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Most studies of ecological models focus exclusively on the asymptotic stability properties of equilibria.
However, short-term transient effects can be important, and can in some cases dominate the dynamics
seen in experimental or field studies. The reactivity of a stable equilibrium point measures the potential
for short-term amplification of perturbations. The reactivity of a fixed point in a discrete-time system is
given by the natural logarithm of the largest singular value of the Jacobian matrix of the linear
approximation near the fixed point. If the reactivity is positive, the fixed point is said to be reactive. Here
we examine the reactivity of discrete-time predator–prey models and density-dependent matrix
population models. We find reactivity to be common (but not universal) and sometimes extremely high.
Predator–prey or food web models that include a predator whose per-capita growth rate depends on the
density of its prey, but not on its own density, are a special case. Any positive equilibrium of such a model
must be reactive. Reactivity of discrete-time models depends on the timing of the census relative to the
timing of reproduction. Perturbation analysis of singular values can be used to calculate the sensitivity
and elasticity of reactivity to changes in model parameters. We conclude that transient amplification of
perturbations should be a common ecological phenomenon. The interaction of these transient effects with
the asymptotic nonlinear dynamics warrants further study.

Keywords: Reactivity; Resilience; Matrix population models; Predator-prey; Density-dependence; Food
webs; Closure terms

1. Introduction

The typical analysis of a nonlinear ecological model begins with an enumeration of the

model’s equilibria and a characterization of their stability. For food-web and nutrient-cycle

models [1], a next step often involves a calculation of the “resilience” of the stable equilibria.

The resilience is the eventual rate of return to the equilibrium after a small perturbation [2].

Stability and resilience are important to ecologists because, the argument goes, more resilient

systems are likely to be less variable and more persistent in the face of inevitable

environmental perturbations.

Stability and resilience are both calculated from the dominant eigenvalue of the

linearization of the model in the neighborhood of the equilibrium point in question. As such,

both quantities characterize the asymptotic dynamics of small perturbations. Neither,

however, provides any information about transient dynamics, and models with highly

resilient equilibria can exhibit dramatic transient responses to perturbations [3]. For example,
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although perturbations to a stable equilibrium will eventually decay, they can grow rapidly at

first, and the growth can continue for times on the order of the return time.

The question arises whether asymptotic behavior adequately characterizes system

dynamics. In fact, real ecosystems typically do not complete their response to a perturbation

before the next one occurs. Instead, they are buffeted by a more-or-less continual series of

perturbations and the appearance of transient responses in our observations of nature may be

the norm rather than the exception. For example, the elegant experimental and mathematical

research of Cushing and colleagues on flour beetles of the genus Tribolium has shown that the

interaction between perturbations and the stable manifolds of the system’s invariant sets

produce transient dynamics that are reflected in “distinctive temporal patterns in the data” [4].

As a practical matter, transient responses may be at least as important as asymptotic

responses. Managers charged with ecosystem restoration, for example, are likely to be

interested in both the short-term and long-term effects of their manipulations, particularly if

the short-term effects can be large [5].

Empirical ecologists are only just beginning to shift their focus from asymptotic dynamics

to transient dynamics. This is partly because they have not had a simple index for quantifying

transient behavior. In an effort to focus more attention on transient dynamics, we recently

introduced a set of such indices into the ecological literature [3].† Principal among these was

“reactivity,” the maximum instantaneous growth rate of a small perturbation. Positive

reactivity has now been documented in a number of food web and ecosystem compartment

models [3,12,13]. It has been shown to be a necessary condition for pattern formation via

Turing instability in spatial ecological models [14], and has been shown to be a common

property of the equilibria of continuous-time predator–prey models [15]. There are also

methods for estimating reactivity from time series [16].

In our previous work, we defined reactivity only for systems of differential equations; it

can also be defined for maps. Consider the linear system

xðt þ 1Þ ¼ BxðtÞ ð1Þ

(it might be the linearization of a nonlinear system in the neighborhood of an equilibrium

point) with initial conditions xð0Þ ¼ x0: If x̂ ¼ 0 is an asymptotically stable equilibrium

point of equation (1), then the maximum eigenvalue of B satisfies jl1ðBÞj , 1: The resilience

of x̂; which is usually defined as the inverse of the asymptotic return time, can be measured

by 2log jl1j:

We define reactivity n as the maximum rate of departure from x̂ immediately following a

perturbation; i.e.

n ; log max
kx0k–0

kxð1Þk

kx0k

� �
ð2aÞ

¼ log max
kx0k–0

kBx0k

kx0k

� �
ð2bÞ

¼ log kjBkj ð2cÞ

¼ logs1ðBÞ; ð2dÞ

†These concepts and calculations will be familiar to many of the readers of this journal, as they arise in fluid
dynamics [6,7] and in numerical analysis [8–11].

H. Caswell and G. Neubert296



where k·k is the l2 norm, kj·kj is the spectral norm and s1ðBÞ is the largest singular value of B.

If n . 0; the equilibrium point is said to be “reactive”. The maximum rate of departure is

realized for perturbations in the direction given by the right singular vector of B

corresponding to s1:

Reactivity is just one feature of what we have termed the “amplification envelope,”

rðtÞ ; max
x0–0

kxðtÞk

kx0k
¼ kjBtkj; ð3Þ

which gives the maximum possible amplification at time t of an initial perturbation.

In particular, n ¼ log rð1Þ: Other features of possible interest are the maximum value of

rðtÞ; the time at which the maximum is achieved, and the resilience of x̂;

limt!1 ð1=tÞ log rðtÞ:

In the next sections, we analyze several examples of discrete-time predator–prey models

and nonlinear matrix population models. We then consider the perturbation analysis of

reactivity, and end with a discussion of the ecological implications.

2. Discrete predator–prey models

There is a large literature on discrete-time models for predator–prey or host-parasitoid

interactions, dating back to the Nicholson–Bailey model [17] (see [18] for a review). These

models can be written

n1ðt þ 1Þ ¼ f ðn1ðtÞ; n2ðtÞÞ ð4Þ

n2ðt þ 1Þ ¼ gðn1ðtÞ; n2ðtÞÞ ð5Þ

where n1 and n2 denote prey and predators, respectively. Choices of the functions f (·) and

g (·) reflect hypotheses about the growth of the prey, the rate of consumption of prey by

predators, and the mortality rate of the predators. Many of these models have similar stability

and bifurcation patterns [19,20]. The following example is typical.

Example 1 The Hadeler–Gerstman model. Hadeler and Gerstman [21] studied a discrete

version of the Rosenzweig–MacArthur predator–prey model. In the absence of predation,

prey grow logistically. The predators exhibit a saturating Type II functional response. In non-

dimensional form,

n1ðt þ 1Þ ¼ ðr þ 1Þn1ðtÞ2 r n2
1ðtÞ2

cn1ðtÞn2ðtÞ

n1ðtÞ þ g
ð6Þ

n2ðt þ 1Þ ¼
cn1ðtÞn2ðtÞ

n1ðtÞ þ g
ð7Þ

where n1 and n2 are prey and predators, r is the prey growth rate, c is the maximum predation

rate and g is the half-saturation constant. The model has an equilibrium at

n̂1 ¼
g

c2 1
ð8Þ

n̂2 ¼ rn̂1ð1 2 n̂1Þ: ð9Þ
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The Jacobian at the equilibrium is

B ¼

r þ 1 2 2rn̂1 2
cn̂2g

ðn̂1 þ gÞ2
2 cn̂1

n̂1þg

cn̂2g

ðn̂1þgÞ2
cn̂1

n̂1þg

0
BB@

1
CCA: ð10Þ

The stability properties of this model were analyzed by Neubert and Kot [20]. For the case

where g ¼ 1 (other values are similar), there is a roughly trapezoidal stability region in the

r 2 c parameter space (figure 1). Crossing the left-hand boundary of this region produces a

transcritical bifurcation, crossing the right-hand boundary produces a Hopf bifurcation, and

crossing the upper boundary produces a subcritical flip bifurcation. Within the stability

region, resilience is maximized near the center (where jlj is at a minimum), and decreases

dramatically towards the stability boundaries (figure 1).

The coexistence equilibrium of this model is always reactive (figure 2). That is, there is

always at least one perturbation of n̂ that results in transient amplification of the distance

from n̂: Reactivity is nearly independent of the predation rate c, but increases dramatically

with the prey growth rate r, to values on the order of n < 1:6: If xðtÞ ¼ nðtÞ2 n̂; then a

reactivity of n < 1:6 implies kxð1Þk=kxð0Þk < 5: Figure 3 shows the result of a perturbation

in the direction of maximum amplification (r ¼ 9; c ¼ 2:9Þ:

2.1 Closure terms and reactivity

Many discrete-time predator–prey models (including the model in Example 1), can be

written in the special form

n1ðt þ 1Þ ¼ f 1ðn1ðtÞ; n2ðtÞÞ ð11aÞ

n2ðt þ 1Þ ¼ n2ðtÞ f 2ðn1ðtÞÞ; ð11bÞ

Figure 1. The resilience of the coexistence equilibrium for the Hadeler–Gerstman predator–prey model as a
function of the predation rate c and the prey growth rate r. Resilience is plotted only within the stability region.
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where n1 and n2 are the population density of the prey and predator, respectively. The

function f2(·) is the per-capita growth rate of the predator. As written in equation (11b), it

depends on the prey density but is independent of the predator density. This function can be

interpreted in terms of two ecological processes. One is competition among the predators,

caused by reduction in the availability of their prey. The second is predator mortality due to

their consumption by higher trophic levels not explicitly included in the model. When used in

this way to truncate a food chain, the per-capita predator growth rate is sometimes called

Figure 2. Reactivity of the coexistence equilibrium for the Hadeler–Gerstman predator–prey model as a function
of the predation rate c and the prey growth rate r. Reactivity is plotted only within the stability region.

Figure 3. A trajectory calculated from the linear approximation to the Hadeler–Gerstman predator–prey model (7)
for c ¼ 2:9; r ¼ 9: The equilibrium is at the center of the circle; the initial perturbation (indicated by the arrow) was
in the direction of maximum amplification.
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a “closure term”. It has been suggested that the effects of higher trophic levels might be better

captured by a nonlinear closure term that depends on n2 [22], but most predator–prey models

have linear closure terms.

Linear closure terms have important implications for transient dynamics. If model (11a,b)

has a linearly stable equilibrium point with n̂2 . 0; then f 2ðn̂1Þ ¼ 1: As a consequence, the

Jacobian matrix has the form

B ¼

›f 1
›n1

›f 1
›n2

n2
›f 2
›n1

f 2ðn1Þ

0
BB@

1
CCA
��������
n¼n̂

¼
b11 b12

b21 1

 !
; ð12Þ

with b12 – 0: It is then easy to show that s1ðBÞ . 1 and the equilibrium n̂ must be reactive.

The matrix C ¼ BTB has the form

C ¼
b211 þ b221 b11b12 þ b21

b11b12 þ b21 1þ b212

0
@

1
A: ð13Þ

A corollary of the inclusion principle (see [23], Theorem 4.3.15) tells us that the largest

eigenvalue of C is not smaller than any of the diagonal entries of C. Thus

s1ðBÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
l1ðCÞ

p
$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b212

q
. 1: ð14Þ

The same argument can be applied to any m-species food-web model in which at

least one species, typically a top predator, has a per capita growth rate independent of

its own density. Without loss of generality, one can label this species nm. The Jacobian

matrix will then necessarily have bmm ¼ 1; and as a result, the equilibrium must be

reactive. If, on the other hand, the web contains no species whose per capita growth rate

is independent of its own density, the above arguments do not apply. This situation

often arises when the closure terms are density-dependent. Neubert et al. [15] showed

that biologically reasonable density-dependent closure terms typically reduce the

reactivity of continuous-time predator–prey models. We conjecture that this is also the

case for discrete models.

Example 2 The Beddington-Free-Lawton model. Beddington et al. [19] created a host-

parisitoid model by adding prey density-dependence to the (always unstable) Nicholson–

Bailey model (see p. 190 of [24] for a derivation). Neubert and Kot [20] showed that it can be

reduced to the non-dimensional form

n1ðt þ 1Þ ¼ n1ðtÞ exp ðr½1 2 n1ðtÞ�2 n2ðtÞÞ ð15Þ

n2ðt þ 1Þ ¼ cn1ðtÞ½1 2 exp ð2n2ðtÞÞ� ð16Þ

where n1 and n2 are the host and the parasitoid, r is the intrinsic host growth rate and c is

the maximum parasitoid attack rate. This model has a nonlinear closure term. The

stability region in the r 2 c plane for the unique positive equilibrium point is similar in

shape to that of the Hadeler–Gerstman model, and figure 4 shows the reactivity within

the stability region. Even though the closure term is nonlinear, the coexistence

equilibrium is always reactive, although over much of the parameter region it is only

slightly so.
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3. Nonlinear matrix population models

Nonlinear matrix population models are a useful way to describe density-dependent

dynamics of an age- or stage-structured population [25,26]. A nonlinear matrix population

model can be written

nðt þ 1Þ ¼ AnðtÞ nðtÞ ð17Þ

wheren is an s-vector whose entries give the abundance of each of s stages in the life cycle andAn

is an s £ s non-negative matrix some or all of whose entries are functions of n. If n̂ is an

equilibrium of equation (17), then the dynamics of small perturbations x from n̂ are given by

xðt þ 1Þ ¼ BxðtÞ ð18Þ

where the Jacobian matrix B can be computed as

B ¼ An̂ þ
›A

›n1

n̂
›A

›n2

n̂ · · ·
›A

›ns
n̂

� �
ð19Þ

where all partial derivatives are evaluated at n̂ [26,27]. The stability of n̂ is determined by the

largest eigenvalue of B; its reactivity is determined by the largest singular value of B.

In this section, we will examine the reactivity of several nonlinear matrix population

models.

Example 3 Tribolium population dynamics. Themost thoroughly analyzed nonlinearmatrix

population model, both mathematically and experimentally, is the model for flour beetles of

the genus Tribolium, developed by Cushing and his collaborators ([4] and references therein).

These beetles are small insects living in flour and stored grain products. Their life cycle

includes egg, larva, pupa and adult stages. Adults and larvae cannibalize eggs, and adults also

cannibalize larvae. This cannibalistic interaction provides the nonlinearity that regulates

Figure 4. Reactivity for the Beddington-Free-Lawton model as a function of the predation rate c and the prey
growth rate r. Reactivity is plotted only within the stability region.
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the populations and determines a rich array of bifurcations, attractors and both asymptotic and

transient dynamics. The model studied by Cushing and his colleagues is obtained by letting n1,

n2 and n3 be the numbers of larvae, pupae and adults, respectively. The population projection

matrix is

An ¼

0 0 b exp ð2celn1 2 cean3Þ

12 ml 0 0

0 exp ð2cpan3Þ 12 ma

0
BB@

1
CCA ð20Þ

where b is the fecundity, cea, cel and cpa are coefficients describing cannibalism, and ml and ma

are larval and adult mortality rates (see [4] for a detailed description of the model and its

underlying biology).

The parameters of the model depend on the environment in which the beetles are living.

One experiment (Table 2.1 of [4]) led to parameter estimates of cea ¼ 1:097 £ 1022;

cel ¼ 9:264 £ 1023; cpa ¼ 1:779 £ 1022; ma ¼ 0:1108 and ml ¼ 0:5129: The model has a

stable positive equilibrium for fecundities from b ¼ 0:23 to b < 8:74: Figure 5 shows the

resilience and the reactivity of this equilibrium. The reactivity is positive for low and for

high values of b, and negative for intermediate values. Over this range of parameter values,

the reactivity is never very large ðn ¼ 0:1 implies kxð1Þk=kxð0Þk ¼ 1:105Þ:

Example 4 Dungeness crab populations: effects of census timing. The Dungeness crab

(Cancer magister) is distributed along the west coast of North America, and is the subject of an

important commercial harvest. Female crabs lay millions of eggs at one time and the resulting

larvae spend some months in the plankton. Adult crabs may live for as long as 10 years.

Higgins et al. [28] presented a nonlinear discrete-time model for Dungeness crab, keyed to

the point in the year (December) when a pulse of eggs is produced. According to their model,

density-dependence operates in egg production, survival of eggs to their first birthday, and

survival of adults from age 1 to 2.

Such a model can be written in two ways: as a pre-breeding or post-breeding birth pulse

model [26, Section 2.4]. The choice affects the nature of the individuals in each age class and

Figure 5. The resilience and reactivity of the non-trivial equilibrium of the Tribolium model, as a function of the
fecundity parameter b. The equilibrium becomes unstable via a flip bifurcation at b < 8:74:
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in which transitions the density-dependent effects occur. Consider a species that reproduces

at one fixed point in the year. A pre-breeding census model, projects the population from just

before one birth pulse to just before the next. In such a model, individuals in each age class

are, when censused, just about to celebrate their birthday and move to the next age class.

A post-breeding census model projects the population from just after one birth pulse to just

after the next. Individuals in each age class, when censused, have just celebrated their

birthday and moved into the age class. The first age class consists of newly-laid eggs.

Because of the high fecundity of the Dungeness crab, the number of eggs in the post-

breeding census model is enormous, but the numbers of individuals of ages 1; 2; . . . is the

same in the two models. However, individuals appear in different age classes. The 1-year old

individuals that appear in the first age class in the pre-breeding model appear in the second

age class in the post-breeding model.

Using the equations from Higgins et al. [28], the projection matrix for the pre-breeding

model is:

Apre ¼

0 0 f 3ðnÞ f 4ðnÞ 0 0 0 0

p1ðnÞ 0 0 0 0 0 0 0

0 sa 0 0 0 0 0 0

0 0 sa 0 0 0 0 0

0 0 f 3ðnÞ f 4ðnÞ 0 0 0 0

0 0 0 0 q1ðnÞ 0 0 0

0 0 0 0 0 sa 0 0

0 0 0 0 0 0 sa shð1 2 hÞ

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

ð21Þ

where the first four components of n are females of age-classes 1, . . ., 4 and the last four

components are the corresponding male age classes. Here, sl is larval survival, sa is adult

survival, sh is survival of the harvested stage, c, c0 and c1 are competition coefficients, and

the density-dependent vital rates are

f 3ðnÞ ¼ f 4ðnÞ ¼ 0:5bsl

ffiffiffiffi
sa

p
exp 2cðn3 þ n4Þ2 c0

ffiffiffiffi
sa

p
n1

� �
ð22Þ

p1ðnÞ ¼ sa exp ð2c1n2Þ ð23Þ

q1ðnÞ ¼ sa exp ð2c1n6Þ ð24Þ

The matrix for the post-breeding model is

Apre ¼

0 0 f 3ðnÞ f 4ðnÞ 0 0 0 0

p1ðnÞ 0 0 0 0 0 0 0

0 p2ðnÞ 0 0 0 0 0 0

0 0 sa 0 0 0 0 0

q1ðnÞ 0 0 0 0 0 0 0

0 0 0 0 q2ðnÞ 0 0 0

0 0 0 0 0 sa 0 0

0 0 0 0 0 0 sa shð1 2 hÞ

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

ð25Þ
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where the first component of n is eggs, the next three components are females and the last

four components are males. The density-dependent functions for fertility and survival are

f 3ðnÞ ¼ f 4ðnÞ ¼ bsa exp ð2csaðn3 þ n4ÞÞ ð26Þ

p1ðnÞ ¼ 0:5sl

ffiffiffiffi
sa

p
exp 2c0

ffiffiffiffi
sa

p
n2

� �
ð27Þ

p2ðnÞ ¼ sa exp ð2c1n3Þ ð28Þ

q1ðnÞ ¼ 0:5sl

ffiffiffiffi
sa

p
exp 2c0

ffiffiffiffi
sa

p
n5

� �
ð29Þ

q2ðnÞ ¼ sa exp ð2c1n6Þ ð30Þ

Except for the presence of eggs in the post-breeding model and their absence in the pre-

breeding model, the equilibria of these two formulations are identical, as are the eigenvalues

of their Jacobian matrices. The reactivities of the post-breeding model, however, are much

larger than those of the pre-breeding model (Table 1). The initial amplification of a

perturbation (kx(1)k/kx(0)k) differs by a factor of about 105 between the two models. The

reactivities of the post-breeding model are the largest we have ever encountered. This

example emphasizes a point not often appreciated: while the asymptotic properties of an

equilibrium may be independent of the choice of a point in the annual breeding cycle at

which a census is carried out, the transient dynamics are not.

The preceding examples make it clear that the equilibria of density-dependent stage-

structured models are often reactive. Each of these cases, though, refers to a specific species

and life cycle. In the next example, we turn to a simple model in which we can explore the

effect of life history type and the type of density-dependence.

Example 5 A simple density-dependent life cycle. Plant and animal life histories exhibit

enormous diversity. Some species live for hours, some for centuries. Some lavish parental care on

a single offspring; others abandonmillions of larvae to take their chances on life in the plankton.

Here, we examine amodel [29] that includes only themost basic life cycle division: that between

reproducing adults and non-reproducing juveniles. The demography is parameterized by the

survival of juveniles and adults (s1 and s2), the maturation or growth rate of juveniles (g), and the

fertility of adults (f). Each of these parameters may depend on population density. The resulting

density-dependent projection matrix (assuming a pre-breeding model) is

An ¼
s1ð1 2 gÞ f

s1g s2

 !
: ð31Þ

TABLE 1. The reactivity and resilience for the pre-breeding and post-breeding census models of the Dungeness
crab, based on parameter values for eight locations in California [28].

Pre-breeding Post-breeding

Reactivity n Resilience Reactivity n Resilience

20.0479 1.9443 6.4172 1.9443
20.2230 0.7407 10.6438 0.7407
0.0221 0.4004 12.5088 0.4004
0.7851 0.1857 13.7936 0.1857
0.1487 0.7944 10.5765 0.7944
0.4332 0.2595 13.7847 0.2595
0.3631 0.0526 12.8085 0.0526
0.1868 0.4354 12.1708 0.4354

H. Caswell and G. Neubert304



Neubert and Caswell [29] applied this model to four important classes of idealized life

histories, depending on reproductive strategy and developmental rate. Reproduction may be

semelparous (reproducing only once) or iteroparous (reproducing repeatedly). Semelparity is

obtained as s2 ! 0; iteroparity when s2 . 0: Development may be precocious (rapid

development to maturity) or delayed. Precocious development is obtained as g! 1; delayed

development when g , 1: The combination of these two dichotomies gives four classes of

life histories: precocious semelparity (e.g. many annual plants and insects), precocious

iteroparity (e.g. small mammals and birds), delayed semelparity (e.g. periodical cicadas) and

delayed iteroparity (e.g. humans, whales and other large mammals).

Because the matrix (31) contains four parameters, there are four possible locations for the

operation of density-dependence within the life cycle. Here we examine three of these:

density-dependent reproduction ðf! fe2bNÞ; density-dependent growth ðg! ge2bNÞ; and

density-dependent juvenile survival ðs1 ! s1e
2bNÞ; where N ¼ n1 þ n2: We eliminate the

parameter b by implicitly scaling n relative to the strength of density-dependence. Neubert

and Caswell [29] obtained the equilibria and linear approximations and categorized the

bifurcation patterns for each of the models. Here, we examine the reactivity of each of the 12

models (four life history types and three modes of density-dependence).

The stability regions in s1 2 f space for the non-trivial equilibrium n̂ are shown in figure 6.

At the bottom boundary of each region, n̂ collides with 0 and exchanges stability in a

transcritical bifurcation. At the upper boundary, n̂ loses stability via a bifurcation that is

characteristic of each type of density-dependence (a flip bifurcation for density-dependent

reproduction, a Hopf bifurcation for density-dependent growth or juvenile survival).

Within the stability region, reactivity is common. When reproductive output is density-

dependent, equilibria are reactive in 50% or more of the parameter space, and are most

reactive when s1 and f are both low (the left-hand tip of the stability region). In contrast, in

the density-dependent growth and density-dependent juvenile survival models, the

equilibrium is almost always reactive, sometimes extremely so ðn < 15; implying that

initial perturbations may be magnified by as much as 3 £ 106 timesÞ: Reactivity is nearly

independent of juvenile survival, but increases strongly with reproductive output.

4. Perturbation analysis

To explore how reactivity responds to changes in parameters, we want to calculate dn=du;

where u is a specified parameter in the model. To do so we use the notation for matrix

calculus of [30]. If y(u) is an s £ 1 vector-valued function of a scalar argument u, then ›y=›u

is the s £ 1 vector whose ith entry is ›yi=›u: If f(x) is an s £ 1 vector-valued function of the

r £ 1 vector x, then ›f=›x is the s £ r matrix whose (i,j) entry is ›f i=›xj: Derivatives of

matrix-valued functions and derivatives with respect to matrix-valued arguments are

calculated by applying these rules to the vec of the matrices, where vec(X) stacks the

columns of X one above the other, with the second beneath the first, and so on.

We consider a discrete-time model of the form

xðt þ 1Þ ¼ fðxðtÞ; uÞ: ð32Þ

The Jacobian matrix at the equilibrium x̂ is

Bðx̂; uÞ ¼
›fðx; uÞ

›x

����
x̂

: ð33Þ
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The reactivity n ¼ logsðBÞ, where s is the largest singular value. The sensitivity of s to

changes in the elements of B is

›s

›bij
¼ uivj; ð34Þ

where u and v are the left and right singular vectors of B corresponding to s [31].

Figure 6. Reactivity for the two-stage density-dependent matrix population model, within the stability region, as a
function of juvenile survival s1 and the log10 of adult fecundity f. Grey areas are stable but not reactive. Results are
shown for three types of density-dependence (density-dependent fertility, density-dependent growth and density-
dependent juvenile survival) and four life histories. The life histories are defined by adult survival s2 and juvenile
growth rate g: delayed semelparity (g ¼ 0:1; s2 ¼ 0:1Þ; precocious semelparity ðg ¼ 0:9; s2 ¼ 0:9Þ; delayed
iteroparity ðg ¼ 0:1; s2 ¼ 0:9Þ; and precocious iteroparity ðg ¼ 0:9; s2 ¼ 0:9Þ:
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We consider a parameter u that affects the elements of B both directly and also through

changes in x̂: We write

dn

du
¼

1

s

ds

du
ð35Þ

¼
1

s

ds

dB

dB

du
ð36Þ

¼
1

s

ds

dB

›B

›u
þ

›B

›x̂

›x̂

›u

� �
: ð37Þ

Note that the rules for matrix differentiation guarantee conformability of these matrices.

The sensitivity of x̂ is given by implicit differentiation as

›x̂

›u
¼ ðI2 BÞ21 ›f

›u
; ð38Þ

where I 2 B is nonsingular if the spectral radius of B is strictly less than 1. Thus, finally,

dn

du
¼

1

s

ds

dB

›B

›u
þ

›B

›x
ðI2 BÞ21 ›f

›u

� �
: ð39Þ

Example 6 Sensitivity analysis of the Tribolium model. The Tribolium model (20) contains

six parameters. Its reactivity depends on the value of the fecundity b (figure 5). Arbitrarily

choosing b ¼ 8 gives a reactivity of n ¼ 0:07: Applying equation (39) gives the sensitivity

results shown in Table 2 and figure 7.

Reactivity is most sensitive to changes in the rate of cannibalism of eggs, but cannibalism

of eggs by adults and cannibalism of eggs by larvae have opposite effects on n. All the other

sensitivities are much smaller in magnitude.

The parameters of the Tribolium model range over several orders of magnitude

(Example 3). In such cases, it may be useful to evaluate the effect of a proportional change in

the parameter; this is calculated as the elasticity of s to the parameter:

u

s

›s

›u
: ð40Þ

The elasticities are shown in figure 7. A proportional increase in the fecundity b has a large

positive effect on reactivity, the proportional responses to cea and cel are similar to those

shown in the sensitivity results, and increases in ml reduce reactivity.

To us, none of these effects is intuitive, but their interpretation will be easier when more

examples are available.

TABLE 2. The sensitivity of n and the elasticity of s to changes in each of the parameters in the Tribolium
model of Example 3.

Parameter Sensitivity Elasticity

b 0.0505 0.5903
cea 237.5876 20.4123
cel 43.9692 0.4073
cpa 0.2814 0.0050
ma 0.0279 0.0031
ml 20.4168 20.2138
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5. Discussion

1. Reactivity is a common property of discrete-time ecological systems. Thus, it should

come as no surprise if stable ecological systems exhibit transient amplification

of perturbations.

2. However, reactivity is not universal. This implies that transient amplification is a truly

interesting property of a nonlinear model, along with the nature of its invariant sets

(equilibria, cycles, invariant loops, strange attractors) and its bifurcation structure.

Perturbation analysis shows that reactivity responds to parameter changes in ways that are

not (yet, at least) intuitively obvious.

3. As in continuous-time models [3], reactivity is related to the normality of B. The largest

singular value of a normal matrix is equal to the magnitude of its largest eigenvalue. If x̂ is

stable, then the spectral radius ofB is less than 1, so ifB is normal, the equilibrium cannot be

both stable and reactive.

4. In predator–prey and food-webmodels, the presence of a predatorwith a linear closure term

(i.e. with a per-capita growth rate independent of its own density) is sufficient to guarantee

reactivity. Linear closure terms are common in ecologicalmodels; thismay ormay not imply

that they are common in ecological systems.

5. Many ecologists, including the authors of this paper, must struggle to avoid assuming that

reactivity increases dramatically as an equilibrium becomes unstable. That is, that there

should be a consistent negative relation between reactivity and resilience. But this is not

always so. Although reactivity and resilience do behave this way as a function of the birth

rate in the Tribolium model of Example 3 (figure 5), in both predator–prey models and the

two-stage density-dependent matrix model, changes in reactivity near the boundaries of

stability regions depend on which parameter is varied, and do not mirror the changes in

resilience (cf. figures 1 and 2).

Figure 7. The sensitivity of reactivity n, and the elasticity of the largest singular value s, to changes in each of the
parameters of the Tribolium model.
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6. The case of the Dungeness crab (Example 4) shows that reactivity can change dramatically in

response to a change in model formulation that leaves the equilibrium and stability properties

of the model unchanged. It will be important to learn how to interpret transient results in the

context of the model formulation that produces them (and the corresponding assumptions

about how and when the system is observed).

7. Reactivity is only one piece of the puzzle of transient dynamics. Cushing et al. [4] have

emphasized the importance of the diverse array of invariant sets—both stable and unstable—

that may inhabit the state space of a nonlinear system. Trajectories resulting from

perturbations of attracting sets may be strongly influenced by unstable sets in their vicinity.

As Cushing et al. [4, p. 25] state:

“ Thus, in time series data under the influence of nonlinear dynamics and stochasticity, one

should expect to see a complicated dance of attractors, transients and unstable entities.

It is more fruitful, in attempting to explain patterns observed in data, to study the relative

influences of these various components, rather than try to explain the data in terms of a

specific type of deterministic attractor.”

It seems possible that the transient amplification of perturbations, which carry trajectories

temporarily away from equilibria, may increase the chance of passing close enough to an

unstable set for its influence to be apparent in the resulting dynamics. At least, such

connections warrant further research.
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