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A NOTE ON LEAST ABSOLUTE
DEVIATION ESTIMATION OF
A THRESHOLD MODEL

MEeHMET CANER
University of Pittsburgh

This paper develops the limit law for the least absolute deviation estimator of the
threshold parameter in linear regression. In this respect, we extend the literature
of threshold models. The existing literature considers only the least squares esti-
mation of the threshold parameter (see Chan, 1993, Annals of Statistics 21, 520~
533; Hansen, 2000, Econometrica 68, 575-605). This result is useful because in
the case of heavy-tailed errors there is an efficiency loss resulting from the use of -
least squares. Also, for the first time in the literature, we derive the limit law for
the likelihood ratio test for the threshold parameter using the least absolute devi-
ation technique.

1. INTRODUCTION

In a regression model we are usually interested in whether the regression coef-
ficients are stable or not. We select subsamples to detect this behavior. This
selection may be based on continuous variables such as firm size. Rather than
using ad hoc models to select subsamples we can use the threshold regression
models. This model can be written as

yi = 0ix; + e, 4=, (0]
yi = 6x; + e q: >, 2)

where ¢g; is the observed threshold variable. The subsamples are selected ac-
cording to the value that the threshold variable takes. The random variable e is
the regression error.

Hansen (2000) explains different applications of threshold models in the
econometric literature. One example is the so-called threshold autoregressive
(TAR) model of Tong (1983, 1990). The TAR model is simple and parsimoni-
ous and allows for nonlinearities in the conditional expectation function. Thresh-
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old models are also special cases of switching models and mixture models. To
understand these complex models better, it is useful to analyze the simple thresh-
old model described in (1) and (2). Recently, we have seen these models in the
literature; see Tong (1983), Tsay (1997), Chen and Lee (1995), Montgomery,
Zarnowitz, Tsay, and Tiao (1996), and Altissimo and Violante (1996).

Estimation of the threshold parameter vy is by least squares (LS) estimation
technique in Chan (1993) and Hansen (2000). Robust estimation of the thresh-
old parameter has not been analyzed in the literature. Least absolute deviation
(LAD) estimation of a shift is analyzed by Bai (1995). He derives the limit
theory for the change-point estimate. The change-point literature considers the
model (1) and (2) with g; = i. In the threshold case g; is observable and may be
an element of x;.

The aim of this paper is to obtain the asymptotic distribution of the threshold
parameter y by using the LAD method. This is the first paper to do so in the
literature. We take the approach that is used in the change-point literature. We
let the threshold effect 8, = 6; — 6, converge to zero as the sample size in-
creases. This assumption is used both in the change-point and the threshold
literature (see Picard, 1985; Bai, 1995; Hansen, 2000). The limit law for the
threshold estimate consists of the functional of two-sided Brownian motion.
The limit is similar to what is found in the change-point case of Bai (1995)
although the scale factor is different.

We also study the likelihood ratio tests for the threshold parameter. This is
not done in the change-point case of Bai (1995). By using the likelihood ratio
tests we may construct confidence intervals for the threshold parameter.

When the data are observed from a thick-tailed distribution we show that the
LAD estimate of vy is more efficient than the LS estimate. This fact was known
in the case of no structural change and the change-point models. We extend
this to the threshold regression model.

Section 2 details the method and compares the threshold and change-point
models. Section 3 presents the assumptions and the limit law. In Section 4, we
form the likelihood ratio test for . Section 5 concludes. The Appendix con-
tains all the proofs. The expression |.| denotes the Euclidean norm. The sym-
bol = denotes weak convergence with respect to the uniform metric, and LN
denotes converges in distribution.

2. MODEL

The observed sample is {y;,q;, x; }—,, where y; and g; are real valued and x; is
an m-vector. The threshold variable g; may be an element of x; and is assumed
to have a continuous distribution. A threshold regression is simply modeled as
in (1) and (2). We can rewrite (1) and (2) in a single equation:

Yi = xtle + xi()’),‘sn + €, ) (3)



802 MEHMET CANER

where 6 = 6,, 8, = 0, — 65, x;(y) = x; ly;,=y1> and 1;; is an indicator function.
The results also generalize to the case where only a subset of parameters switches
between regimes and to the case where some regressors only enter in one of
the two regimes.

Denote the regression parameters by (6,8,7y). Let

S,(0,8,7) = El |y —x/0 = x;(y)'8| )
be the sum of the absolute deviations. By definition, the LAD estimators jointly
minimize the objective function in (4). For this minimization y only takes val-
ues in a compact set I' = [y,,y,], where vy, is the lower bound and v, is the
upper bound.

To obtain ¥ we concentrate out y in (4) and derive conditional LAD estima-
tors of 6, 8. Then, ¥ is the value that minimizes this concentrated sum of abso-
lute errors function. Because S,(7y) takes on less than n distinct values  can be
defined uniquely:

y = arg meip S,.(v), (5)
y n

where I,, = T' N ¢1,¢5,--+,q,. Computing y requires at most n function evalu-
ations. The slope estimates can be computed as 6 =0(9) and § = 5(§). As in
Hansen (2000), if n is large I’ can be approximated by a grid.

The threshold model in (1) and (2) is similar to the change-point model. In
the change-point model g; = i. If the observed values of ¢; are distinct, to esti-
mate the parameters in the threshold model, as a first step, we proceed as in the
change-point model and sort the data based on g;. Also when regressors contain
the threshold variable g;, the threshold model is similar to a change-point model
with trended data, because sorting the data by g; induces a trend in the regres-
sors. Even though there are similarities, change-point models are different than
the threshold models. Regarding the differences in the distribution we should
note that the stochastic process R;(y) = 2/_, x;sgn(e;) 1, -, is not a martin-
gale in the threshold model, which complicates the limit theory for . This re-
quires the use of a different set of asymptotic tools compared with the change-
point case. The limit law of the estimator of the change point and the threshold
parameter in LAD estimation is the same only when the threshold variable is
independent from the regressors; this is explained in detail in Section 3.2.

3. THE LIMIT LAW

3.1. Assumptions

Define the moment functionals
M(y) = ELFO]x)xx{1ig,2],
N(y) = E[x;x{1{g= ],

D(y) = E[ fOlx;)x;x{|q; = v],
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and

V(y) = Elx;x{lq; = v],

where f(0|x;) is the conditional density of errors at zero.
Let g(g) denote the density function of ¢; and vy, denote the true value of 7.

Set D = D(yy), g = (o), and V = V(y,).

Assumptions.

(@) (x;,qi,e;) is strictly stationary, ergodic, and p-mixing sequence with mixing co-
efficients p,, = O(e¢™),& > 0.

(b) The errors e; admit a positive and continuous density function f(.) in a neighbor-
hood of zero and having zero conditional median.

(c)
n~!? max [, (log n)'2 =o,(1).

Furthermore
E|x;|* < 0.

(d) For all y € T, E[|x;[*|¢; = y]1 = C, E[f(0]x)*|x;|*|¢; = y] = C, for some
C<oand 0 < g(y)=g <oo.

(e) g(v), D(y), V(y) are continuous at y = v,.

(f) §=6,=cn *withc#0and 0 < a < 3.

(g) ¢'Dc >0, c'Ve > 0.

(h) There exists M, N such that M > M(y) > 0, N > N(y) > 0 for all y € T, where
I is a compact set [y;,v,] and v, and 1y, are the lower and upper bounds of this
set, respectively.

Assumption (a) allows for time-series data. The p-mixing assumption con-
trols the degree of time series dependence and is weaker than uniform mixing
yet stronger than strong mixing. For further information on the p-mixing con-
cept see Peligrad (1982). Assumptions (b) and (c) are standard in the LAD
literature (see Pollard, 1991; Weiss, 1991; Bai, 1995). Assumption (d) is stan-
dard in the threshold literature (see Hansen, 2000). Assumption (e) imposes a
continuous distribution on the threshold variable. Assumption (f) is borrowed
from the change-point and the threshold literature; it basically requires that
the difference in regression slopes gets smaller with increasing sample size
(see Picard, 1985; Bai, 1995; Hansen, 2000). This is needed to get a nuisance-
parameter-free limit law. Assumption (g) is a full-rank condition needed to
have a nondegenerate asymptotic distribution. Assumption (h) is a full-rank
condition that excludes multicollinearity.

3.2. Asymptotic Distribution of the Threshold Parameter

In this section we derive the limit law for the threshold parameter vy.



804 MEHMET CANER

THEOREM 1. Under Assumptions (a)—(h),

”l_za(77 ~ Yo) % T,
where

B c'Ve
@= 4(c'Dc)?g’

-1
T =arg max [7 ||+ W(r)],

—oo<<r<<oo
and W(r) is a two-sided Brownian motion.

A two-sided Brownian motion on the real line is defined as W(r) = W;(—r)
when r < 0, W(r) = Wy(r) when r > 0, and W(r) = 0 when r = 0. Here
Wi (=r) and W,(r) are two independent standard Brownian motions on [0,00).

Now we consider the similarities and differences of the threshold and the
change-point models. We can see that the difference in the limit theory stems
from the precision term w (Bai, 1995, Theorems 3iii and 4iii). First we analyze
the similarities between those two models. When x; and ¢; are independent, the
limit law for ¥ is the same in both models.

To see this point in a simple setting, assume errors e; are independent and
identically distributed (i.i.d.), have a zero median, and admit a positive and
continuous density function in a neighborhood of zero. They are independent
of the regressors and the threshold variable, and (x;,q;) are i.i.d. This replaces
our Assumptions (a) and (b). Then the precision term in our Theorem 1 simpli-
fies to

1
- 4f(0)%c'E(x;x})c’

w

which is equivalent to the scale term in Theorem 3iii of Bai (1995). The equiv-
alence of the limit laws in the threshold and the change-point cases under the
more general Assumptions (a)—(h) can also be established.!

The difference between the threshold and the change-point model arises when
the threshold variable is a random variable among the regressors. Then the w
term in each model is different in the two models. The precision term in the
threshold model is given in Theorem 1 and consists of the ratio of conditional
moment matrices. In the change-point model it is given by

B c'E(x;x!)c
C T MHELFOIx)x X

So this is the ratio of the unconditional moment matrices.
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This limit is similar to the limit law for the change-point estimator and the
threshold estimator in the LS case under the small effect asymptotics. For ex-
ample in the case of LS estimation of the threshold the limit T is the same but
the precision ratio is

_ c'E(x;xjef|q; = yo)c
{c'Ex;x/|q; = yolc}?g

by Theorem 1 of Hansen (2000).

There is an advantage of the LAD estimate over the LS estimate of the thresh-
old parameter. To see this point define the rate of efficiency of LAD relative to
least squares ARE as their ratio of asymptotic variances (Bai, 1995, p. 415).
This is nothing more than the ratio of the precision terms. Then take the case of
conditional homoskedasticity, so the precision term for the LS case in the limit
law in Theorem 1 of Hansen (2000) is

0.2

C,E(xixi,lfh = 70)08’

Wrs =

where Ee? = o2, for all i = 1,...n. The precision term wy ap is
i LAD

1
w = .
AR [C’E(xixillqi = 70)C8]4f(0)2
So
w
ARE = —= = 4f(0)%¢2,
WpAD

where this is the ARE of the median to mean in i.i.d. sampling. For example in
the case of double exponential distribution if e; are i.i.d. then ARE = 2, indi-
cating LAD is more efficient compared with LS in the case of heavy-tailed
distributions.

It is seen that when the threshold effect is large (when « is small in §, =
cn~*), then the rate of convergence approaches n, so the precision of the esti-
mator is increased. The distribution function for 7 is given in Bhattacharya and
Brockwell (1976):

x /2 3 3512
PT=x)=1+ (——> exp(—x/8) + = exp(x)dD(— >
27 2

2
<x +5 ) q>< x>
2 2)
where ®(x) denotes the cumulative standard normal distribution function for
x<0,P(T=x)=1—-P(T= —x).
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4. LIKELIHOOD RATIO TEST

To test hypotheses about the threshold parameter we benefit from the likeli-
hood ratio statistic. We formulate the null as Hy:y = vy,. Using the likelihood
ratio test in the LAD framework in Koenker and Bassett (1982) we have

LR, (y) = 4[S,(y) — S,(¥)].

The likelihood ratio test of H, will reject for large values of test statistic
LR, (7y). This test is based on the difference between the sum of the absolute
residuals in the restricted and the unrestricted models. The test statistic is not
the one suggested by Koenker and Bassett (1982); however it reduces to their
suggestion when there is conditional homoskedasticity.

Using this framework we have the following theorem.

THEOREM 2. Under Assumptions (a)—(h),

LR, (o) >’ E,
where
E = max[2 W(s) — |s]]
and

c'Ve

¢'De’

7’ =

The distribution function of & is
P(E=x)=(1—e*?)2

The critical values of the distribution in Theorem 2 are tabulated in Table 1.
If there is conditional homoskedasticity then

LR,(yo) -5 E/f(0).

So in this case rewriting the likelihood ratio statistic as

LR:(y5) = 4£(0)[S, (7o) = S,(9)] S &,

which is free of nuisance parameters. Note that this result depends on the ex-
istence of a consistent estimator for the density function for the errors at zero.

TABLE 1. Critical values in Theorem 2

P(E=x) = .80 .85 .90 .95 99
ci(B) 4.5 5.10 5.94 7.35 10.59
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Any kernel estimator such as the Epanechnikov kernel can be used for estima-
tion of this density (Hardle and Linton, 1994), or a histogram estimator can be
used as in Buchinsky (1994).

This test is not carried out in the change-point case. Bai (1995) only studies
the estimation of the change-point model. This is the first time such a test also
is carried out in the threshold framework. Careful analysis of the Bai (1995)
paper shows us that, in the case of x; being independent from ¢;, the limit law
for the test statistic is the same. Take the very simple case of i.i.d. regressors
and the threshold variable with the added assumption of conditional homoske-
dasticity (these are simple cases of our Assumptions (a) and (b)). Using the test
statistic LR (v,) benefiting from the proof of Theorem 3iii of Bai (1995) in
combination with the proof of Theorem 2 in Hansen (2000) we have, for the
change-point case,

_ C'E(x;x{)c

© C'E(x;x))e

2

In the threshold model when x; and ¢, are independent, using the discussion
after Theorem 2, n? = 1.

This equivalence can also be shown using our Assumptions (a)—(h) in Theo-
rem 3(iii) of Bai (1995). The same difference between the threshold and the
change-point models in the case of Theorem 1 carries over to the Theorem 2
results also.

Note that we may use the likelihood ratio test to establish confidence inter-
vals for . These are described in Theorem 3 of Hansen (2000). Details are
given in Caner (1999).

Because the limit in Theorem 2 depends on the nuisance parameter 7> we
need a consistent estimate for that term. Along the lines of Hansen (2000, Sect.
3.4), let ry; = (8! x;)% ry = f£(0]x;)(8)x;)?. Then

2 _ E(rilg: = 7o)
E(rylq; = v0)

is the ratio of the conditionaAl expectations, We have to use the sample counter-
parts of Fiis ;. Let fli = (S,Xi)z and le' = Kh,d(éi)(S’xi)z, where Kh,d(éi) is
the following kernel suggested by Weiss (1991) to estimate conditional densi-
ties with dependent data:

Kh,d(éi) = h-lK(éi/h)~

The term K(.) can be the simple kernel

K(é;/h) = 1y, m=1/2,

where ¢; is the LAD regression residual.
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We can use kernel regression. Following Weiss (1991, Sect. 5) and Hansen
(2000), the Nadaraya—Watson kernel estimator is

EKh(')A’_ql')r,l\i EKh(f’—Qi)(S,xi)z
ny 0=l _ i=1
n = =

EKh(’f’—%')”;i EKh(?“Qi)Kh,d(éi)(S'xi)z
i=1 i=1

’

=

where K,(u) in the preceding formula can be the Epanechnikov kernel. The
bandwidth can be selected according to a minimum square error criterion (see
Weiss, 1991; Hardle and Linton, 1994).

The slope coefficients can be obtained as in Hansen (2000), as if the thresh-
old parameter is fixed. This is analyzed in Caner (1999).

5. CONCLUSION

This paper derives the limit law for the threshold parameter using a LAD esti-
mator. We find that the LAD estimator is more efficient than the LS estimator
in the case of thick-tailed distributions.

An interesting topic for future research may be analyzing the multiregime
threshold models using LAD technique. Another worthwhile consideration is
the behavior of LAD threshold estimators in a nonstationary framework.

NOTE

1. The precision term in Theorem 4iii of Bai (1995) is different given his Assumptions A.8 and
A.9. This is because he benefits from a functional central limit theorem for dependent variables in
his case (Wooldridge and White, 1988). However in our threshold case basically we can only ben-
efit from Theorem 16.1 of Billingsley (1968). For details regarding this last point see the proofs of
Lemmas A.3, A.4, and A.11 of Hansen (2000).

REFERENCES

Altissimo, F. & G. Violante (1996) Persistence and Non-linearity in US GNP and Unemployment:
An Endogenous Delay Threshold VAR. Working paper, University of Pennsylvania, Department
of Economics.

Bai, J. (1995) Least absolute deviation estimation of a shift. Econometric Theory 11, 403-436.

Bhattacharya, PX. & P.J. Brockwell (1976) The minimum of an additive process with applications
to signal estimation and storage theory. Probability Theory and Related Fields 37, 51-75.

Billingsley, P. (1968) Convergence of Probability Measures. New York: Wiley.

Buchinsky, M. (1994) Changes in the US wage structure 1963-1987: Application of quantile re-
gression. Econometrica 62, 405-458.

Caner, M. (1999) Least Absolute Deviation Estimation of a Threshold Model. Mimeo, Bilkent Uni-
versity, Department of Economics.

Chan, K.S. (1993) Consistency and limiting distribution of the least squares estimator of a thresh-
old autoregressive model. Annals of Statistics 21, 520-533.



LAD ESTIMATION OF THRESHOLD 809

Chen, C.W. & J.C. Lee (1995) Bayesian inference of threshold autoregressive models. Journal of
Time Series Analysis 16, 483-492.

Gyorfi, L., W. Hardle, P. Sarda, & P. Vieu (1990) Nonparametric Curve Estimation from Time
Series. New York: Springer-Verlag.

Hansen, B.E. (2000) Sample splitting and threshold estimation. Econometrica 68, 575—-605.

Hardle, W. & O. Linton (1994) Applied nonparametric methods. In R.F. Engle & D. McFadden
(eds.), Handbook of Econometrics, vol. 4, pp. 2295-2339. Amsterdam: Elsevier Science.

Koenker, R. & G. Bassett (1982) Tests of linear hypotheses and /; estimation. Econometrica 50,
1577-1583.

Montgomery, A.L., V. Zarnowitz, R. Tsay, & G.C. Tiao (1996) Non-linearities in Modeling and
Forecasting the US Unemployment Rate. Working paper, University of Chicago Business School.

Newey, W.K. & D. McFadden (1994) Large sample estimation and hypotheses testing. In R.F.
Engle & D. McFadden (eds.), Handbook of Econometrics, vol. 4, pp. 2113-2245. Amsterdam:
Elsevier Science.

Peligrad, M. (1982) Invariance principles for mixing sequences of random variables. Annals of
Probability 10, 968-981.

Picard, D. (1985) Testing and estimating change-points in time series. Advances in Applied Prob-
ability 17, 841-867.

Pollard, D. (1991) Asymptotics for least absolute deviation regression estimators. Econometric Theory
7, 186-199.

Tong, H. (1983) Threshold Models in Non-linear Time Series Analysis. Lecture Notes in Statistics
21, Berlin: Springer.

Tong, H. (1990) Non-Linear Time Series: A Dynamical System Approach. Oxford: Oxford Univer-
sity Press.

Tsay, R.S. (1997) Unit Root Tests with Threshold Innovations. Working paper, University of Chi-
cago Business School.

Weiss, A. (1991) Estimating nonlinear dynamic models using least absolute error estimates. Econo-
metric Theory 7, 46—68.

Wooldridge, JM. & H. White (1988) Some invariance principles and central limit theorems for
dependent and heterogenous processes. Econometric Theory 4, 210-230.

APPENDIX

We first begin with the consistency result for the threshold estimate 3 (Theorem A.1).
However the following lemma is needed for the consistency proof.

LEMMA A.1. Under Assumptions (a)—(c) and (f) we have
inf, infy 5 > |e; = n™"2x]0 — n™'2x[(y)8 — Ax{(y)8,| — le; — Ax{(¥)8,|
i=1
= 0,(logn),

where Ax;(y) = x;(v) — x;(y0).

Proof of Lemma A.l. First, substitute e; — Ax;(y)’S, for ¢; in Lemma A.1ii of Bai
(1995). Then the proof proceeds as in Lemma A.1ii of Bai (1995). However there is one
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change that has to be made. Instead of Lemma A.2 of Bai (1995), we use the exponen-
tial inequality for p-mixing random variables (see Gyorfi, Hardle, Sarda, and Vieu, 1990,
Theorem 2.2.2) given our Assumptions (a) and (b). L

THEOREM A.1. Under Assumptions (a)—(h),

f’$7’0-

Proof. Conditional on vy, write up the objective function
S.(7) = 2 [y = x{0 = x{(y)d]. (A1)
i=1

As in equation (5) of Bai (1995), the following reparametrized objective function is
easier to work with:

Su(y) = 2 Iyi = x{ (6 + n7120) = x{(y)(8, + n™'/25)]. (A2)

i=1
Note that (6,8) minimizes (A.1) given v and (6,8) minimizes (A.2) given y. Then
see that = n'/2(6 — 6,), 6 = n2(6 — 6,).

We can rewrite (A.2) using (3) and Assumptions (a) and (b) and adding and subtract-
ing x;(y)'8,:

S,(v) =2 le;—n"2x[0 — n"V2x,(y)' 8 — 8, Ax,(v)]. (A.3)
i=1

Similar arguments and details regarding parametrization of the objective function can
be found in Bai (1993, p. 408).
Our minimization problem is

¥ = argmin,er S, (7).
However this is equivalent to
¥ = argmax,er Q,(7), (A4

where Q,(y) = S,(vo) — S,(y). That can be written as
0,(y) = 2 le, — ”_1/2)5{9 - ”Hl/zxi'(')’o)fgl
i=1

= D le;=n72x[0 — n"2x[(y)8 — Ax{(¥)8,]. (A.5)
i=1
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Next, add and subtract >, |e; — Ax/(y)d,| and 27— |e;| to and from (A.5) and
multiply each side of (A.5) by n?*~! to have

n** 10, ()

— _n2a-l<
i

+ n2a~1(
— n2a—l<

To obtain the consistency of ¥, we need to analyze the three terms on the right-hand
side of (A.6) separately. First, it can be shown by using Pollard (1991) or equation (A.41)
of Bai (1995) that

7L

le; — Ax{(v)8,] - Ie,-l>

Il
—_

=

Il
-

|ei_”_1/2 'eﬂn_l/z {(¥0)8] — |ei|>

=

le; = n™'2x[6 — n~2x[(y)8 — Ax{(y)8,] — | i—Axi(v)’B,,I)-
1

T

(A.6)

w21 S ey~ Axl(7)8,] ~ e
i=1
= w218 S Axy(y)D,
i=1
n2e-1g) ( » f(OIx.-)Ax,-(v)Ax,-(y)’>5n + o (1) )

i=1

where D; = sgn(e;) and sgn denotes the sign function.
We need the following result to consider the first-term on the right-hand side of (A.7):

123 xi(y)senley) = 0,(1). “s8)
i=1

Equation (A.8) can be obtained by using the same arguments as in Lemma A.4 of
Hansen (2000) by replacing e; there with sgn(e;) and using Assumptions (a) and (b).
The same result in (A.8) holds if we replace y with y,. Because @ < % and Ax;(y) =
X1y =y — Xily=y, DY (A.8) we have

ne Yy x;1g,,=,sgn(e;) —n*"! > x L =yysgnle;) = 0,(1), (A.9)
=1 =1

uniformly over y.
Next, note that Lemma 1 of Hansen (1996) shows that Assumptions (a) and (b) are
sufficient for

nU Y FO)x)x (7)x () 5 M(y) = E(F0]x,)x,x] 15 =y))-
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Without losing any generality, assuming y, = min(7y, o) and using Assumption (f) we
see that the second term in (A.7) weakly converges to

e (3 FO1x) A (v) A, (v) ) of (0) = ¢'AM(y)c, (A.10)

uniformly over y € [yo,v.], where AM(y) = M(y) — M(y,).
Now we can use Lemma A.1 to have the third term on the right-hand side of (A.6) as

n* !t e =07 2xl 0 = n72x,(y)'8 = Axy(y)'8,] = le; — Axi(v)'8,] = 0,(1),
(A1D)

uniformly over 7.

By Lemma A.1lii of Bai (1995) and Assumption (f), the second term on the right-
hand side of (A.6) converges in probability to zero.

Then use (A.7)—(A.11) in combination with (A.6) to have

n*71Q,(y) = —c'AM(y)c = b(y).
Set y > vy,, taking partial derivatives

d
> b(y) = —c'D(y)g(y)c =0,
Y

by Assumption (e). So b(y) is continuous and weakly decreasing on [yq, v, ]. Also when
Y = Yo, b(y) = 0, 50 g is the maximum point. Moreover,

d
P b(¥)ly=y, = —¢'Dcg <0,

by Assumption (g). So b(y) is a continuous function that is uniquely maximized at y,

on [v0,7.]-
The same analysis applies when v is in [y, ¥9]. Then we use Theorem 2.1 of Newey
and McFadden (1994) to have the consistency result. n

Now we present the rate of convergence result. Set a,, = O(n'~2).

LEMMA A.2. Under Assumptions (a)-(h),
an(’? - ‘YO) = Op (1)

Note that the proof of this lemma is similar to Lemma A.9 of Hansen (2000) and thus
is omitted. This is written as a technical appendix. Interested readers can obtain the
proof from the author on request.

For the subsequent results the following notation is useful. Set

Ai(v) = 1{qis'yo+u/an} - l{qisyo} = di(’YO + U/an) - di(’YO):
Ax,-(v) =X 1{qi570+v/an} X 1(:1,-570} =X Ai(u)'

Let v € ¥ be any compact subset of R and | ¢| = M as in Bai (1995, p. 432) where
& = (6,8). We need the following lemma to derive the limit law for the threshold estimate.
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LEMMA A.3. Under Assumptions (a)—(h),

B

le, — n"V2x6 — n~ V2, (y,)'8] — |
i=1

= X le;—n " 2x0 = n7V2x,(v)'8 — Ax; (v)'8,] — le; — Ax; (v)'8,|
i=1

= 0,(1),
uniformly on any compact set V.
Note that the proof of this lemma is simple but tedious and thus is omitted. This is
written as a technical appendix. Interested readers can obtain the proof from the author
on request.

The limit behavior of ¥ can be obtained by analyzing the local behavior of the objec-
tive function in (A.6):

0,(v) = (2 le; = n™"2x10 — n™'2x;(y,)'8] — Ie,-|>
i=1

_<,-

- <é le; — Ax;(0)'8,] — |ei|>- (A12)
i=1

M=

;= n 210 = 2, ()8~ Ax(0)3,] ~ le; - Ax,-(v>'6,,|>

1

In (A.12) the third term is analyzed via Pollard (1991) or Bai (1995, equation (A.41)).
> le; = Ax{(v)8,| — |e;| = 8, X Ax;(v)sgn(e;)
i=1

+ 8,( 3 £01x) Ax,(0)Ax;(0)' )3, + 0, (1), (A13)

uniformly on any given compact set V.
We use Lemma A.10 of Hansen (2000) to have

an

52 81 (A 01x) A% 0)8x,0) )8, = = ' (3 £01x) A%, (0) Ax,(0)' )¢

L5 ulvl, (A.14)

uniformly on any compact set ¥, where u = ¢’'Dcg.
Then use Lemma A.11 of Hansen (2000) to have, uniformly on any compact set ¥,

a. \1/2 n
(;) insgn(ei)Ai(v)ﬁB(v), (A.15)
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where B(v) is a vector Brownian motion with covariance matrix EB(1)B(1)' = Vg. Using
Ax;i(v) = x;4;(v),

a

a /2 n
(nl—n2a > 5, 2 Ax;(v)sgn(e;) = <_n> ' X xsgnle;) A, (v)
i=1

n

= ¢'B(v), (A.16)

with ¢’B(v) a Brownian motion with variance A = ¢'Vcg.
By combining (A.13)~(A.16) and using Assumption (g) we obtain

a,

P <2 le; = Ax;(v)8,] — |€i|> = A2W() + ulol, (A.17)

1—
n i=1

where W(v) is a standard Brownian motion. Then using (A.17), Lemma A.3, and (A.12)
we have

an
nl—Za

0,(v) = —AV2W(v) — plv| + 0,(1) = Q(v), (A.18)

uniformly on any compact set .

Proof of Theorem 1. Making the change of variables v = (A/4u?)r, using Lemma
A.2 and (A.18), and following the proof of Theorem 1 in Hansen (2000) we have the
desired result. u

Proof of Theorem 2. This simply follows from the proof of Theorem 2 in Hansen

(2000) after making the change of the variables v = Ar/(42) given in (A.17) and (A.18).
|
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