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4) the 12 closed trihedral angles of the space R* generating by the hyperplanes \; = Az,
2M A2+ A3+ A =0, M1+ 2X3 4+ A3+ A = 0 and aghs + aghs = 0, where af +af =1,

5) the 48 closed tetrehedral angles of the space R* generating by the hyperplanes \, = Az,
A2 = Az, A1 = A, 2A1+)\2+)\3+)\4:0, M+2 4+ X3+ M\ =0, A1+ +234+21=0
and Ag =0, and, correspondingly,

6) the 24 closed tetrahedral angles of the space R* generating by the hyperplanes Ay = Az,
Az = Ag, 2X1 +A2+ A3+ =0, M +2d2+ A3+ 24 =0and A3+ Ay = 0.

When j # O the complete system of base sets for the spectral densities (23) is formed by

1) the space RY,

2) the 2 closed half-spaces of the space R* generated the hyperplane 2X ) 4+ o+ Az + g =
Jw7

3) the 4 closed dihedral angles of the space R* generated the hyperplanes 2A\1 + Ay +
A3+ A = jw and Ag = Ag,

4) the 6 closed dihedral angles of the space R* generated the hyperplanes A1 = X,
22 + Ao+ A3+ Ny =jw and A1 + 2 2 4+ A3 + Mg = Jw,

5) the 24 closed trihedral angles of the space R* generated the hyperplanes X\ = Xy,
Az = A3, A1 = A3, 2A1 4+ A2+ A3+ g = jw, A+ 22+ As +A = jw, A+ Az +203+ Mg = jw,
and, correspondingly,

6) the 12 closed trihedral angles of the space R* generated the hyperplanes Ay = Ag,
A3 = Ady 201+ A2 + A3 + Ad = jw, A + 220 + Az + Mg = jw.

6. Till now we assumed that our stochastic process &(t) is periodically nonstationary.
As for a stationary stochastic process £(t), t € R, the symmetry properties of its cross
spectral densities are the same as those described above for spectral densities corresponding
to the case 7 = 0. Thus, the case of a stationary process £(t) needs no special consideration.

The syminetry properties found for all spectral densities considered above allow one to
shorten the calculations necessary for their statistical estimation.
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Abstract. In the framework of the series scheme we assume that an observations sequence
{X]', 1S4 < n}issuch that X* = U;I(1 <4 S [0n]) + ViI([6n] + 1 < i < n), where (U3, Vi) is a
stationary ergodic sequence the marginal distributions of which are different, and 6 is a change-point
in the probabilistic characteristics such that § € (0;1). The main result of this paper is the proof
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of the fact that the sequence (fn)nz1 of nonparametric estimations constructed here is consistent
(0 — 6).

Key words. nonparametric estimation of a change-point in the probabilistic characteristics,
consistency of estimations

1. Introduction. Suppose we observe a sequence of random variables XJ, X. e, X2
where

Xi* has marginal distribution F for 1 <14 £ [6n],

X' has marginal distribution ¢ for Bnl+1<i<n;
here [y] denotes the greatest integer not exceeding y. The unknown parameter § € (0,1) is
the change-point to be estimated. The purpose of this note is simply to show that # can be
consistently estimated in a fully nonparametric scenario:

(i) No knowledge of F or G is required. There are no parametric assumptions (e.g.,
normality) and no regularity conditions (e.g., continuity) on F or G,

(i) No restrictions are imposed on the strength of serial dependencein {X[: 1<i < n},
beyond the minimal condition of ergodicity; there are no assumptions about the dependence
mechanism (e.g., autoregression), and there are no “mizing” conditions;

(iif) No prior restrictions on @ are needed.

In fact, a whole class of such fully nonparametric estimators will be presented.

A huge amount of work has been done on change-point estimation in general (see [13]
for an annotated bibliography and [11] for a recent extensive review); the importance of the
nonparametric approach in particular is well established (see [5] for a review). Most of the
nonparametric methods assume independence in {X7: 121 < n}; and most of them assume
prior knowledge about how F and G differ (e.g., in their means, medians, or other measure
of level). However, there has recently been a trend towards eliminating prior assumptions
on F and G, and towards allowing for seria) dependence in {X[": 1 <4 < n} (see (1]-[10]
and [12]).

Within the nonparametric context, it is certainly desirable to minimize the assurmptions
on F and G. Since change-point data is inherently time-sequential, it is natural and practical
to allow for serial dependernce. It is desirable to minimize any restriction on the strength of
this serial dependence, because the joint distribution structire of {X]: 1£i<n}is much
more obscure than the marginal distribution structure (ie., F and G), so it is unrealistic
to assume knowledge about the former when the latter is completely unknown. Moreover,
the usual “mizing” assumptions are impossible to check for a given set of data. Our main
consistency result (in §3) shows how far we can relax the restrictions on F G, and the
dependence structure,

Let us briefly contrast our fully nonparametric approach (i.e., (i), (ii), (iii) above) with
the related works ([1]-[10] and [12]) which have recently appeared in the literature. In [4]
and [5], it is assumed that the X['s are independent and that F and G are continuous. In [2],
[6], (8], and [9], it is assumed that F and & are both discrete with finite support, and that the
sequence of X{*s satisfies a strong-mizing condition; it is also assumed that 6 is in the known
interval [o, 8], where 0 < a < 8 < 1. In (7], either one of two possible scenarios is required:
F and G are both discrete with finite support, and the X;'s are strong-mizing; or, F and
G are both continuous with support in [0,1] and satisfy a Lipschitz condition, and the X*s
are ¥-mizing. In [1], it is assumed that the X['s are independent (or possibly m-dependent)
and that F' and G are continuous; it is also assumed that 6 is in the known interval [a, 8],
0 <a<f <1 In [3] and [10], the X[s are again assumed to be independent. In [12], it is
assuined that the X*s arise from a Gaussian process, with F' and (7 sharing the same mean.
We shall impose none of these assumptions.

One final point of comparison between our approach and the works cited above: in each
of the references [2], [4]-{10], and [12], a certain “norm” is used to calculate the basic statistic
(this notion of a “norm” will be made precise in §2). Specifically, a Kolmogorov—Smirnov
norm is used in [4], [5], [7], [10], [12}; and a Cramér—von Mises norm is used in 12], [6], (8],
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[9], [12]. Our method is based on a general “Mean-Dominant norm” (defined in §2), which
includes as special cases the Kolmogorov-Smirnov norm, the Cramér—von Mises norm, as
well as many other norms. Thus, our approach actually provides a whole class of consistent
nonparametric estimators; moreover, our general formulation allows us to simultaneously

analyze estimators based on all these norms with one unified theoretical argument (see §§2
and 4).

2. The estimator. The estimator is constructed from the pre-t empirical c.d.f. (cu-
mulative distribution function)

nt T
I{X?" £
thn(:l") = Z L" = :L‘}v
= nt

and the post-t empirical c.d.f.:

hiH (z) 1= i [X =2}

F=nt4l n(1-1)

The index ¢ corresponds to possible values of the change-point estimator; we will only need
to consider ¢ € T}, where

1 2 n—1
Ty = {;’ﬁ""’_n“‘}m[“ml"o‘“]v

and {an: n 21} is any deterministic sequence satisfying an [ 0 and non T 0o as n — oo.
For fixed t € Ty, compute the differences between the pre-t and post-t empirical ¢.d.f.'s
at the sample observations, i.e.,

;= ]th"(X?) —R}XD], 1<i<n

These n differences are now combined via a “Mean-Dominant norm” Sy: R™ — R, yielding
the criterion function

Dn(t) :=t (1 —t) Sn(dhy,dh,. .., dby).

Our fully nonparametric estimator 05, is then defined to be:

0n € T, such that Dy(8,) = max Dr(t).

The “Mean-Dominant norm” Sl ...,) is any function satisfying the following natural
conditions (whenever the arguments d; and d; are all nonnegative):

(1) [Symmetry] Sn(-,-,...,-) is symmetric in n arguments;

(2) [Homogeneity] Sn(cdy,cd, ..., cdn) = cSn(d1,da, . ..,d,) whenever ¢ = 0;

(3) [Triangle Inequality]

Sn(di+di,da +da,...,dy + dby)

(4) [Identity] Sn(1,1,...,1) = 1;
(5) [Monotonicity] Sn(d1,dz,...,dn) S Sn(d,,db,..., dr) whenever d; < d} Vi;
(6) [Mean-Dominance] Sn(d1,da, ..., dn) > Z1gign di/n.

Special cases of the “Mean-Dominant norm” include the K, olmogorov-Smirnov norm

M1A

Sn(di,dz,...,dn) + Sn(dl, db,. .. db);

=

Sno(di,da,...,dn) = sup {d:},

1%isn

the Cramér-von Mises norm

2 1/2
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and the arithmetic mean norm
alm di
S (dy, da, ... dp) o= E —.

1€i%n

The intuition behind our method is as follows. The c.d.f.’s k™ (z) and h{(z) are empirical
approximations of the unknown distributions

th(z) :=I{t <O} F(z) + I {t > 6} (ep(m) +(t~6) G(a:))/t

and
he(z) == I{t <0} (8 — 1) F(x) + (1 - 0) G(2))/(1-1) +1{t >0} G(x),

respectively. Therefore, the differences dZ,; are empirical approximations of

bri i= [th(XT) — he(XT)

=sa(1{t<ora-o/a-t+1it> 6)6/t), 1<i<n.
And, the criterion function Dy (t) is an empirical approximation of the corresponding function
An(t) =t (1 ~t) Sn (61,652, ..., 65,).
Now, by S,'s homogeneity, we have
An(t) = p(t) Sn (601, 82, - 6rin),
where

p(t) ==T{t <8}t (1—8)+I{t>0)}(1-1t)6.

Notice that the maximizer of An(t) over t € (0,1) is precisely at t = 6. Thus, the maximizer
of the analogous sample-based criterion function D, (1) is a reasonable estimator of #. This
logic applies for any “Mean-Dominant norm” Sy,.

3. Main result. The data {X]': 1 £ 4 £ n} are embedded in a stationary ergodic
sequence

{(Ui, Vi): —oo0<i< +oo},

where U; has marginal distribution F, and V; has marginal distribution G. Specifically, the
data arise as
XTI = Uz-I{l <i < [on]) +V,-1{[9n] +1Si<n}.

'There will be no further constraints on the serial dependence structure of {XJ: 1 £ 4
n}. The only assumption on the unknown marginal distributions is simply that F # G.
The unknown change-point parameter 6 € (0, 1) is unrestricted. In this scenario, our ful y
nonparametric estimator 6, (defined in §2) is consistent.

= QA

P
THEOREM. 6, ~— 0 as n — 0.
Sec §4 for a proof of this result.

4. Proof. We begin by presenting three preliminary Lemmas which will be used in
proving the Theorem.
LEMMA 1. Denote

pei= [ i |F(2) - G(a)| aF (a),

pG = /_O:o lF(:z:) - G(x)' 4G (z),

pi=0up +(1-0)pg.

Then p > 0.
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Proof. By assumption we have
A= {:1: € R: IF(LL‘) - G(m)‘ > O} F @.

It suffices to show that either JadF(z) > 0o0r [ A dG(x) > 0. The case where A contains a

discontinuity point of F or @ is trivial, so we will now presume that F and ¢ are continuous
at each z € A.

Choose zo € A with (say) F(zg) > G(x0). Then
o= {y € (—o0,20): F(z) > G(z) Vz € (3, :co]}

is nonempty, by continuity. Denote Yo :=inf{y € o}. If yo = —o0, then (—00,z0] € A and,
therefore,

/j;dF(w) 2 F(zo) > G(zg) 2 0.

If yo > —o0, then F(yo) £ G(yo) and also (yo,zo] C A, yielding

/A dF(z) 2 F(z0) ~ F(yo) 2 F(z0) - G(yo) > G(x0) ~ Glyo) 2 0.

Lemma, 1 is proved.

LEMMA 2. Let {Y;: ~o0 < 4 < oo} be a stationary ergodic sequence, where @ is the
marginal distribution of Y;. Let {an: n 2 1} be a deterministic sequence satisfying an T 0o
as n — oo, and let {Nn: n = 1} be integer-valued random variables for which N, 2 an for
any n. Define for mgo 2 my + 1

¥

y Ilvisy —Q(y)|-

ma —1my

Wo(mi,ma) =  sup
—ooLy< oo

i=my 41

Then W (0, Ny,) 250 as n — oo.

Proof. Follows directly from the theorem in [14].

LEMMA 3. Denote Ay i= Ty N {[on, 0 — 1)U (0 + an, 1~ anl}. Let {Rn: n 2 1} be a
(possibly random) sequence with R,, = ra((U1, V1), (U2, Va),. .., (Un, Vn)) for a deterministic
function r: R2" — An. Then

P
— 0 a8 T — 0.

‘An(Rn) - Dy (Rn)

Proof. Denote e,; := nil + Hy;, where

Hpy = Ihﬁ,‘ (XI') = hg, (XP)

. iH = ’Rnh”(XZ’) — R W(XT),

so that d,?{‘ < eni + 6 and, therefore:

Iy = Dn(Rn) - An(Rn) g Sn(6n1,6n2, B Enn)
§ Sn(an, n2H, s ,nnH) + Sn(HnqunQ,-u ,Hnn)

by (5) and (3). The same bound holds for ~I,, and hence for |Tn]. Now,

n

{R, > 9}( > A7 < X7} —G(X?))

Hni =
jenfogr M nRk,

[on) ne yn
+H{Rn £ 6} (( > HX; £ X7} —F(Xi”)) [bn] — nfin

Py~ [fn] — nRn n—nRn,
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+ F(X?)(

+ ( i X7 s X’n_} - G(X?)) n — [6n]

sl 41 n — [0n] n—nRy

oo (22 o))

¥ I{Rn < e} (WF (an, [en]) +We ([Gn],7z) +(2/n)(1 — Rn))
S Wo(I{Rn > 8} n Ro + I {R, < 6} [bn), )

[6n] — nRn _6—R,
n — TLRn 1-— Rn

< I{Bn > 0} W (nRn,n)

+ Wr (I{Bn < 0} n Ra, [6r]) + (2/) (1~ 6) =: H.

(In Wr(-), V; plays the role of Y;; in Wea(:), Vi plays the role of Y;.) An analogous bound (say,
n) can be obtained for ,; H). Since H, and ,, H do not depend on 4, we have [I'y| € , H+Hp,
by (5), (2), and (4).

We will now show that Hj, ®, 0; a similar argument applies to ,H. We deal explicitly
with the second summand in H,; the first summand can be handled analogously to the
second, and the third summand goes to zero deterministically. Denote Z; := (U;, Vi) and
Z8:=(Zkt1, Zk42s- -, Zignm). Note that:

W <1{rn(z,2) < a} nrn (22), [671])
2 wp (I {rn(z; =1y < 9} nrn (27 0™ jon) — 1, -1)
= Wp (o, [On) — I {rn (z; 1Y < e} nrn(z;[%’—l)),

where the last expression uses Y; = U_;. We can now apply Lemma 2, since r5(+) € An, and
80:

[On] — I {rn(-) < 9} nra() 2 [0n] —n (0 — an) = (nam — 1) T 0.

This establishes Wr(I{Ry < 6}nR,, [6n]) - 0.

The following notation and definitions will be needed to prove the theorem. The random
variable 6, is defined as follows:

if 6, € An, then let 6, = 0,,;

if On & An, then let i, € A, satisfy Dy (0r) = maxiea,, Dn(t).
Note that, in either case, we have 6, € A, and D, (6n) = maxtea, Dn(t). Also define the
nonrandom entity

w= o (10 ~omni/m) 2. (1@ +awn) + 1/m) } [0 - )]
+1{6 (10 an)ni/m) <o ((0+ an)n] + /) b (10-+an)nl +1) /n,

which satisfies t, € A and Ap(tn) = maxsca, An(t).

. = P
In order to prove the theorem, it suffices to establish that 6, —— § as 7 — oo, To see
that this is sufficient, write

P{]G,L—9|>E}‘:P{|9n—0]>s, BneAn}+P{|9n—9|>e, bn & An }.

The latter probability is zero for n sufficiently large; the other probability is bounded by
P {6, — 6| > ¢).
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N 5
To establish @ — 6, denote 6n := 3 <;<n, 55;/n and 8 := min{6, 1 — 6}, and notice
that: o

Ty o= An(8) - An(Bn) = (p(B) — p(Bn )) Sn(681,68,,...,65.)
> (I{én <0} (O~ 8n)(1—8) +I{Bn >0} (Bn —9)0) Sn 2 |0n — 6] 86,
where the first inequality follows from (6). Therefore,

P {6, - 6] > ¢}

1748

P{¥, >ehén, 6p 2v}+ P{U, > eB6n, 6n < v}
P{¥y >efv}+ P {6 < v},

A

where v:= 11/2 > 0 by Lemma 1. To deal with the latter probability, write

bn = [en]én + (n—" [QR_DQ’

n
where 0 0
611; T __éni

677_ = =,
[fn]+1%iZn n- {Gn]

6, = Z

15i%[m) [on]

Note that
{6 < v} == {u < |6n — p| €16, — pr| + |8n — pa| + 2[9 - [en]/n|}.

Since the term in the last modulus goes to zero deterministically, we only need to consider
{6n — p| (the remaining term is handled analogously). Now

= 3 E(_VL)_‘_GGL‘E)J P,
\gimopn 07
by the ergodic theorem, and 6y, 2 87, so that [6n = ] >, 0.

To prove the theorem, it now suffices to show that ¥, 2, 0. We have

T £ [An(6) = Antn)| + |[An(tn) = Da(Bn)

+ |Dn(Bn) ~ An(Ba)),
where the first modulus is deterministically dominated (using (5) and (4)) by:
p(8) = p(tn) = I {tn SO} (O —tn) (1 —6) + I {tr > 6} (tn —6)0 S an +n "},

and where the second modulus is dominated by

Dn(tn) — An(tn)

+ an(én) — An(Bn)

because either )
An(tn) ; Dn(en) g Dﬂ(tn)
or

Dn(Bn) 2 An(tn) = An(Bn)

holds. Thus, applying Lemma 3 with Ry, = t, and with R, = 8, completes proof of the
Theorem.
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LAWS OF LARGE NUMBERS IN BANACH SPACES OF TYPE (F, F))*
' A.N. CHUPRUNOVT
(Translated by M. V. Khatuntseva)

Abstract. This paper gives strong and weak laws of large numbers for random elements with
values in Banach spaces of type (F, F1). The known laws of large numbers in Banach spaces of stable
and Rademacher type p are special cases of these results. Characterizations of spaces of type (F, Fy)
are given in terms of these laws.

Key words. space of type.(F, Fy), law of large numbers, random element

In this paper we obtain strong and weak laws of large numbers for random elements
with values in Banach spaces of type (F, F1). Normalizations of a more general type are also
considered.

Let {an, n € N} be a numerical sequence such that a, > 0 (n € N) and an — o0
(n — o). Let X, be random elements (r.e.’s) with values in Banach space (B-space) B. The
- strong law of large numbers (SLLN) (the weak law of large numbers (WLLN) respectively)
is valid for ({Xn},{an}) if

1 n
— ZXk—""O, n — 0o,
n
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