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Design of change detection algorithms based on the
generalized likelihood ratio test
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SUMMARY

A design procedure for detecting additive changes in a state-space model is proposed. Since the mean of the
observations after the change is unknown, detection algorithms based on the generalized likelihood ratio test,
GLR, and on window-limited type GLR, are considered. As Lai (1995) pointed out, it is very difficult to find a
satisfactory choice of both window size and threshold for these change detection algorithms. The basic idea of this
article is to estimate, through the stochastic approximation of Robbins and Monro, the threshold value which
satisfies a constraint on the mean between false alarms, for a specified window size. A convenient stopping rule,
based on the first passage time of an F-statistic below a fixed boundary, is used to terminate the iterative
approximation. Then, the window size which produces the most desirable out-of-control ARL, for a fixed value of
the in-control ARL, can be selected. These change detection algorithms are applied to detect biases on the
measurements of ozone, recorded from one monitoring site of Bologna (Italy). Comparisons of the ARL profiles
reveal that the full-GLR scheme provides much more protection than the window-limited GLR schemes against
small shifts in the process, but the modified window-limited GLR provides more protection against large shifts.
Copyright © 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Suppose x1,x,,... are independent observations from py. These values can be either the original
observations of a given process or convenient transformations of a dependent sequence. Assume also
that before an unknown change time, n, the parameter is equal to 6y and afterwards the change is
01 # 6.

Change detection problems can be solved differently according to the various levels of the available
information about the parameters 6 and €;. The case which is carried through this article is concerned
with the detection of a change in the mean of the observed sequence, under the hypothesis that the
parameter 6, after the change is unknown, while the parameter before the change is known. In this
situation, change detection algorithms can be based on the generalized likelihood ratio, GLR (Lorden,
1971). Since this ratio depends on the unknown parameters, the change time ng and the value of 6, the
detection algorithm is based on a double maximization
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g = max sup S7(01), n=1.2,... (1)

I1<j<ng co

where SJ’?(01) is the log-likelihood ratio for the observations from time j up to time n.

Since the maximization, over §; € ©, is carried out for each possible change time j, between 1 and
n, the GLR algorithm can be computationally complex. Moreover, even if in the Gaussian case the
double maximization with respect to ny and to #; turns out to be explicit, this explicit maximization
cannot be obtained in a recursive manner. Modifications of this algorithm are thus of interest. One of
the alternative procedures consists of carrying out the maximization of the log-likelihood, over
0, € O, for each possible change time j in a moving window of size M. The underlying idea is to
assume that older changes have already been detected or have less and less importance as they get
older and older. The ‘window-limited” GLR statistic, WGLR, is given by

g = max sup S7(61), n=M,M+1, .... (2)

n=M+1<j<n g g

The detection statistic (2) leads to a minimum delay equal to the window size. For stopping when
n —j < M, this article suggests using a detection rule, denoted by NWGLR, given by

g fn<M
8ne = {g,,;, ifn>=M (3)

A lack of control is declared at first n such that the control statistics (1), (2) or (3) are greater than a
specified control limit. Performance of the control schemes is usually assessed in terms of the expected
number of observations until an alarm is triggered. This function, called average run length (ARL),
defines at ) the mean time between false alarms and at §; the mean delay for detection. In the process
design one usually tries to derive a scheme that minimizes the mean delay to signal an alarm (out-of-
control ARL), given a fixed mean time between false alarms (in-control ARL). As Lai (1995) pointed
out, performance of scheme (2) is sensitive to the choice of M and of the other design parameter .
Both values can be chosen on the basis of asymptotical considerations (Lorden, 1971; Lai, 1995). An
alternative procedure is to derive a convenient value of the threshold /4, conditionally to a fixed value of
M (Bordignon and Scagliarini, 2000). Unfortunally, a satisfactory choice of both the window size and
the threshold is very difficult in a finite context.

The window size M could be chosen so that, for the same in-control ARL, the most desirable
performance overall in terms of out-of-control ARL is obtained. The main idea underlying this article
is to estimate sequentially, through the stochastic approximation of Robbins and Monro (1951), the
threshold value that satisfies a constraint on the mean time between false alarms, for a given window
size. The iterative approximation terminates when the estimate is close to the true threshold with high
probability. Since the schemes are designed to have the same in-control ARL, comparisons between
the out-of control ARL profiles, for different values of M, allow us to select the more convenient
window size. Section 2 illustrates the case of an additive change in the innovation sequence of a linear
state-space model. Section 3 describes the design procedure. Section 4 illustrates an application of the
design procedure to the ozone concentration data recorded from one monitoring site of Bologna. In
Section 5 the ARL’s profiles of the three detection schemes are compared.
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2. ADDITIVE CHANGES IN LINEAR STATE-SPACE MODELS

Let us assume that an observed sequence {Y,} can be modelled by a linear time-invariant stochastic
state-space model

(4)
Y, =HZ,+JU,+V,

{Zn+l = FZ, + GU, + W,
where Z, Y, U are the state, the observation and input vectors, F' is the state transition matrix, H the
observation matrix, G and J the control matrices and {W,} ~ N (0,Q), {V,,} ~N(0,R) are two
independent white noise sequences. The change detection problem in a non-independent case can be
solved by first using the transformation from observations to innovations.

Given the initial Zy ~ N (o, Po), the innovation sequence {x,} can be obtained through the
Kalman filter recurtions

Zwir = FZ, + GU, + FK,x, 5
xp =Y, —HZ, — JU,

where K, is the Kalman gain. The recursions (4) and (5) can be re-written so that the innovation
sequence does not depend on the input variables, that is

{ZIH—I - Zi1+l = (F - FKnH)(Zn - Zn) - FK,V, + W, (6)

Xn = H(Zn *Zn) +Vy

Additive changes in the state-space model (4) can be expressed in a state-space form as

{ Zwi1 = FZ, + GU, + W, +T'Y,(n, ny) 7

Y,=HZ,+JU,+ V,+EY(n,no)

where I" and = are gain matrices, which account for the change magnitude, while Y, and Y, are
vectors representing the dynamic profile of the changes (Y (n,no) = Yy(n,ng) = 0, for n < ng). In
this article a particular form of (7) is considered: a step-change on the input sequence, given by

(8)

Zyn =FZ,+GU, + W,
Y, =HZ, +JU, + V, + viyzy,

where v is a scalar that corresponds to the unknown change magnitude and I,>,, is the indicator
function of the change direction.

It can be shown that a step-change in {Y,} corresponds to a change with dynamic profile on the
innovation distribution (Basseville and Nikiforov, 1993). Thus the innovation of the model (8) is of the
form

Xy = X0+ vp*(n,np)
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where x0 is the innovation corresponding to the unchanged model (6) and p*(n,ng) represents the
effect of a change occurring at time ny < n.

The problem addressed in this article is to detect additive changes in the zero mean independent
Gaussian sequence {x,}. The hypothesis testing problem, in terms of the innovation sequence,
is now

Ho: {x.,} ~N(0,0%) n=12,...
Hi: {x,} ~N(0,0%) if n < ng
{x.} ~N (vp*(n,ng),0%) if n > ny

The change detection problem, with known 6y and dynamic profile of the change, but unknown
magnitude, can be solved employing the control statistcs (1), (2) and (3), where S;’(V) is the log-
likelihood ratio of the innovations from x; to x;,.

The control statistics adapted to the stepwise change are obtained by substituting supy, <o SJ’.’(GI) =
sup,, S;l(u) into (1), (2) and (3), respectively.

Given the Gaussianity of the innovations, we have

Dy _ .
sup S7 () —W(I[ ZZP i,J)x ]— Ui [ 2ZP2U]
where

i P (h)xi

n(j) = S 20)) ©)

is the maximum likelihood estimate of the change magnitude at time n, assuming a change at time j.
Since, when the steady-state behaviour of the Kalman filter is reached, the signature p*(n,ng) of the
change depends only upon the distance [ = (i — j), from the current index i and each supposed
change time j, ie. p(L,1)=...=p*(n—Lin—1) = p*(n,n), p*(2,1)=...=p*"(n—L,n),...,
p'(n—1,1) = p*(n,2), the computational burden in (1), (2) and (3) can be reduced through the
introduction of the function

Wi —j) 1 if i—j=0
i—j) = o
! 1 - S HFSFKI g 0 i—j=1,2,...

where F, = F(I — KH) and K is the steady-state Kalman gain.
Then an explicit expression of sup, S7(v) is given by

o Y0 (i — j)x)
20 02— )]

sup (1) = (10)
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3. THE DESIGN PROCEDURE

Assume that under the hypothesis of no change: (i) it is possible simulate, V, the run lengths

RL,(h") =inf {n: g,, > h*} (11)
RL,(h") =inf {n: g, > n"} (12)
RL.(h°) =inf {n : g, > K} (13)

with g,4, g and g, given by (1), (2) and (3), respectively; (ii) RLs(h*) ~ Fry, s+, with unknown
Frp, ps; (iil) the expected value E (k) exists; (iv) A5 is the unique root of the equation

ARL[0, '] —B =0,

where B is a fixed value of the in-control ARL.
Given an initial estimate /] and a suitable positive constant A, the A} estimate can be sequentially
updated through the modified Robbins and Monro process:

A
hZH:h‘Z—;ﬁi, k=1,2,..., s=a,b,c (14)
where
ni () + na(hy)
2

is the average of two i.i.d. observations of the random variable N (h}) = [RL(h}) — B]/B, with RL(h})
given by (11), (12) and (13), respectively.

The idea is to simulate, for the same value A, two independent standardized values of the run
lengths, so that

s
n, =

ks
2= 2i-1 €
, k
where e = {n;(h}) — ﬁ‘,i}z + {na(hy) — r’z‘,‘(}z is an unbiased estimate of ¢*> = Var{RL(h})}.
Then, a stopping rule, based on the first passage time of an F-statistic, below a fixed boundary
w,

kK as)2
Tq:inf{qu:uk(q): Z <nk2 <W,k:q,q+l,...} (15)

i=k—g+1 45k

is introduced to terminate the iterative estimate (14), (Stroup and Braun, 1982, 1984).
Fixed at a convenient value g, the decision rule, for k = ¢, + 1,..., is given by

B =h =40 i w>w
B =h it u<w

It can be shown that, while different choices of A are not crucial, values of g should be chosen between
100 and 500 to have a good balance of the estimate properties and the computing time. Moreover, for
large values of ¢, w can be chosen close to E[u], i.e. % (Capizzi and Masarotto,1999).
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4. AN APPLICATION TO THE OZONE DATA

The data set consists of the mean hourly average of the ozone, O3, and hourly nitrogen dioxide
concentrations {NO,, } and hourly average temperature values {7}, (see Bordignon and Scagliarini,
2000). The data were measured at one monitoring site of the Bologna urban area network, from June
1993 to December 1996. Using 660 observations, the authors fitted the following linear state-space
model:

Y,=[00--- - 112, + V,
[0 1 0 0
0 0 1 0 0
e O £
0 0 - .- 0 1
100149 0 O --- -0.3662 1.1102
[0 0 0
0 0 0 T,
+ NO;, | + W,
NO;
| 0.3037 —0.0386 0.0636

scalar Gaussian white noise with variance R =0.0012, W, = [0,...,0,e,]’, a 24 x 1 Gaussian white
noise vector with covariance matrix

0 0 0 - - 0
Q= 0 0 - .- 0 0
o o o0 --- 0 0.0185

The izi values, for schemes (11), (12) and (13),Awere just iterated 50 times, for fixed values of B, h,
A, g, w and M (see Table 1). The mean value of /] and the corresponding standard error are listed in
Table 2.

Table 1. fzi values for the GLR, WGLR and NWGLR schemes

GLR WGLR NWGLR
B 250 250 250
h 1 1 1
A L5 L5 1.5
q 200 200 200
w 0.5 0.5 0.5
M 00 4,12,24,48 4,12,24,48
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Table 2. Mean values

GLR WGLR NWGLR
M M M
00 4 12 24 48 4 12 24 48
h* 5.657 4.686 5.164 5.295 5.247 4.738 5.273 5.536 5.575
s.e. 0.049 0.040 0.059 0.052 0.042 0.039 0.047 0.047 0.051

5. ARL COMPARISONS

Assume that a change of fixed magnitude, v, occurred in ng = 0. For each combination of
V= 00yp—x> Wwith 6=0.25,05, 075, 1, 1.5, 1.75, 2, 2.5, 3, 3.5, 4, 45,5, 55, 6 and
O¥lny=o0 = 0.622,3000 values of the out-of-control run lengths were simulated.

Table 3 contains the ARL values for the detection schemes (11), (12) and (13). Examination of
these results illustrates that the best out-of-control ARL performance for detecting small shifts in the
process is attained for M = oc.

For the other choices of M, the ARL values of the WGLR scheme are larger than the ARLs of the
GLR and the NWGLR, for small and large shifts. Moreover the ARL profile of the WGLR scheme
shows a minimal delay equal to the moving window size.

On the other hand, if a window-limited approach is performed, the NWGLR scheme (13) seems to
be a satisfactory alternative to the WGLR scheme, since it shows improved properties for both small
and large shifts. In addition, the ARL values of the NWGLR are smaller than the ARLs of the GLR
scheme for detecting large shifts. Finally, the window-size which seems to produce the most
desiderable performance is M = 4 for the WGLR scheme and M = 48 for the NWGLR scheme.

Table 3. Out-of-control ARL values

GLR WGLR NWGLR
M M M

Shift 00 4 12 24 48 4 12 24 48
0.000  250.00 25000  250.00  250.00 250.00  250.00 250.00  250.00  250.00
0.155  60.47 156.64  106.06 84.00 8628 15943  99.44 78.16 65.40
0311  21.93 69.44 34.45 32.22 49.52 63.89  30.76 23.67 21.58
0466  12.82 3225 17.19 24.64 48.00 30.19  13.86 12.45 12.64
0622  9.09 15.61 13.07 24.02 48.00 1568 875 8.68 8.99
0933 5.8 6.86 12.00 24.00 48.00 6.09 545 571 573
1.088  4.97 533 12.00 24.00 48.00 472 467 4.87 4.86
1244 426 477 12.00 24.00 48.00 392 408 4.16 423
1555  3.36 4.20 12.00 24.00 48.00 294 3.19 331 3.34
1.866  2.77 4.04 12.00 24.00 48.00 246 2.62 271 2.69
2177 234 4.00 12.00 24.00 48.00 216 229 2.36 2.33
2488  2.13 4.00 12.00 24.00 48.00 198  2.06 2.10 2.10
2799 1.9 4.00 12.00 24.00 48.00 190 195 1.97 1.98
3110 1.91 4.00 12.00 24.00 48.00 1.85 1.88 1.91 1.90
3.421 1.88 4.00 12.00 24.00 48.00 1.83 1.86 1.87 1.86
3732 1.86 4.00 12.00 24.00 48.00 1.80 1.86 1.85 1.85
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6. SUMMARY AND CONCLUSIONS

The process design of change detection algorithms, based on the generalized likelihood ratio, is
discussed. If the run length of these change detection algorithms can be simulated, this article suggests
a completely automatic design procedure to estimate the value of the control limit that satisfies a
constraint on the mean between false alarms. Then, the out-of control ARL values of the GLR
algorithm can be compared to those of window-limited GLR algorithms, for a given in-control ARL
and different choices of the window sizes. Although the computational burden in the GLR scheme is
reduced by carrying out only a fixed number of maximizations, the corresponding detection algorithm
is much less sensitive to small and large shifts. However, an additional component can be included in
the stopping rule of the window-limited GLR so that the resulting scheme provides more protection at
least against large shifts. Since the NWGLR scheme seems to provide more protection against small
shifts in the process as the value of M increases, the performance of these schemes should investigated
for a wider range of values of M.
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