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Abstract. The problem of determining a normal linear model with possible
perturbations, viz. change-points and outliers, is formulated as a problem of
testing multiple hypotheses, and a Bayes invariant optimal multi-decision pro-
cedure is provided for detecting at most k (k > 1) such perturbations. The
asymptotic form of the procedure is a penalized log-likelihood procedure which
does not depend on the loss function nor on the prior distribution of the shifts
under fairly mild assumptions. The term which penalizes too large a number
of changes (or outliers) arises mainly from realistic assumptions about their
occurrence. It is different from the term which appears in Akaike’s or Schwarz’
criteria, although it is of the same order as the latter. Some concrete numerical
examples are analyzed.

Key words and phrases: Akaike’s criterion, Bayes decision procedure, change-

point, invariance, maximal invariant, outliers, regression analysis, Schwarz’
criterion.

1. Introduction

Let us consider n observations indexed by an ordered set, for example time,
and depending on some given explanatory variables. They follow a linear model
with a change-point at time 7 if they can be described by a linear model up to
time 7 and another linear model after this time. There are two change-points if
three different linear models are necessary to fit the data, the first from time 1 to
1, the second from 71 to 72 and the third from 73 to n. A similar definition holds
for more change-points. In practice the positions of possible changes in the model
are unknown. Determining if there are change-points and, in this case, where they
are, can be formulated as a problem of testing multiple hypotheses, or a problem
of model choice.

When it is assumed that there is only one change point, frequentist analy-
ses are based on the likelihood ratio test. Page (1955), Gardner (1969), Hawkins
(1977), Worsley (1979), consider a sequence of independent normal random vari-
ables and they test for no change in mean versus global existence of change.
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762 HENRI CAUSSINUS AND FAOUZI LYAZRHI

Quandt (1958) was the first to propose a likelihood ratio procedure to test for
separate regression lines. There is a substantial literature dealing with this case,
for example Maronna and Yohai (1978), Kim and Siegmund (1989). Worsley
(1983) extends the discussion to the multiple regression model.

Within the Bayesian framework, Chernoff and Zacks (1964) introduce the
quasi Bayesian statistic to test for no change in a sequence of independent normal
random variables versus a class of alternatives. The technique was extended by
Farley and Hinich (1970) to the case of two separate lines, and by Jandhayala and
MacNeill (1991) to the case of multiple regression model.

When the number of possible change-points is known in advance, say k, all
the previous procedures can be straightforwardly generalized to the choice between
no change and k changes. It is however more difficult to choose between models
assuming, say, no or one or two changes, and assigning the location(s) of the
change(s) in the latter cases: Smith (1980) proposes a stepwise procedure, Barry
and Hartigan (1993) adopt product partition models, Kashiwagi (1991) applies the
predictive log-likelihood to evaluate posterior distributions and Yao (1988) uses a
version of the Schwarz (1978) criterion to estimate the number of change-points.

The detection of outliers in a linear model is very similar to the change-
point problem from a practical as well as a theoretical viewpoint since an outlier
is basically defined by its location. As in the previous problem, finding outliers
requires a procedure to choose between no outlier and outliers at given locations.
Here again, most of the previous papers do not address the question of detecting at
most k outliers and estimating their locations (or they merely propose a heuristic
stepwise procedure: Freeman (1980), Pettit (1992) and Alexander (1993)), but
only the question of detecting exactly k outliers. A global heuristic procedure for
at most k outliers can however be found in Caussinus and Vaillant (1985).

In this paper, we consider the problem of modelling the data by means of a
linear model with at most k change-points and outliers by a global (non stepwise)
multi-decision procedure. An invariant Bayes optimal solution is provided within
a decision theoretic framework for some loss function and a prior distribution for
(i) the changes in the parameters of the linear models, (ii) the number and the
location of the change-points and outliers. Realistic assumptions concerning the
latter point are the main feature of our way of dealing with the problem and the
key aspect of the proposed procedure (for similar assumptions in a simpler context,
see Yao (1984)). In fact, the problem is a special case of selection of variables in
a linear model, but the actual specific situation leads to a particular choice of
the term which penalizes too large a number of parameters. In particular, in
our problem the number of competing models increases with n (such a situation
has seldom been considered in the literature, with some notable exceptions, for
example Hannan and Quinn (1979) and Shibata (1981)). Although the frameworks
are fairly different, it turns out that our penalty term is somewhat similar to the
term which appears in the Schwarz’ criterion. They are however different and both
criteria may lead to different decisions.

A similar derivation can be used for the cases where only outliers or only
change-points are taken into consideration. However, looking at the same time
for both kinds of perturbations of the null model does not result in much more
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CHOOSING A LINEAR MODEL WITH CHANGE-POINTS 763

complication theoretically, due to the similarities of both situations, and seems
realistic in many cases, especially when the change-point problem is the leading
one (see Smith and West (1983), Taplin and Raftery (1994), the discussion of his
example by Worsley (1983), and the results of our own examples in Section 5).

The general problem is formulated in Section 2 and an optimal invariant
Bayes multi-decision procedure is derived in Section 3. This procedure depends
heavily on the prior probabilities of occurrence of an outlier or a change-point
at each possible location. A realistic model for the occurrence of such events
is introduced in Section 4. The resulting optimal procedure is derived and a
simple explicit approximation of this procedure is provided under fairly general and
realistic assumptions concerning the prior distribution of the shift in the regression
parameters. Finally, Section 5 is devoted to some examples.

2. Notation and framework

2.1 Generalities

We consider n random variables Y; (i = 1,...,n), we denote by Y the column
vector of the Y;’s and we assume that the probability distribution of Y is n-
dimensional normal N, (i, 0%I,), where I,, denotes the n X n unit matrix and o is
a positive unknown parameter. The scalar product on R" is denoted by (-,-) and
the corresponding norm by || - ||. The set of vectors (ei; ... ,€r) is the canonical
basis of R™, that is e; is the n X 1 matrix whose all elements are zero but the j-th
which is equal to one.

The various models differ from one another in the p space. Let Q be a given

g-dimensional linear subspace of R™, the basic model, that is the null hypothesis
Hy, is defined by: '

Hy:pe@

or, equivalently, u = X3, where (3 is an unknown vector of ¢ parameters and X is
a full rank n x ¢ matrix whose columns span Q.

Let Q be a given linear subspace of R™ contained in Q' (the linear subspace
of R™ orthogonal to Q). The hypothesis H; is defined by:

Hy:peQoQy

where @ denotes the direct sum of two linear subspaces. If the dimension of
Qy is q7, Qs is usually spanned by the columns of an n X ¢; matrix g1 X,
where Ilg. denotes the orthogonal projector on Q1. Then p can be written as
M= X,B + HQ.LXJ,BJ.

All the problems we deal with can be formulated as the choice of a model
from a set of hypothetical models H; (including Hyp as the special case where Q
reduces to {0}). ' |
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2.2 Change-points and outliers

The previous framework is well adapted to the problem of outlier(s) in the
mean or change-point(s) provided the changes are assumed to occur at observed
points (if this is not the case the problems are quite different: see, for example
Hinkley (1971)). The hypothesis Hp is still associated with the basic (non per-
turbated) model. If we consider one kind of perturbation of the basic model (e.g.
change-points), J is then a subset of {1,2,...,n} corresponding to their locations.
If two kinds of perturbations are considered (change-points and outliers) J is a
pair of subsets of {1,2,...,n}, say J = (J1, J2), where J; corresponds to the lo-
cation of the change-points and J to the location of the outliers. One or both of
these subsets can be empty: for instance, J = § means that there is no outlier
and J, = Jo = @ corresponds to the null hypothesis Hyp. Let us consider some
examples.

Ezample 1. One outlier in a linear model
We can set that Y; is an outlier by writing:

H;:EY)=XB+ae;, aF0

or E(Y) € Q ® Q;, where Q; is spanned by IIg. (e;). If any observation may be
an outlier of the foregoing kind, we are led to consider the set of hypotheses Hyp
and H; (j =1,...,n). Here J; = @ and J; = {j}, hence the notation H; = Hj.

Erample 2. One change-point in a multiple regression model
Let X = [z1,...,%n) where z; is a ¢ X 1 vector and X; =[0,...,0,Zj4+1,-- -,
z,)’. The hypothesis H; that one change-point occurs after the j-th observation
is: .
HJ'ZE(Y)=X,3+XJ',3*, B #0

In this case Q; is spanned by the columns of g1 Xj, 1 = {5} and J> = 0.

Ezample 3. Outlier and change-point in a simple regression

Let X = [z, 1], where = = [z1, ..., Zx]  is a column vector and 1 = [,...,1)".
A switch in regression of Y on z after the k-th observation and an outlier at the
j-th observation (j > k) may be written as:

E(Y;) =g + Bizs for i=1,...,k,
=ay + fiTi + a2 + B2x; for i=k+1,...,5-1,7+1,...,n,
= + Pizi +ag+ Bazi + A for =3

In this case Q is spanned by z and 1, J; = {k}, 2 = {j}, Qs = QkLiD
is spanned by the three vectors Igi(e;), Mg (L) and Ilgs (zx) where z =
[0,...,0,Zk41,-..,Zn|", and the first k elements of 1 are 0 while the others are
1. In general ¢ =2 and g5 = 3.

Ezample 4. One change-point in a simple linear regression constrained by
continuity. :
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Suppose that a simple regression function can change but stays continuous
at ;. Then X is a n x 2 matrix [z,1], Q; is spanned by IIg. (a;) with a; =
[0,...,0,Zj41 — Tjy---,ZTn — z5]', 1 = {j}, J2 = 0, ¢ = 1, and the several
hypotheses are

Hp :E(Y) = fiz + (-1
Hj:E(Y)=,31m+ﬁ211+ﬂ*aj, B*#0, 2<j<n-2.

In general, if the number of change-points (resp. outliers) is denoted by |Ji|
(resp. |J2|), then

(2.1) qs = |J1lg + ||

If the changes, however, do not concern all the parameters (e.g. in Example 4
owing to the continuity assumption) then g; = |Ji|g* + |J2| with ¢* < q.

2.3 Invariance :
The statistical model as well as the different hypotheses are invariant under

the group of transformations {y — ay + b,a > 0,b € Q} and a maximal invari-

n,.(Y
ant is the vector of normed residuals T = Tﬁ%i(?)m’ We shall therefore restrict

attention to invariant procedures which leads to performing the analysis through
T. The distribution of T in the canonical basis does not have an easily handled
distribution even under Hy. Actually, T' belongs to the unit sphere Sg. of Q+
and its distribution is the uniform distribution Ug.s on Sg. if Hp holds. Under
the alternative Hy, i.e. p € Q' ® Q, the distribution of T has a density g; with
respect to Ug. given by (see Caussinus and Vaillant (1985)): ‘

1 2
2.2 t,0) = —1e /2, ((t,8)), tesS
(2.2) g4(t,0) e (g e m((t,0)) Q+

where: m =n — g, hm(u) = [~ ewe=v*/2ym=-1dy and § = -HQ#. Note that g;
depends only on u and o through the parameter 8.

3. Optimal muiti-decision rule: general results

Let us consider a set of hypotheses H;, where J € J, within the general
framework of Subsection 2.1. The hypothesis Hy is assumed to be an element of
this set, that is ® € J. The number of elements of the set J will be denoted by
|T]-

Prior distribution

e The prior probability of H; is p; (3 jc7p07 = 1)

e The conditional prior probability of  given H; is Py, a probability distri-
bution on Q; which will be assumed to have a density function fy for J # 0. (The
probability Py is the Dirac measure on {0}.)
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Loss function »
The loss function for selecting Hy when the true hypothesis is H; with the
value 6 of the parameter is:

0, if I'=J
£(I,J,0)={£, if I#£J,J=10
e5(0), if I#J,J#0
where £ and £; are positive.
We shall consider below one of the following assumptions:
(3.1)  £;(0)f;0)=1 forall J€J \ {0} and for all § € Qs \ {0}
and
(3.2)  there exists (a,b) € R? such that, 0<a<£;(0)fs(0)<b
forall JeJ\{0} and 6€Qs\{0}.

Note that (3.1) holds in the special case where f; is constant (P is a vague

prior) while £; is constant (“simple” loss function). The latter assumptions are
not however necessary to derive Proposition 3.2 below. Moreover, it is worth

noticing that (3.1) is only introduced to make the presentation easier since the main

practical result (Proposition 4.1) rests basically on the more general assumption
(3.2).

Let d(T) be an invariant multi-decision procedure, that is d = (ds)jeg is 2
measurable function from Sg. to [0, W |‘ with 3 ;¢ 7ds(T) = 1, where dj(T)
is the probability of selecting H;y for given T. Using the previous notation and
results, the Bayes risk for this multi-decision rule is given by

R = Z /d[(t)T[(t)dUQL (t),
Ieg
where 71(t) =3 jc 7 PJ fQJ gs(t,0)¢(1,J,0)dPs(6).

PROPOSITION 3.1. For £(-,-,-) and P; defined above, an invariant Bayes
optimal multi-decision rule is: select H - if ag. (T) is the mazimum value of as (T)

for J € J, with ag(T) = pet and a;(T) = ps [o, £:(6)9s(T,0)dFs(6) for J £0.

PROOF. It is well known (Ferguson (1967)) that a multi-decision rule d*
minimizing R is defined as follows:
lect H. if inry.
selec J iua ryg< 1‘11;151 Tr

Define gg by go(t,0) =1 for all t € Sq. and £(0) = £ for all § € Q. By using
the expression of £(-,,), we get:

(M) =Y ps / 05(6)95(T, 6)dPs(6) — pgf,  and
JeJ Qs

() =Y ps /Q £,(6)9:(T, 0)dP3(6) — 1 /Q t(0)gr(T,0)dP(6), T#0.

JeJ

f
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CHOOSING A LINEAR MODEL WITH CHANGE-POINTS 767

Since the first term on the right side of (T is independent of I, the proposition
follows easily.

Remark 1. A less clear but more rigorous statement of Proposition 3.1 would
be: any multi-decision rule d* for which R reaches its minimum value is such that

d3(T) =0 if there exists J € J such that ay(T) > ar(T).
The formulation in Proposition 3.1 and analogous formulations below are actually

valid only if tied values of the a; (T) are neglected, which is possible here since
tied values arise with null probability.

PROPOSITION 3.2. If assumption (3.1) holds and £(-,-,-) is the loss function

defined above, an invariant Bayes optimal multi-decision rule is: select Hj- such
that: '

J* = argmax; (pof; ps(1 — [T, (D)2~ 9/2@m) 2, for J #0).

PROOF. By taking (3.1) into account, a;(T) (as defined in Proposition 3.1)
becomes for J # §:

as(T) = py /Q 95(T, 6)5(6) £(9)d6 = ps /Q 94(T,6)do.

Now, for v > 0, t € Sg1, 6 € Q; C Q*, we have 0,t) = (0,1, (t)) and
16112 — 2v(8,t) = |6 — vIIg, (B> — v* Mg, (t)]|2. Hence, we get by using (2.2)

/ gs(T, 6)d8
Qs

oo
= 1 — / \:/ e-—-"e—’vﬂQJ(T)nz/de] e_v2(1_"r[QJ(T)Hz)/zvm_ldv
ar/air () Jo Uas

withm=n—gq.

The integral between brackets is equal to (27r)‘“/ 2. By integrating then over
v, we obtain:

(3.3) /Q 05(T,0)d8 = @m)@/2(1 - Mg, (D)) ™™/2,  for J #0.

Proposition 3.2 is then deduced from Proposition 3.1.
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4. Optimal multi-decision rule: change-points and outliers

From the practical point of view, Proposition 3.2 suffers from (at least) two
shortcomings:

(i) the prior probabilities p; are generally unknown,

(ii) assumption (3.1) is quite restrictive.

This section is devoted to the derivation of an asymptotically optimal workable
procedure under a more general assumption than (3.1), with a suitable choice of
the prior probabilities py for the special case of interest described in Subsection
29 A convenient model for the py’s arises from the specific meaning of the
hypotheses H; in the problem under consideration: an hypothesis corresponds
to the place(s) where some events (change-points or outliers) happen. Assume
first that there is one kind of perturbation (e.g. change-point) and that they may
happen independently with probability p, which seems to be a sensible model in
most practical cases. Then py = pl/!(1 — p)»~ 1.

Furthermore, assume that the maximum value of |J| is k, a fixed positive
integer. The probability of H; given |J| < k is then:

(4.1) py=xpa-p)" ¥ for 0<|J|<k

k
with A such that Z py=1.
|J1=0

If there are two possible kinds of perturbations, with probabilities p; and p2
respectively, then (4.1) becomes by using the same arguments as above:

42)  pr=puay = P - p1 —p)* T2l for 0< | <K,

where |J| = |J1| + |J2| and X is such that EfJI=OpJ =1.
Finally, we assume that, when n — oo:

(4.3) npy — T, npx—7re, r11>0, T12>0.

For large n, the number of change-points and the number of outliers are two
independent Poisson random variables whose sum is truncated at k. Assuming
that the total number of perturbations is bounded by k may be considered as
unrealistic. In practice, it seems however that, if the number of perturbations
may be very large, the model we are fitting will not be considered.

As for assumption (3.1), it will be replaced by the more general assumption
(3.2) to obtain the following result.

PROPOSITION 4.1. If assumptions (3.2), (4.2) and (4.3) hold, an invariant
Bayes optimal multi-decision rule is: select Hj- such that:

J* = argmin; (0;log(1 — g, (T)?) + Mlogn+ o (%) ,J # (0) .

m
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(In the expression above, 0 is associated to J = @ which means that Hy is
selected if all the terms associated with J # @ are positive.)

ProoF. From condition (3.2) and result (3.3) we have:
apy(2m)#/3(1 - |, (T)?) ™2 < as(T) < bps(2m)¥/*(1 - g, (T)I%) ™™/,
From (4.2) and (4.3), it is clear that, for large n:

2|J{1
2J\logn |

O(l>, for 0<|J|<k.
m n

2
—logps = -
m

Thus, for large n and J # 0

 tog(1 g, (OIF) - 2 rogn + 0 (1)
< 2 togas()
< “tog(1 - M, @) - 2 1ogn +0 (1)

Moreover, since ag(T") = ppf, we have 2 Jogap(T) = old).
Proposition 4.1 is then derived from Proposition 3.1.

It is worth noticing that the unknown values a, b, £, r1 and r2 occur only in
the rest O(L). The rest depends also on J via |Ji], |J2| and g (note that ¢; does
not depend on n) but it is independent of T, being thus non stochastic.

A feasible multi-decision procedure
For a practical use, we propose the following procedure: select H - such that:

4e) 7 = axgmin, (0ilog(1 - Mg, (D)) + W 1ogm, 7 8).

Procedure (4.4) can be easily carried out while being close, for large n, to the pro-
cedure given by Proposition 4.1 which is optimal under fairly general assumptions.

Remark 2. Procedure (4.4) turns out to be a log-likelihood procedure (based
on the original data) with the penalty term 2|J |1—°§nﬂ A similar term appears in

Schwarz’ criterion, viz. q,;lclgﬂ, to penalize too large a number of perturbations
(in general, g; is given by (2.1)). Note however that both terms are not equal
even if they are of the same order with respect to n. It is also worth noticing
that our derivation is similar to the one based on Bayes factors, although it is
a little more general: in fact, if £;(6) is assumed to be constant, then ay(T) is
proportional to the probability of J given T. The corresponding optimal procedure
is therefore equivalent to the one based on Bayes factors. The latter procedure

—————e——————
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has been investigated by Smith and Spiegelhalter (1980) who find various penalty
terms according to the prior for §. On the contrary, under assumption (3.2), our
criterion does not depend on the prior for 8, but it depends heavily on assumption
(3.2) concerning the p;’s, which arises from the specific problem we are dealing
with. (Another characteristic of our framework is that the hypotheses are not

nested, but this does not give rise to serious differences: see, e.g. Leonard (1982),
for a discussion with respect to the Schwarz’ criterion.)

Remark 3. In the derivation of Proposition 4.1 (and thus the derivation of
the procedure (4.4)), we assume implicitly that all the hypotheses Hy such that
0 < |J| € k are taken into consideration, that is all subsets J; UJz of {1,2,...,n}
with |J; U J| < k are possible perturbation points. In practice, this is not always
the case, if only since the detection of two change-points in a regression model is not
possible if these points are too close. This reduces the number of hypotheses H;
under consideration, but it is easy to show that the asymptotic results above are
still valid. On the other hand, the prior probabilities (4.1) and (4.2) are obtained
by assuming that a change-point (or outlier) may happen with constant probability
p1 (or p2) at each observation. This assumption can be unrealistic chiefly for the
change-points, in particular if the ¥;’s are not observed at regular “distances”
when i = 1,2,...,n (an example is provided by the men’s olympic performances
in Section 5 on account of the missing war years). The asymptotic results remain
however valid if the constant probabilities p; and p, are replaced by pi; and po;
G=1,...,n), % and % belong to an interval [, 8] (0 <a < B < +00) for any
i and (4.3) holds.

5. Applications

In this section, the behaviour of procedure (4.4) is appraised on several ex-
amples. In all the examples, the observations are ordered in time. The hypotheses
under consideration are all those Hy such that 0 < |J| < k with |J| = | 1] + 2],
except the hypotheses for which the regression parameters could not be identified:
for example, two change-points are assumed to be separated by at least g obser-
vations. The value of k has to be chosen somewhat arbitrarily: in practice, we
have carried on the computation up to the value of k such that the minimum of
C(J) over |J| = k started increasing. The results obtained by procedure (4.4) are
then compared to the ones given by Akaike’s (1973) and Schwarz’ (1978) criteria
based on the original data, that is our procedure where the penalty term 2|J| 19512
is changed into 2% (Akaike) or ¢ J1%E" (Schwarz).

For computation, the various models are defined in matrix form by p = X8+
. X ;B (see Subsection 2.1) and ||Tg, (T)]|? is then:

g, ()2 = EXrKilIn = X (X'X)"1X") X)X} R
N e

where R is the vector of residuals, that is R =Y — X(X'X)"'X'Y and IR||? =
R'R.
We denote Cy(J) = log(1 — g, (T)|2) + 22 logn, with C,(8) =0.

a8 - o

a%

~ L wa D A N

o gmy ey
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5.1 Gross domestic product in U.S.A.

The data described in Maddala ((1977), Table 10.3, p. 196) concern the gross
domestic product and labor and capital input in the United States for the years
1929-1967. The logarithm Y; of the gross domestic product of year 1928+1 is first
modelled as a linear function of the logarithms of the labor input, z1;, and the
capital input, z2;. The basic model is therefore

H@:E(Y;)=a+ﬁ1x1,-+ﬁ2x2i, 1i=1,...,39.

It is suspected, however, that the parameters of the regression may have changed
after an unknown time.

These data were reanalyzed by Worsley (1983), who used the likelihood ratio
statistic maxy ||TIg, (T)||? to look for one change-point. He pointed out that one
change-point occurs after 1942. He looked next for further changes in the two
subsequences that are formed by the first split. He found that the first subsequence
1929-1942 contained no significant change, while the second subsequence 1943
1967 contained one change-point after 1946. He suspected also that the data might
contain outliers.

The procedure (4.4) has been used to look for change-points (with constraint
of continuity which seems natural in this example) and outliers. The constraint of
continuity generalizes the one introduced in Example 4, Subsection 2.2. It means
that if j is a change-point, E(Y;) takes the same value whether it is computed with
the coefficients of the regression before j or after j.

In this case n = 39, ¢ = 3 and we have set |J| < k = 4. We give some
numerical values of C(J) including the minimum value obtained for each integer
|J| up to five. For better readability, the indices ¢ = 1,2,... have been replaced
by the years (1929, ...,1967) in the definition of J; and J>. '

|J|=1:C(J) =-0.336 for J; ={1945} and J>=49,

|IJ|=2:C(J) = ~0.711 for Jy = {1944,1948} and J2 =40,
|I7|=3:C(J) = —1.136 for J; = {1938,1944,1948} and J»=40,
|[J|=3:C(J) = —0.928 for J; = {1938} and J, = {1945,1946},
|J|=4:C(J)=—1.107 for J; = {1938,1944,1948,1952} and J> =9,
|J|=4:C(J) = -1.076 for J; = {1938,1944,1948} and J» = {1951}.

It is thus decided that there are three change-points, one after 1938, one after
1944, one after 1948 and no outlier.

Akaike’s and Schwarz’ criteria both decide the same change-points.

5.2 Men’s olympic performances

We consider the data given in Hand et al. ((1994), tables 300, 311) of men’s
Olympic performances in the pole vault and long jump from 1896 to 1988 (com-
pleted up to 1992) and in 200 metres finals from 1900 to 1988 (completed up to
1992). There were no Olympic games in 1916, 1940 and 1944. The basic model is:

Hy : E(Y;) = o+ Bz;
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Fig. 1. Men’s olympic performances in the pole vault.

where Y; is the performance on year Z; (i =1,...,21 or 22). This is obviously
a naive model for several reasons (for example, it cannot be expected that the
performances increase indefinitely). However, representing the data by means of
a set of linear regressions may be adequate within short periods especially if the
change-points may be easily interpreted. Hence, the procedure proposed in this
paper may turn out to be of interest.

The data and the selected model are displayed in Figs. 1, 2 and 3.

5.2.1 Pole vault

In this case, Y is the height (in metres) jumped by the successive winners of
the Olympic pole vault, n = 22, |J| < 3. '

Our procedure decides that two change-points have occurred, one after 1908
and another after 1960, with C(J) = —0.868 for J, = {1908,1960} and J, = @ (the
second change-point corresponds to a sudden, or at least very rapid, improvement
in the equipment).

The smallest value of C(J) for |J| > 2 is —0.850 obtained for J; = {1908, 1956,
1964} and J, = @ (a more complicated and less interpretable model-than the
previous one), while the smallest value of C(J) for |J| = 1is —0.505 for J; =
{1960} and Jo = 0.

In this example, Akaike’s and Schwarz’ criteria decide that there are two
change-points (1908, 1960) and one outlier (1992) (this outlier seems to have little
practical support).
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Fig. 2. Men’s olympic performances in the long jump.
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Fig. 3. Men’s olympic performances in the 200 m finals.
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5.2.2 Long jump

Here, Y is the distance (in metres) jumped by the successive winners of the
Olympic long jump.

In this case n = 22, |J| < 4. The procedure decides that there are two change-
points (1912 and 1936) and one outlier (1968), with C(J) = —0.526. The two
change-points correspond to the two war periods, while the outlying performance
in 1968 (Mexico) is well known.

The other smallest values of C(J) for |J| < 4 are:

|J|=1:C(J)=-0.085 for Ji = @ and Jp= {1896},
J|=2:C(J)=—-0280 for Jy={1900} and Jo= {1968}
J|=4:C(J) = 0489 for J = {1908,1936} and J» = {189, 1968}.

Note that a stepwise procedure would have been misleading.

In this example, Akaike’s criterion provides the same result as ours and
Schwarz’ criterion decides that there are three outliers (1896, 1952, 1968) and
no change-point.

523 200m

Y is the time in seconds of the men’s Olympic 200 m finals, n = 21, |J| £ 3.
In this case the least value of C(J) over |J| > 0 is 0.10. The basic model without
any perturbation is thus selected.

On the contrary, Akaike’s and Schwarz’ criteria both decide that there are
three outliers (1904, 1936, 1968).
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