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Abstract

Regime shifts are substantial, long-lasting reorganizations of complex systems, such as

ecosystems. Large ecosystem changes such as eutrophication, shifts among vegetation

types, degradation of coral reefs and regional climate change often come as surprises

because we lack leading indicators for regime shifts. Increases in variability of ecosystems

have been suggested to foreshadow ecological regime shifts. However, it may be difficult

to discern variability due to impending regime shift from that of exogenous drivers that

affect the ecosystem. We addressed this problem using a model of lake eutrophication.

Lakes are subject to fluctuations in recycling associated with regime shifts, as well as

fluctuating nutrient inputs. Despite the complications of noisy inputs, increasing

variability of lake-water phosphorus was discernible prior to the shift to eutrophic

conditions. Simulations show that rising standard deviation (SD) could signal impending

shifts about a decade in advance. The rising SD was detected by studying variability

around predictions of a simple time-series model, and did not depend on detailed

knowledge of the actual ecosystem dynamics.
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I N TRODUCT ION

Regime shifts are substantial, long-term reorganizations of

complex systems such as societies, ecosystems or climate

(Steele 1998; Scheffer et al. 2001; National Research Council

2002; Carpenter 2003; Foley et al. 2003; Scheffer & van Nes

2004; Brock et al. 2006; Folke et al. 2005; Hsieh et al. 2005;

Brock 2006). In ecology, some of the well-studied cases

include eutrophication of lakes and coastal oceans, shifts

among grassy and woodland cover types in rangelands,

degradation of coral reefs and regional climate change

(Scheffer et al. 2001; Folke et al. 2005). Feedbacks that

control key system processes are different after a regime

shift (Holling 1973). For example, in oligotrophic (clear

water) lakes the concentrations of nutrients that affect

primary production are controlled primarily by inputs from

the watershed, whereas in eutrophic (turbid) lakes the

concentrations of nutrients are driven by recycling within

the lake as well as inputs (Carpenter 2003). Other kinds of

feedback changes are known from regime shifts in other

types of ecosystems (Scheffer et al. 2001; Carpenter 2003;

Foley et al. 2003; Walker & Meyers 2004; Folke et al. 2005).

Brock (2006) reviews social systems in which tipping points

are found.

Regime shifts are difficult to study (Carpenter 2003;

Scheffer & Carpenter 2003). They occur in large, spatially

heterogeneous systems, and usually involve processes at

more than one spatial scale. From the perspective of a

human lifetime, regime shifts are infrequent events that may

play out over many years, even though the change is rapid in

comparison with routine ecological change. Regime shifts

have multiple causes, so studies must track multiple

variables simultaneously for long periods of time. Inference

requires several lines of evidence, such as long-term

observations or paleo-ecological data, comparisons of

ecosystems across gradients of key drivers, models of

various types and appropriately scaled experiments

(Carpenter 2003). It takes considerable effort to build

understanding of regime shifts.

Numerous models can potentially explain any particular

regime shift, and it may be very difficult to discriminate

among these models, particularly in early stages of an
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investigation (Carpenter 2003). The kinds of evidence

that are needed to understand a regime shift depend on

the set of models that are believed to describe the regime

shift. The appropriate evidence cannot be gathered without

knowing the models, and the models cannot be assessed

without the evidence. This circularity poses a challenge

to researchers. It is important to design measurement

programmes that could provide relevant evidence for a wide

range of models, often over long periods of time and

extensive spatial ranges.

Recently, however, researchers have noticed that the

variability of system behaviour changes in advance of a

regime shift (Kleinen et al. 2003; van Nes & Scheffer

2003; Brock et al. 2006; Oborny et al. 2005). These

changes in variance may be discernible without detailed

knowledge of the underlying ecosystem dynamics. Kleinen

et al. showed that the variance spectra of an ocean–

atmosphere model shifted to lower frequencies as the

system approached a regime shift in the circulation of the

North Atlantic ocean. van Nes & Scheffer (2003) showed

that variability of an individual-based model of an aquatic

macrophytes increased near thresholds between alternate

attractors. Using a generalized model of spatial dynamics,

Oborny et al. (2005) showed that spatial variance of

terrestrial mosaics increased near the critical threshold for

percolation. Brock et al. (2006) showed that rising variance

near thresholds should be expected in a wide range of

social and ecological systems with multiple attractors,

including scientific paradigms, elections, monetary policy,

lake eutrophication, fisheries collapse, ocean dynamics and

climate change.

In general, the variance of temporal fluctuations in certain

state variables increases and the variance spectra shifts

towards longer wavelengths (lower frequencies) just before

the regime shift occurs (Kleinen et al. 2003; Brock et al.

2006). The reasons for this behaviour seem general, and

should apply to a wide range of plausible models of regime

shifts (Horsthemke & Lefever 1984; Berglund & Gentz

2002a,b; Kleinen et al. 2003; Brock et al. 2006; Appen-

dix S2). Therefore, increased variance may be an important

clue of regime shifts even in cases where the appropriate

model is unknown. Furthermore, increased variance may

provide a leading indicator of regime shifts that can be used

in ecosystem management. Regime shifts often have large

ecological and economical consequences, e.g. losses of water

quality, declining productivity of fish stocks or rangelands,

or breakdowns of dryland agriculture. It would be useful to

have advance warning of these changes so that managers

have the opportunity to avoid them. Eutrophication, the

regime shift studied in this paper, is a syndrome of aquatic

ecosystems leading to blooms of nuisance (often toxic)

algae, anoxic events, fish mortality and substantial economic

losses (Carpenter 2003).

In practice, changes in variance due to impending regime

shifts may be difficult to distinguish from other drivers of

variance such as exogenous noise that affects the ecosystem.

In lakes, for example, variance because of fluctuations in

recycling (which may indicate a regime shift) may be difficult

to discriminate from variance because of noisy nutrient

inputs. Furthermore, the true model for ecosystem dynam-

ics is unknown and inferences about changing variance must

be drawn from approximate models. We addressed this

problem using a model of lake eutrophication that includes

both input noise and recycling noise. In addition to the

complication introduced by input noise, the model has three

state variables with distinctly different turnover times

(Carpenter 2005). Thus the model is more realistic and

complex than the one-dimensional systems examined in

some previous work. Despite these complications, the

regime shift to eutrophication could be detected years in

advance by studying the standard deviation (SD) of

phosphorus concentration in the water during summer

stratification. Change in the SD could be detected by

analysing time series of phosphorus in lake water using a

simple empirical model that did not require detailed

knowledge of the ecosystem dynamics.

METHODS

The model, which was modified slightly from previous

papers (Carpenter et al. 1999; Carpenter 2003, 2005; Ludwig

et al. 2003), is a system of stochastic differential equations

(SDE) for phosphorus density (g m)2) in soil (U ), lake

water (X ) and surface sediment (M ) (Fig. 1).

dU

dt
¼ F � cUH ; ð1Þ

Figure 1 Phosphorus flows in the model.
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dX

dt
¼ cUH � ðs þ hÞX þ rMRðX Þ þ rMRðX Þ dW

dt
;

ð2Þ

dM

dt
¼ sX � bM � rMRðX Þ � rMRðX Þ dW

dt
; ð3Þ

where F is the input rate of phosphorus to soil (e.g. from

fertilizer use, dust deposition or weathering), c is a coeffi-

cient for transfer of soil phosphorus to the lake, H is noise

for input to the lake (see below), s is sedimentation loss, h is

hydrologic loss (outflow), r is a recycling coefficient, r is the

SD of recycling noise and b is the permanent burial rate of

phosphorus in sediments; dW is a white noise process with

mean zero and variance dt. The recycling function R(X ) is

RðX Þ ¼ X q

mq þ X q
; ð4Þ

where m is the value of X at which recycling is half the

maximum rate and the exponent q determines the slope of

R(X ) near m (Carpenter et al. 1999). The annual load dis-

turbance H is calculated within each year as the solution of

the Ito SDE

dH

H
¼ kdZ ð5Þ

with initial condition H0 ¼ 1; dZ is a white noise process

with mean zero and variance dt (independent of dW ). Using

standard methods for Ito SDEs (Malliaris & Brock 1982),

the solution of eqn 5 is obtained as

Ht ¼ exp kZt �
tk2

2

� �
: ð6Þ

Our numerical analyses use parameters estimated for

Lake Mendota, Wisconsin (Table S1; Carpenter 2005). The

model is solved for successive summer stratified seasons.

We assume that the annual nutrient input enters prior to

summer stratification. During the summer stratified season,

recycling from sediments occurs in a series of stochastic

events driven by wind (Soranno et al. 1997). Frequent

shocks to recycling because of wind events within the

summer season are represented by rMR(X )dW/dt, where

dW is a white noise process with mean zero and variance dt

(Horsthemke & Lefever 1984). We set the scale parameter r
to 0.01, which produced variability in recycling similar to

that observed by Soranno et al. (1997).

According to our hypothesis, the SD of water phospho-

rus (X ) should increase prior to a regime shift. We used two

approaches to estimate the SD. First, we computed

stationary distributions of X (Horsthemke & Lefever

1984). Over a long period of time, the state variables

approach a stationary distribution, just as a deterministic

model would approach a stable point. While stationary

distributions expose the causes of changes in the SD of X,

stationary distributions may never be observed in ecosys-

tems because the rate of convergence to the stationary

distribution is not fast enough compared with the changes

in slow variables such as soil or sediment phosphorus. To

examine changes in the stationary distribution of X under

conditions that might be observed in field studies, we

simulated changes in a lake undergoing eutrophication,

corresponding to changes that have been observed in many

lakes (Carpenter 2003).

We computed the mean and SD for stationary

distributions of water phosphorus by two methods: (i) the

stationary probability densities obtained from Fokker–

Planck equations presented by Horsthemke & Lefever

(1984); and (ii) Monte Carlo simulation. Appendix S1 shows

that these two methods give similar results. Because the

Fokker–Planck expressions are not always computable due

to overflow errors, we present Monte Carlo results here. For

each estimate of the mean and SD, we simulated eqns 1–3

from each of 1000 different initial conditions for 1080 time

steps (300 years with 36 time steps per year) using Ito

calculus and the Euler method. The 1000 final values of X

(one from each of the 1000 initial points) were used to

calculate the mean and SD.

In addition to studying the stationary distributions, we

examined changes in the SD during dynamic simulations.

These come closer to the situation studied in the field,

where ecosystems may be far from the stationary distribu-

tion. We used dynamic simulations to examine changes in

the within-year SD of water phosphorus associated with

transitions to eutrophy under non-equilibrium conditions.

Simulations were computed with various schedules of

phosphorus input to soil (F, eqn 1) for 300 years with 36

time steps per year, using Ito calculus and the Euler method.

In our simulations, as in ecosystems, changes in state

variables are affected by proximity to the threshold as well

as other factors such as input disturbances which may

complicate the detection of threshold effects. Furthermore,

the true processes generating the observed dynamics of the

ecosystem will be unknown. Therefore, the analyst will work

with an approximate model of the ecosystem, and attempt

to use this model to discriminate the effects of input

disturbances from other sources of variability that affect

ecosystem dynamics. To analyse the lake simulations, we

derived a simplified approximate model. It is reasonable to

think that such a simplified model might be used by an

analyst to estimate variability of lake phosphorus from

observed time series.

Suppose the analyst believes that the true deterministic

model for the lake can be approximated over a short period

of time as

dX

dt
¼ a0 þ L � a1X ; ð7Þ
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where a0 and a1 are functions of the actual but unknown

parameters of the true but unknown ecosystem processes,

and the time series of input L and water phosphorus X are

measured. Equation 7 is a minimal empirical representation

of phosphorus dynamics that depend on input (L), losses

(a1) and recycling (a0) in a situation where X is the only state

variable that is monitored. L is assumed constant over one

annual time step. This situation is similar to many lake

monitoring programmes that estimate annual values for L

and X, where the annual mean estimate of X is based on

many observations in the course of the year.

Over one time step the solution of eqn 7 from initial

condition X ¼ X0 at t ¼ 0 is

X1 ¼ X0e
�a1 þ 1� e�a1

a1
L þ a0ð1� e�a1Þ

a1
: ð8Þ

Dynamic linear models (DLMs) are among the statistical

methods available for analysing time-series processes such

as eqn 8 (Pole et al. 1994). In DLMs, the parameters can

change slowly over time as new data are observed. Thus

DLMs can adapt to gradual changes in the underlying

ecosystem dynamics. In this situation, where ecosystem

dynamics depend on slow change in unobserved variables

(soil and sediment phosphorus), the DLM approach is

reasonable (Pole et al. 1994; Cottingham et al. 2000;

Carpenter 2003). Equation 8 converts to the following

DLM:

Xt ¼ ½ b0 bP bL �t
1

Xt�1

Lt

2
4

3
5þ xt ; ð9Þ

½ b0 bP bL �t ¼ ½ b0 bP bL �t�1 þ mt : ð10Þ

In eqns 9 and 10, x and m are independent normally

distributed observation and process errors respectively. The

parameters b0, bP and bL correspond to a0(1 ) exp()a1))/
a1, exp()a1) and (1 ) exp()a1))/a1 respectively. At each

time step, parameter estimates are updated using measure-

ments of L and X (Pole et al. 1994). Because of the regular

updating driven by data, the parameters do not follow a

random walk but instead move with trends in the data. The

updating equations are well known (Pole et al. 1994) and will

not be repeated here.

RESUL T S

To illustrate the stationary distributions, we present an

example in which stationary distributions were computed

across a gradient of the loading coefficient, c (eqns 1 and 2).

Manipulations of c are sometimes used as a control

parameter by lake managers. Restorations of riparian

vegetation to reduce c may mitigate eutrophication by

decreasing phosphorus inputs, for example. We focus on

the stationary distribution of water phosphorus (X ) for a

lake that has been oligotrophic for a long time. Monte Carlo

simulations of the stationary distribution were initiated at

the deterministic steady-state values of soil phosphorus (U )

and sediment phosphorus (M ) by setting the load distur-

bance k to 0. We used the oligotrophic steady state for M if

the system was bistable (otherwise the sole steady state of M

was used). Simulations were initiated over a wide range of

values of X. We present only the final values of X

(Appendix S1).

Equilibria of phosphorus in the water vs. the loading

coefficient, c, indicates alternate stable states, as known from

previous studies of this model (Fig. 2a). At low c, there is

only one equilibrium, an oligotrophic attractor. As c rises

above roughly 0.00025, a eutrophic attractor appears,

separated from the lower attractor by a repelling threshold.

As c rises above roughly 0.0025, the lower oligotrophic

attractor disappears. Similar behaviour occurs if the equil-

ibria are plotted against other parameters, such as the

recycling coefficient r or the more slowly changing variables,

Figure 2 (a) Equilibria of water P vs. input coefficient (c). Stable

equilibria are solid lines, unstable equilibria are the dotted line, and

open circles are mean values of the stationary distribution from

Monte Carlo simulation. Vertical solid line shows the relationship

between the eutrophication threshold and the standard deviation.

(b) Standard deviation of the stationary distribution versus input

coefficient (c). Note log y-axis.
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soil and sediment phosphorus. Appendix S1 shows that

similar effects occur across a gradient of sediment phos-

phorus.

Mean values of the stationary distribution closely track

the oligotrophic attractor for c less than c. 0.0023 (Fig. 2a).

At higher levels of c, the mean values lie between the two

attractors. The mean values gradually approach the upper

eutrophic attractor as c rises to 0.003.

The SD of the stationary distribution of water phospho-

rus rises steadily as c passes through the shift to alternate

stable states at c ¼ 0.00025, until c reaches c. 0.0021

(Fig. 2b). Just below the c value where the lower oligo-

trophic attractor disappears, the SD increases sharply. The

rise in SD between about c ¼ 0.0021 and the transition

point at c ¼ 0.0025 could provide an advance warning that

the system was approaching a regime shift.

Frequency distributions from Monte Carlo simulation

illustrate the changes that occur near the transition point. At

c ¼ 0.0021, frequency is sharply clustered near the oligo-

trophic attractor, with a long tail to the right extending

towards the eutrophic attractor (Fig. 3d). Near the transition

point, frequency is spread broadly across the range of water

phosphorus, with a peak slightly above the oligotrophic

attractor (Fig. 3c). There is further spreading of the

frequency distribution as c rises above the transition point

(Fig. 3b). Finally, with c ¼ 0.0030, frequencies seem to

approach a bell-like distribution centred just below the

eutrophic attractor (Fig. 3a).

Although the stable distribution is useful for exposing the

underlying causes of the change in variability, it is not useful

in practice because all of the dynamic variables (soil,

sediment and water phosphorus) are changing at the same

time. We used dynamic simulations to explore changes in

variability of water phosphorus near the transition point. An

example is presented in Fig. 4. We focus on the time period

near the transition to eutrophy. The full 300-year simulation

is presented in Fig. S1.

The upper, eutrophic attractor appears in year 101, and

the lower oligotrophic attractor disappears in year 139

(Fig. 4). The lake shifts to the eutrophic state c. years 160–

162.

Often, a field scientist will observe time series of a fast

variable (such as water phosphorus), but will not know the

slowly changing variables (in this case soil and sediment

phosphorus) or the true ecosystem dynamics (eqns 1–6). In

this situation, the analyst will often approximate ecosystem

dynamics using a simplified model such as the one we

derived in eqns 7–10. We calculated two measures of SD of

water phosphorus. One is the within-year SD around the

annual mean (within-year SD), and the other is the within-

year SD around the prediction of the DLM (DLM SD).

Uncertainty around both measures of SD is small. With 36

observations per year, the 95% CI around each SD ranges

from 0.81 to 1.29 times the estimated SD, a range that is too

narrow to be plotted on Fig. 4.

The within-year SD rises, with fluctuations, over the

course of the simulation (Fig. 4). The within-year SD

represents the combined effects of varying phosphorus

inputs to the lake and endogenous variance related to the

regime shift. Variance of phosphorus inputs is rising

through the simulation, because of rising soil phosphorus

(Fig. S1) which increases mean input rate (cUH, eqn 2) as

well as its variance (eqn 6). Despite the complicating effects

of variable phosphorus inputs, there is some indication of

regime shift effects in the within-year SD. The within-year

SD shows unusual peaks in years 147, 152, 157 and 159,

which could perhaps be taken as indicators of an impending

transition.

The DLM SD provides a clearer indication of impending

transition. The DLM accounts statistically for the fluctua-

Figure 3 Stationary distributions of water phosphorus from Monte

Carlo simulation at four values of the input coefficient (c) near the

threshold for eutrophication at c ¼ 0.0025.
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tions of phosphorus input to the lake (eqn 9). The SD

around DLM projections therefore represents variability due

to recycling, the key process in the regime shift. The DLM

SD is generally declining until year 146, indicating lower

variability around predictions of water phosphorus. How-

ever, after year 146 the DLM SD generally trends upwards.

There are peaks in years 148 and 152 and a steady upward

trend from years 155 to 160. These changes in the DLM SD

provide an unambiguous signal of rising variability at least

10 years prior to the regime shift.

D I SCUSS ION

Variability of water phosphorus is a leading indicator of

shifts between oligotrophic and eutrophic attractors in lakes.

More specifically, the SD (or variance) of total phosphorus

density in the water column within the period of summer

stratification should increase as a lake approaches a trans-

ition from oligotrophic to eutrophic attractors. Persistent

increases in variability of phytoplankton biomass are known

from experimental eutrophication of lakes (Cottingham et al.

2000). Results presented here suggest that such increases in

variability should be a general feature of lakes approaching a

regime shift to eutrophication.

Previous work suggested that measures of phosphorus

recycling rate could warn of threshold crossings 1 or 2 years

in advance (Carpenter 2003). In contrast, the SD of water

phosphorus appears to signal threshold crossings a decade

or more in advance. This indicator may be a useful test for

regime shifts in analyses of time-series data. In ecosystem

management, the rising SD may provide an early warning. If

heeded, such a warning could provide time to reduce

phosphorus inputs and perhaps prevent a catastrophic loss

of water quality.

An observer could detect the changes in SD without

knowing the mechanisms of the regime shift. In our model,

nature generates ecosystem dynamics using eqns 1–6 but the

analyst needs only the water phosphorus time series and the

simplified model of eqns 7–10 to estimate the SDs and

compute the leading indicator of regime shift. This finding

suggests that simple, empirical models for ecological time

series could be used to develop indicators of potential

regime shift for a wide variety of ecosystems. Of course,

regular long-term observation of an ecosystem is essential to

detect impending regime shifts. With more frequent

measurements, the confidence intervals of estimated SDs

become narrower, leading to more sensitive detection of

changes in the SD. Approaches presented in this paper will

become easier to apply as high-frequency long-term

observations of ecosystems become more available (Porter

et al. 2005).

In our model, as in real lakes, it is difficult to separate

variability caused by proximity to the threshold from that

caused by other sources of noise. We addressed this in

simulations by using a DLM to filter out effects of input

variability. Simulations show that the DLM improved the

detection of changes in the SD prior to the transition. It is

likely that research could identify better filters to improve

detection of changes in variability for this particular system.

Previous research has shown that the variance spectrum

measured for system state variables shifts to lower frequen-

cies and longer wavelengths as a threshold is approached

(Kleinen et al. 2003). We focused on the SD instead, because

ecological time series may often be adequate to estimate SDs

but too sparse to estimate spectra. However, advances in

ecosystem monitoring technology and statistical tools may

increase the sensitivity of methods for detecting changes in

variance of ecosystems.

If the increase in variance is due to trends in some

unmeasured variable, then observations of increased vari-

ance could have nothing to do with impending regime shift.

In this sense, the reliability of conclusions about impending

regime shifts depends on observations of drivers that might

affect variance of the focal state variable. In order to correct

for such variables, one must know about them and observe

them. Brock et al. (2006) comment on some of the model

uncertainty and identification issues that arise in this

context.

If the lake could be held near the threshold, the variance

of water phosphorus would remain high for a long time.

However, in reality other variables such as soil and sediment

phosphorus are continually changing. The changes in these

Figure 4 Simulated time series near a transition from the

oligotrophic to the eutrophic state. Note log scale for the y-axis.

Equilibria were computed for the sediment + water subsystem,

assuming that changes in soil phosphorus are slow enough to make

equilibria meaningful for the faster variables. Water P is the thick

grey line, and the stable equilibria for water P are the thin black

lines. The within-year standard deviation (SD) is shown by the

dashed line, and the within-year SD around predictions of the

dynamic linear model (DLM) is shown by the dash-dot line.
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slower variables affect the lead time of the indicator. The

slower the changes in soil and sediment phosphorus, the

longer the period of time that elevated variability is

discernible prior to the transition. The stable distributions

show that the SD of water phosphorus is high for a rather

narrow range of c prior to the shift to eutrophy. Neverthe-

less, the simulations show that increases in the within-year

SD of water phosphorus can be detected prior to the shift.

Thus the relative speeds of interacting slow and fast

variables is important for anticipating the regime shift in

advance (Rinaldi & Scheffer 2000).

The mechanism that underlies the increasing variability

near the threshold occurs in diverse physical, ecological and

social systems (Brock et al. 2006). The mechanism depends

on having two or more attractors which change slowly

because they depend on a slowly changing variable, and a

fast variable which relaxes quickly to equilibrium after small

shocks (Rinaldi & Scheffer 2000). If the attractors change

gradually so that a regime shift becomes more likely, the

variance (or SD) of the fast variable will increase

(Appendix S2). In the lake case, the slow dynamics of soil

and sediment lead to gradual change in the attractors, while

water phosphorus equilibrates rapidly after small shocks. As

the system moves closer to the regime shift, the variance of

water phosphorus rises.

Thus we expect that increased variability should occur

prior to threshold transitions in many ecosystems. Increas-

ing variability may provide a useful and general indicator of

threshold transitions, even for systems with unknown

dynamics. We have shown that variance around simple

time-series models can be used to detect increases in

variance as a complex system approaches a regime shift.

This suggests a useful tool for studying or managing regime

shifts in ecosystems, where the appropriate model structure

and parameter estimates are often unknown or uncertain.

On the contrary, the time window of increased variability

will depend on details of the system dynamics and

parameters. In particular, it depends on having relatively

slow changes in the attractors combined with relatively rapid

relaxation times of a fast variable. In some types of systems,

increased variability may occur over a wide zone of

conditions near a transition, while in other types of systems

the zone of increased variability may be so narrow as to be

useless for empirical purposes. Further study is needed to

determine the types of systems and the ranges of conditions

for which variability is a useful indicator of threshold

transitions.
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