axt + (B;Aw )Fxl (Dtlx) + (é;Ax )Evz (Dli ) Uy (14)

where F is the transition function analysed in previous sections. After the linearization of F?
described in the linearity tests, the method of implementing the test NRN is similar to the method
of testing the null of linearity outlined in Table II. Following Eitrheim and Terésvirta (1996), Table
V generalizes the NRN test to have power not only against an omitted additive nonlinear compo-
nent but also against omission of important lags from the estimated model. This is done by consid-
ering under the null the exclusion restrictions imposed to obtain the VSTR significant parameter
estimates.

Examining the predictive accuracy

The sequence of tests described above finds nonlinear models as rejections of linearity. Terédsvirta
(1994) suggests that in such a case the selected model should be the one with the smallest p-value
in the linearity test. However, this procedure involves two drawbacks. First, one may find appropri-
ate estimates and forecasts of the nonlinear model even if linearity is weakly rejected. Second, it is
not clear what to do in case of similar p-values. The remainder of the section tries to guard against
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Table V. Test of no remaining nonlinearity

z belongs to X;

Auxiliary regressions Null of no remaining nonlinearity
and no important omission

3
Ve = 0A, + G AF + Y EXow" + 0 Ay + T Ay F + 0y
h=1 51'1 = @-z = 51‘3 =0

3
X = Ay + OLAGE + Y ERX W + o Ay + 8 Ay Y + 0y @;=0,0;,=0
h=1

z does not belong to X, and deviated models

Auxiliary regressions Null of no remaining nonlinearity
and no important omission

2
~ 1 h h 5’ A = A 1
Vi = A +EAF + Y (ew" +EXw")+ 0 Ay + 0y Ay F +0,
h=1 & =¢&=0
’ ~5’ 1 S h ’ h ’ 57 1 él - é =0
X = axAxt + axAxtF;c + Z(Exhw + gxhXtW )+ axAxt + axAxtF;c + Uy a =0 & =0
h=1 e

Note: Without loss of generalization, the elements in f3; and B, are decomposed into those first k; and IG,- nonzero elements

(o; and @), and those last k; and k; elements that are assumed to be zero in the parameter estimation (&; and &i).
Consequently, the matrix of explanatory variables is decomposed into the A;, and A, corresponding matrices. See Table I for
further parameter definitions.

these drawbacks by basing the decision upon an a posteriori evaluation of the accuracy of the
estimated nonlinear models at forecasting output growth and business-cycle phases.

As a first approximation to examine predictive accuracy of the estimated model, I propose the
certain positive rate (CNR) and the certain negative rate (CPR) measures. The former (latter) signals
the percentage of quarters that the models correctly anticipate GDP rises and NBER expansions
(GDP falls and NBER recessions). In addition, I consider the following measures of the false signals
provided by the forecasting models: the false positive rate (FPR), that measures the percentage of
times of actual positive output growth and NBER expansions when the model predicts negative
output growth and recessions, and the false negative rate (FNR), that measures the percentage of
quarters of actual negative growth and official recessions when the model forecasts GDP rises and
expansions.’

As a second approximation to the forecasting accuracy, I compute the following measures. The
output growth forecasting accuracy may be checked using the well-known mean square error

MSE= 3 (- 3)’ (15)

t=1

*In line with Stock and Watson (1993), I interpret an estimated probability of recession above 0.75 (below 0.25) as a signal
of recession (expansion).
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based upon the distance between actual (y) and estimated (§) output growth (7 is the sample size).
The business-cycles forecasting accuracy may be investigated with the loss function turning points
error

1 & A2
TPE—?Z(d,—d,) (16)

where d, is an indicator variable taking value 1 at the official NBER recessions. Recall that logistic
transition functions (in models with baseline parameters greater than zero) may be interpreted as
probabilities of expansion. This leads us to define d, = 1 — F\(z,).

Note that the last two measures lead to a ranking of the competing models according to their fore-
casting performance. However, it is advisable to test whether the forecasts made with one of these
models are significantly superior to the other model’s forecasts. One interesting possibility is to test
the null of no difference in the forecasting accuracy of these competing models using the following
tests: the Diebold—Mariano (DM), modified Diebold—-Mariano (MDM), Morgan—Granger—-Newbold
(MGN) and Meese—Rogoff (MR) tests, all of them described in Diebold and Mariano (1995) and
Harvey et al. (1997). An additional possibility is to consider the forecast encompassing test that is
based on testing the significance of ¢; in the OLS regression

L=l =0 +oul,; +o, (17)

where [, is either y, or d,, and lA[,,- and f,_ ; are the forecasts computed from two competing models i
and j.

EMPIRICAL RESULTS

The CLI is a weighted average of 10 macroeconomic leading variables which are expected to turn
before the aggregate economy. In this section, I examine the effective real-time predictive power of
the leading indicator series to forecast both output growth and business-cycle phases of the US
economy using the VSTR models.

In-sample analysis

Even though this paper focuses on real-time forecasts, I consider a preliminary in-sample analysis
of the 173 quarterly observations of GDP running from 1959.1 to 2002.1. Since the Conference
Board issues the series of CLI monthly, in order to compare the leading indicator with the output
series I transform the indicator into a quarterly series by selecting the data corresponding to the last
month of each quarter. In addition, the indicator series is published one-month lagged, so the first
CLI series with figures for March 2002 is released in April. However, these preliminary figures are
dramatically changed in the following month’s release. Consequently, in the in-sample analysis I
consider the CLI series issued in May 2002.

Following the specification strategy outlined in Figure 1, I need to specify an appropriate linear
VAR which is the base for the nonlinear models. In a preliminary analysis of data, the augmented
Dickey-Fuller, Phillips—Perron, KPSS and Lobato—Robison tests detect unit roots in the log of both
variables, which suggest the use of the stationary rate of growth transformation of GDP and CLI,
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hereafter y and x.° In addition, I apply the nonparametric cointegration test proposed by Bierens
(1997), who considers that the number of cointegrating vectors r can be estimated as the argument
that minimizes the function

-1

(ﬁ )'km) ifr=0

k=I
-1

T-r T
gm(r): (Hz’km) (Tzr H )ykm) 1fr=1,,T—I
k=I

k=n—r+1

T
7] ifr=T (18)

where T is the sample size, A; is the ordered eigenvalue obtained from a nonparametric generalized
eigenvalue problem in the same spirit as Johansen’s method, and m is a parameter selected accord-
ing to the values of r and T as stated in his paper.” Using this method, I obtain that the number of
cointegrating vectors that minimizes g,(r) is zero, which indicates the absence of cointegration
between the log of the series of GDP and CLI. Accordingly, I do not use the equilibrium errors to
compute the in-sample estimates.

As documented by Kim and Nelson (1999) and McConnell and Perez-Quiros (2000), it is inter-
esting to consider 1984.1 as a candidate for being a breakpoint in the variance in order to select
the most appropriate VAR specification. According to these findings, I conduct a Chow test by impos-
ing 1984.1 as a breakpoint in the variance of an AR(1) for both y and x, and in the variance—
covariance matrix of a VAR(1) for a vector formed by these variables.® Since I obtain p-values
that are always less than 0.01, my final specification considers the reduction in the volatility since
1984.1.

Linearity and model selection tests require the specification of a set of variables z and a set of
values of g. For the former, I use lagged values of x and y within a year. For the latter, I use (square)
weighted averages of the one to four lagged deviations from the linear path. The first column of
Table VI reveals that the number of rejections of the null of linearity is large, which confirms the
nonlinear nature of the relationships between GDP and CLI previously documented in the literature.
In addition, columns two to five of this table present the results of the model selection tests, and the
final nonlinear specification in those cases for which linearity was rejected. In order to reduce the
number of VSTR models, I select the model presenting the strongest rejection of linearity within
each family and postpone the decision of selecting one of them according to their forecasting ability.
This leads us to consider one logistic (z, =y, ,), one exponential (z, = x,,) and one logistic-deviated
(g = 1) model, called LVSTR(y,»,), EVSTR(x, ;) and LVSTR-D(1), respectively. Table VII shows the
maximum likelihood estimates of their significant parameters.” In illustrating how these nonlinear
models work, Figure 2 plots the transition function of the CLI equation of LVSTR(y,,) and
EVSTR(x,,). The former presents a smoothness parameter of 7.11, indicating that the transition

®These results are omitted but available from the author upon request.

"Note that, due to the nonparametric nature of this test, the Bierens results are independent of the data-generating process.
Thus, even though the relationships between GDP and CLI were nonlinear, the test remains valid.

#1 select the AR and VAR lag lengths using the Schwarz selection criterion.

°Note that, as Terdsvirta (1994) has emphasized, a precise joint estimation of the smoothness parameter and the threshold
is usually a problem.
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Table VI. Results of linearity and model selection tests

Lin. Test Test 1 Test 2 Test 3 Decision
2= Vi 40.70 (R) 11.13 5.42 11.13 (R) LVSTR(y,..)
2=V 62.73 (R) 2.75 - - LVSTR(y,.,)
I=Yi3 51.90 (R) 52.21 (R) - o EVSTR(y, ;)
g=1 93.91 (R) 11.93 - o LVSTR-D(1)
qg=2 85.81 (R) 111.72 (R) - - EVSTR-D(2)
qg=73 30.12 (R) 23.71 - . LVSTR-D(3)
7= X 101.18 (R) 37.22 (R) 8.94 55.02 (R) LVSTR(x,,)
=X 254.92 (R) 111.24 (R) - - EVSTR(x..,)
7= X3 170.68 (R) 54.97 (R) - . EVSTR(x,5)

Note: Tests are developed as described in text. Statistics are displayed only for models which reject linearity. Second column
shows the results for linearity tests, whereas third to fifth columns present the results for model selection tests. Only when
z =Yy, or x,; belongs to the set of explanatory variables (a three-stage testing procedure applies), since these tests refer to
a vector autoregressive specification with lag length one. Results of the tests at 5% are in parentheses (R: reject).

between the two extreme regimes (characterized by F = 0 and F = 1) is relatively sharp. The esti-
mated threshold is 0.12 and marks the halfway point between regimes. The latter model shows a
much lower smoothness parameter (0.61), which implies smoother transitions between the middle
ground (F = 0), marked by values of x, , near to —0.72, and the other extreme regime (F = 1).

In order to investigate the adequacy of these nonlinear models to the GDP and CLI data, Table
VIII shows the p-values of the SI test for values of r from 1 to 4, the PC test for values of k£ from
1 to 3, and the NRN test. With regard to the logistic models, these entries show that there is no evi-
dence of serial correlation of errors at any lag (p-values higher than 0.15), no empirical support for
rejecting the null of parameter constancy at any value of k (p-values higher than 0.08), and no remain-
ing nonlinearity (p-values higher than 0.90). With regard to the exponential model, these entries
reveal that even though there is no strong evidence of remaining nonlinearity (p-value of 0.05), errors
may be correlated (p-value of 0.01 for r = 2 and r = 4), and parameters may be nonconstant (p-
values less than 0.05 for £ = 2 and k = 3), showing that the exponential transition function may not
be adequate for the data.

Table IX reveals that LVSTR(y,,) is the most accurate model to forecast output growth signs and
business-cycle phases. With respect to the forecasting performance of output growth signs, this model
presents the highest percentage of successes (CPR and CNR of 98.64 and 52.17) and the lowest
percentage of failures (FPR and FNR of 14.28 and 7.00). With respect to the ability to forecast
business-cycle phases, this model shows a higher percentage of successes (CPR and CNR of 59.25
and 87.50) and a lower percentage of false signals (FPR and FNR of 27.27 and 5.26) than the
LVSTR-D(1) model.

In line with these results, Table X confirms the superior accuracy of the LVSTR(y, ;) model to
forecast growth and business cycles. This model presents much lower MSE than the LVSTR-D(1)
and EVSTR(x,,) models, with relative MSE measures of 0.67 and 0.59 respectively. The p-values
of the null of equal forecasting accuracy from DM, MDM, MGN and MR tests are always less than
0.001, which reveals that the output growth forecasts of the LVSTR(y,.,) model are statistically supe-
rior to the other models’ forecasts. In addition, the null that forecasts from this model encompass
forecasts from the LVSTR-D(1) and EVSTR(x, ;) models cannot be rejected at any standard signifi-
cance level (p-values of 0.91 and 0.34). Finally, the relative TPE of the LVSTR(y,.,) model over the
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Table VII. Maximum likelihood estimates of parameters

Model estimation

LVSTR(y,-) = 1 OSF +0.33 x4
(0.34) 4 (0.04)

=0.75-0.63y,_; +0.38x,_; +— 051+057} v
(027)  (0:28) (0.08) (0.22)  (032)

-1
Fy=1+exp(-zd;§(yf—z-%23))}

E =1+ 7.11 +0.12

* eXp( (y’ 2703 7)))}
=0.1
(©.

6'111 =076 6'52 =173 6'11
(0.14) (0.25)

=028 6%=0.81 6%=0.19
(0.05) (0.14) (0.06)

LVSTR-D(1) 0 33x, 1+ (IO?ZL’»F

=0.52+0.75 x,,l}l:}
(0.15)  (0.13)

-1
Fr=trenl-g080n -0 -0

-1
F,=1+exp 161(x,1—038 021y,2—045x,2
(0.12) (0.10)

OA'|11=079 6'%2=162 6'12 01
1 (0.23) (0.10

64 =030 6% =084 65 =0.14
(0.05) (0.14) (0.06)

EVSTR(x,.,) vy, =1.10 —1. 42F +O 26x, 1

in (069
% =055F, +0.29x,,
(0.25) (0.07)

F=1- exp(—0.06(x, , -2 66) )
; (0.06 (1.12)

2
Xi—2 —( -0. 72))
82) (0.31)
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|
[¢]
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o
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(0.10) (0.11) (0.05)
64 =026 63, =080 65 =0.13
(0.04) (0.14) (0.05)

Note: Parameter o; (07) refers to the row i, column j element of the VARCOV
matrix during the period 1959.1-1983.4 (1984.1-2002.1). Standard errors are in
parentheses.
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Logistic transition function from LVSTR(Yt-2)

0.8 -

e
o
|

N
=
|

transition function
T

02

0 L L o SRR R SRS N S S T S S S S0 A S S S T T S S SN ST A S S S S ST B AT A M M |

—-1.88 —-0.88 0.12 1.12 2.12
GDP growth at t-2

Exponential transition function from EVSTR(Xt-2)

0.8

<
o)

<
~

transition function

0.2

0
-5.72 —4.72 -3.72 -2.72 -1.72 -0.72 0.28 1.28 2.28 3.28 4.28
CLI growth at t-2

Figure 2. Estimated transition functions vs. transition variables

Note: This figure plots the transition functions of the CLI growth equation against y, , and x,_,, respectively.

LVSTR-D(1) is 0.21 and the p-values of the equal forecast accuracy tests are always less than 0.001,
revealing that the LVSTR(y,,) is also the best model to forecast the business-cycle phases.

Real-time forecasting

The prediction of output growth and business-cycle phases using leading indexes is usually evalu-
ated with either in-sample or out-of-sample exercises. In both cases the forecasts are conducted with
final revised values of the index: the former examines the forecasting accuracy using the entire series
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Table VIII. Testing the adequacy of VSTR models

Test SI Test PC Test NRN
r=1 r=2 r=3 r=4 k=1 k=2 k=3
LVSTR(y.-») 0.06 0.17 0.50 0.60 0.60 0.17 0.08 0.95
LVSTR-D(1) 0.15 0.33 0.59 0.17 0.31 0.08 0.25 0.92
EVSTR(x,.,) 0.31 0.01 0.05 0.01 0.01 0.03 0.06 0.05

Note: Each entry shows the p-values of serial independence of errors (SI), parameter constancy (PC) and no remaining non-
linearity (NRN) tests. Note that NRN tests have power against omission of important lags from the estimated model.

Table IX. (a) Certain positive and negative signal rates (CPR and CNR); (b) False positive and negative
signal rates (FPR and FNR)

(a) In-sample Real-time
GDP Business GDP Business
cycles cycles
CPR CNR CPR CNR CPR CNR CPR CNR
LVSTR(y:-) 98.64 52.17 59.25 87.50 95.34 50.00 60.00 95.18
LVSTR-D(1) 97.97 26.08 14.81 29.86 93.02 58.33 0.00 9.63
EVSTR(x,.,) 96.62 34.78 e e 91.86 50.00 e e
(b) In-sample Real-time
GDP Business GDP Business
cycles cycles
FPR FNR FPR FNR FPR FNR FPR FNR
LVSTR(y.,) 14.28 7.00 27.27 5.26 40.00 6.81 33.76 4.81
LVSTR-D(1) 33.33 10.49 92.59 24.56 46.15 5.88 100.00 27.27
EVSTR(x,.,) 38.46 9.49 . . 56.84 7.05

Note: ‘In-sample’ and ‘real-time’ refer to 1959.1-2002.1 and 1978.1-2002.2 respectively. Certain positive rates (certain neg-
ative rates) measure the percentage of quarters of estimated positive growth and expansions (negative growth and reces-
sions) over the quarters of actual positive growth and NBER expansions (negative growth and recessions). False positive
rates (false negative rates) measure the percentage of quarters that turn out to be actual periods of positive growth and expan-
sions (negative growth and recessions) over the quarters of estimated negative growth and recessions (positive growth and
expansions). Note that, in line with Stock and Watson (1992), an estimated probability of recession above 0.75 (below 0.25)
is interpreted as a signal of recession (expansion).

and the latter evaluates the forecast accuracy using just a portion of the same indicator series. In
contrast to these forecasting exercises, in this section I perform one-period-ahead real-time forecasts
from 1978.1 to 2002.2, using a method that tries to mimic the information sets that were actually
available at the historical date of each forecast. This implies that, prior to developing these forecasts,
the following questions should be addressed: what series of CLI should be used to compute each
forecast in real time, what is the order of cointegration between the real-time pairs of series of CLI
and GDP, and at what time would a forecaster have recognized the volatility slowdown dated in the
middle of the 1980s.
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Table X. Predictive accuracy analysis

In-sample Real-time

LVSTR(y..) LVSTR-D(1) EVSTR(x.) LVSTR(y,,) LVSTR-D(1) EVSTR(x.,)

Output growth

MSE 0.354 0.527 0.597 0.524 0.751 0.588
RMSE 1.000 0.671 0.592 1.000 0.698 0.891
DM e <0.001 <0.001 S 0.016 0.036
MDM e <0.001 <0.001 o 0.019 0.039
MGN S <0.001 <0.001 e 0.006 0.072
MR e <0.001 <0.001 e 0.002 0.052
Enc e 0.913 0.366 o 0.151 0.077
Business cycles
TPE 0.088 0.418 o 0.088 0.295
RTPE 1.000 0.210 o 1.000 0.295
DM e <0.001 e e <0.001
MDM e <0.001 o o <0.001
MGN ce. <0.001 S o <0.001
MR e <0.001 o e 0.001
Enc e 0.001 o o 0.180

Note: ‘In-sample’ and ‘real-time’ refer to 1959.1-2002.1 and 1978.1-2002.2. MSE and TPE refer to the mean squared error
and turning point error measures. RMSE and RTPE are the relative MSE and TPE of the forecasting models over the
LVSTR(y,). Entries in rows three to six in both output growth and business-cycle analysis show the p-values of the fol-
lowing tests of equal forecast accuracy: DM (Diebold—Mariano), MDM (modified DM), MGN (Morgan—Granger—Newbold),
and MR (Meese—Rogoff), all of them described in Diebold and Mariano (1995) and Harvey et al. (1997). The last rows in
these studies present the p-values of the forecast encompassing test that is based upon the significance test of ¢ in the OLS
regression

L=l Lvstr = Qo+ 00l + @,

where /, is either actual output growth or a dichotomous variable with ones at the official recessions, and lA,ALVSTR(Z- ;) is either
its one-step-ahead forecast or the probability of recession computed from the LVSTR(y,,) (one of the other nonlinear
models).

First, in line with Diebold and Rudebusch (1991), the real-time forecasts should reproduce the
CLI data vector available at the quarter of each forecast. Towards the end of each month of the real-
time exercise, the forecasters face the new issue of the leading index containing the provisional esti-
mate of the previous month, the revisions of the preceding months, and the historical series from
the beginning of the sample. However, the last figure is very preliminary and usually subject to large
modifications in the first revision of the index issued in the following month. In line with Hamilton
and Perez-Quiros (1996), I base the forecast of quarter ¢ + 1 on the estimates of a VSTR that uses
the GDP series with data until quarter #, and the CLI published two months after the end of this
quarter that is transformed into quarterly observations by selecting the data corresponding to the last
month of each quarter.'’

Second, the analysis of the long-term relationship between GDP and CLI presents puzzling results
in the literature. Using the series of outputs ending in 1993.3 and 1999.4 and the corresponding series

“In the real-time analysis the CLI series issued prior to 1988.10 starts in 1948.01, the series issued from this date until
1993.03 starts in 1952.11, and the series issued since 1993.04 starts in 1959.01.
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Figure 3. Real-time contegration analysis

Note: At any quarter k during the period 1997.4-2002.1, this figure plots the degree of cointegration from the Bierens (1997)
nonparametric cointegration test applied to the GDP series ending in quarter k and the CLI data vector issued two months
after this quarter. The numbers show the last observation of the GDP series used in the cointegration analysis of (1) Granger
et al. (1993), (2) Hamilton and Perez-Quiros (1996), (3) Camacho (2000), (4) Huh (2002) and (5) the in-sample analysis of
this paper.

of the leading index, Hamilton and Perez-Quiros (1996) and Huh (2002) conclude that GDP and CLI
are cointegrated. This contrasts with Granger et al. (1993) Camacho (2000) and the in-sample analy-
sis of this paper, where we fail to detect cointegration using the GDP series ending in 1989.2, 1997.4
and 2002.1 and their corresponding transformations of the CLI series respectively. Figure 3 tries to
shed some light on these puzzling results by investigating the number of cointegrating relationships
of GDP and CLI computed in real time. At any quarter, this figure plots the number of cointegrat-
ing vectors r that minimize the function g,(r) evaluated with GDP data until this quarter and the
corresponding quarterly transformation of the CLI series issued two months after the end of this
quarter. This figure confirms the switches in the order of cointegration previously documented by
the literature. It is interesting to note that many of the switches of the order of cointegration coin-
cide with the historical revisions in the CLI series, which may be a possible explanation of this puz-
zling phenomenon.' This is the case for the changes in the CLI definition produced in the middle
of the 1980s and in the early 1990s, and the trend adjustment changes occurring the middle of the
1990s."

Third, as outlined in the in-sample analysis, both Kim and Nelson (1999) and McConnell and
Perez-Quiros (2000) have documented a reduction in the output volatility since 1984.1. However,
these authors analyse the series of outputs ending in 1997.1 and 1999.2 so they have information
sets that were not available during the first quarters of the real-time forecasting period. In order to
compute the real-time forecasts, it is interesting to know at what time a forecaster would have

"""The historical revisions of the CLI series are either statistical revisions (due to revisions in the components) or definitional
revisions (index components are reselected and reweighted).
"2 A deeper analysis of this puzzling phenomenon is beyond the scope of this paper and is left for further research.
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realized the breakpoint in the variance. For this attempt, at any quarter 7 of the real-time analysis,
I compute the GMM estimates of the system

yt :U+¢y1—1+£11 (19)

VT,
Tlglll =Dy, + o, D, + &, (20)

where 1 refers to data of the period from 1959.1 to ¢. In this system, a constant, y,, D, and D,, are
the instruments for each period t, and the dummies are

l1if1<N
Oifi>N

It —

{OifzSN

. and D, :{
lifi>N
where N is the estimated breakpoint. For any quarter of the real-time analysis, Figure 4 uses the
approximation suggested by Hansen (1997) to plot the p-values of the supremum test defined in
Andrews (1993) and the exponential and average tests developed in Andrews and Ploberger (1994)
of the null that ¢ = . This figure reveals that even though there is some evidence to consider
1984.1 as a breakpoint in variance by the end of the 1980s (the p-values of the supremum and expo-
nential tests are less than 0.05 during the period 1988.4-1990.3), a clear signal of the structural break
does not appear until 1995.3 since only from this date do the three tests present p-values definitely
below the standard critical value of 0.05.

Summarizing, at any quarter ¢ of the period 1997.4-2002.1, I estimate the VSTR models with the
series of GDP ending in this quarter and the corresponding quarterly transformation of the CLI data

|
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Figure 4. Real-time structural break analysis

Note: Using the approximation of Hansen (1997),this figure plots the p-values of the supremum (dashedline) test developed
by Andrews (1993) and the exponential (dotted line) and average (straight line) tests suggested by Andrews and Ploberger
(1994) applied to the GDP growth rate enlarged with one additional observation during the period 1997.4-2002.1.

Copyright © 2004 John Wiley & Sons, Ltd. J. Forecast. 23, 173-196 (2004)



192 M. Camacho

vector issued two months after the end of the quarter with the following considerations. First, I
compute the Bierens nonparametric cointegration test and I include the corresponding cointegrating
errors in the VSTR specification in case of detecting cointegration. Second, I assume that since
1995.3 there was enough evidence to believe that any forecaster should realize the reduction in the
volatility dated in 1984.1. Consequently, I consider this quarter as a breakpoint in the variance of
the real-time VSTR estimates of any quarter since 1995.3. Finally, using the estimates available at
quarter ¢, I compute the VSTR forecasts of both the output growth and the probability of recession
for quarter ¢ + 1.

Table IX analyses the models’ accuracy to anticipate the output growth sign and the business-
cycle phases. With respect to the output growth sign forecasting accuracy, this table shows incon-
clusive results: even though the LVSTR(y,,) is the model with the highest CPR (95.34) and lowest
FPR (40.00), the model with highest CNR (58.33) and lowest FNR (5.88) is the LVSTR-D(1) model.
With respect to the business-cycle forecasting accuracy, this table reveals that the LVSTR(y, ;) model
is unequivocally the best since this model presents more certain signals (CPR and CNR of 60.00
and 95.18) and less false signals (FPR and FNR of 33.76 and 4.81). In addition, Table X considers
a more formal analysis of the forecasting performance of the selected nonlinear models. The ability
of the LVSTR(y,,) model to forecast GDP growth is superior to the LVSTR-D(1) and EVSTR
(x,.3) models, with relativeMSE of 0.69 and 0.89 respectively. The null of equal forecasting accu-
racy between the LVSTR(y,,) model and the other competing models is rejected with any test for
any model (p-values never greater than 0.05), with the exception of the MGN test for comparing
forecasts of the LVSTR(y,.,) and EVSTR(x,.,) models with p-value of 0.07. Moreover, we cannot
reject the null that the forecast of the LVSTR(y,,) model encompasses the other models’ forecasts
(p-values of 0.16 and 0.08 respectively). On the other hand, the LVSTR( y,,) model produces much
lower forecast errors than the LVSTR-D(1) model to anticipate the NBER business-cycle phases
(relative TPE of 0.29). The tests of equal forecast accuracy confirm that the forecasting improve-
ments with the LVSTR(y,.,) model are statistically significant (p-values less than or equal to 0.001).
Moreover, the forecast encompassing test shows that the LVSTR(y,,) forecasts encompass the
LVSTR-D(1) forecasts of the business-cycle fluctuations (p-value of 0.18).

The NBER has been dating US expansions and recessions for the last 50 years based on careful
deliberations of the members of its Business Cycle Dating committee. The procedure requires the
examination of numerous ex post data series that are believed to be coincidental with the aggregate
economy. This approach implies that the NBER procedure cannot be used to forecast the future direc-
tion of the economy in real time since the committee’s decisions about the business-cycle turning
points are usually slow in coming."? As Boldin (1994) points out, the delay in the availability of the
NBER schedule has motivated the use of several filtering rules to transform changes in the business-
cycle leading indicators (that may capture the dampening of fluctuations over the cycle) into turning
point predictions. In this context, Figure 5 assesses the degree to which the LVSTR(y, ;) model
anticipates the US business-cycle fluctuations in real time. As observed, the probabilities of reces-
sion (values of 1 — F') tend to increase at the beginning of recessions (peaks) and to decrease around
the end of recessions (troughs). The high correspondence with the NBER ex post dating procedure
includes the last 2001 recession. In this recession, the NBER announces the March peak in Novem-
ber, with a delay of 8 months. However, in 2000.4 the logistic model forecast a probability of reces-
sion of 0.4 for 2001.1 and in 2001.1 forecast a probability of recession of almost 1 for 2001.2. In

BFor example, in December 1992 the NBER announced that the 1990s recession trough occurred in March 1991, which
implies a delay of 20 months.
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Figure 5. Real-time probabilities of recession

Note: This figure shows the real-time (period 1978.1-2002.2) probabilities of recession from the LVSTR(y,.,). Shaded areas
correspond to the NBER recessions.

addition, the NBER has not announced the trough yet but the LVSTR(y,.,) model, using the infor-
mation available in the last quarter of 2001, predicts that the last recession ended in the first quarter
of 2002 (the probability of recession predicted for this quarter is 0.06), which coincides with the
trough in January 2002 proposed by Chauvet (2002) using a dynamic factor model with regime
switching methodology. This confirms that the VSTR models may be used as an additional filter to
forecast the US business-cycle turning points in real time.

CONCLUSION

Prediction or even timely recognition of GDP growth rates and business-cycle turning points con-
tinues to be an exciting problem in econometrics, especially due to the current 2001 recession. In
this paper I provide both theoretical and empirical support to consider an extension of the STAR
models as an alternative filter to convert the Conference Board leading indicator movements into
predictions of output growth and probabilities of recession.

From the theoretical point of view, I provide a vector autoregressive extension of the STAR models
advocated by Granger and Terdsvirta (1993). First, following the maximum likelihood principle to
estimate these models, I adapt to the multiple-equation framework the linearity and model selection
tests. Second, I extend the single-equation tests of serial independence of errors, the tests of parame-
ter constancy and the test of no remaining nonlinearity proposed by Eitrheim and Teridsvirta (1996).

From the empirical point of view, I examine with several model evaluation techniques the use-
fulness of the proposed models to forecast output growth and business-cycle phases. In order to
compute real-time forecasts, I consider two preliminary questions. First, I find that the puzzling
switches in the order of cointegration between the output and leading indicator series documented
in the literature may be due to the historical redefinitions of the leading indicator series. Second,
despite the widespread acceptance of the reduction in the volatility of output growth since the middle
of the 1980s, I show that there are no strong signals to consider the structural break in real time until
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the mid-1990s. Finally, I find that a logistic nonlinear model whose transition variable is
output growth with two periods of lag is the best model to forecast output growth and business-cycle
phases.

APPENDIX: LM TEST OF SERIAL INDEPENDENCE OF ERRORS IN VSTR MODELS

It is well known that the test statistic (11) follows a limiting y* distribution with as many degrees
of freedom as the number of parameters which are assumed to be zero under the null. Thus, our
target is to find an explicit definition for expressions appearing in this test.

Following the notation used in the text, let the (1 X r) vector @} = (CD}]-, ..., @}) be the block ij
of the matrix @’ such that U, = ®'V,, with i, j = y, x. Let us collect the 4r elements of ® in the column
vector @ = (D3,, D},, D, D), and let us define the vector ¥ = (@', ). Hence, the null of

serially uncorrelated errors may be expressed as H,: ® = 0. To derive the test, it is useful to left-
multiply the model (9) by I — ®(L), which leads to the likelihood function

1 1
L, =C- ElnIFI - E(gf.,r"” +26, 6, T +6iT™) (A.1)

where I'V is block #j of the symmetric matrix I'™!, with i, j = y, x. On the one hand, to derive the esti-
mates of the score under the null, it is useful to note that d,/0®,; = (I"*g,, + I"’G,,)v; and d[,/0®,; =
(™G + Gy, with j =y, x. This leads to the (4r X 1) vector

my, =Y (3, /0D, , [dd),, oL, /9D, 3, [0D’,) = (s ev,) (A.2)

On the other hand, let us consider the expressions related to the Hessian matrix

1 Mss Mg
M==—Y 0% /00 d¥ = A3
M= / ( Mw) (A

M5

1
First, the upper left block is formed of 16 matrices M(®;;, @) = ?2821, / 0®,; 0Py, that may be
estimated as M(®;, @) = via'y, with i, j, h, k = x, y. This leads us to consider that Mgz =
1 _ ’ 1 _
?2(1: 1®Z,Z,). Second, the upper right block Mg, = ?Zazg,/ 0® 0¥’ may be approximated

1 s
by ?2 (E ! Z,/®V, ), and the lower left block by M’g . Third, the estimates of the lower right block

Moy = 2 00/290% are -3 (2,0Z)

Finally, the estimates of Z, = (z,,, z.), Where z; is dG/0¥; = 0G(A,, ¥)/0¥,, are defined as follows.
It is easy to check that dG/df; = A, and that 0G/dB; = AF(D,). Expressions for dG/dy; are [1 +
e 1P 2D,e i A, and D,e i A, in the case of logistic and exponential models, respectively.
However, expressions of dG/dg; are zero for deviated models, and —[1 + e 7] *ye P BgA, (for

logistic) and —2yD} e " BIA, (for exponential) nondeviated models.
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