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ABSTRACT

We investigate the effects of additive outliers on the least squares (LS)
estimation of threshold autoregressive models. The class of generalized-M
(GM) estimates for linear time series is modified and applied to non-linear
threshold processes. A Monte Carlo experiment is carried out to study
the robust properties of these estimates. Their relative forecasting
performances are also examined. The results indicate that the GM method
is preferable to the LS estimation when the observations are contaminated
by additive outliers. A real example is also given to illustrate the proposed
method.
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INTRODUCTION

Non-linear time series analysis has attracted considerable research interest in recent years.
Tong (1990) and De Gooijer and Kumar (1992) have described a very large growth in the
literature in this area. One of the useful classes of non-linear time series models is threshold
autoregression, which was proposed by Tong (1978). Threshold autoregressive models have
been extensively applied to diverse fields, ranging from water pollution (Tong, 1990, p. 278)
to stock market returns (Chan, 1990). For a comprehensive account of this class of models,
see Tong (1983, 1990).

Although Tsay (1988) and Hau and Tong (1989) have encountered aberrant observations in
several non-linear data sets, the outlier problem in threshold autoregressive modelling has not
been fully explored. Hau (1984) first attempted to use the M-estimation and robust filtering
techniques in estimating threshold models. Later, Hau and Tong (1989) developed an outlier
detection statistic based on hat matrix. In this paper, we consider the problem of outliers in
non-linear threshold time series models. Simple additive type of outlier models are first
defined. The generalized-M estimation techniques of linear time-series modelling are extended
to piecewise linear threshold models. We conduct a simulation experiment to study the robust
properties of the generalized-M estimates for threshold models. The results show that the GM
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estimation method is effective and promising. It can reduce the influence of extraordinary
observations in the series and provides better forecasting results.

We are concerned with the estimation of self exciting threshold autoregressive models of the
form:

P,

Xe= 3 X a i Xeea€ (1,7 )
where j=1,2,...,k,—o=rg<r<..-<rp=c are the threshold values, d, k, and
(p1, P2, ..., Px) are positive integers, and a, is a sequence of i.i.d. random variables with zero
mean and constant variance o2 < co. We denote model (1) by SETAR(d; p1,p2, ..., Pk) as
suggested by Tong (1983).

A straightforward generalization of the definition of an additive time series outlier by Chang
et al. (1988) is given as follows:

Zi =X+ oIfD )

where Z; is the observed time series, X; follows model (1),

‘ 0 otherwise

indicates the location of the outlier, and w represents the magnitude of the outlier. On the other
hand, we can also extend the definition of additive outlier in linear time series by Denby and
Martin (1979) in which both the number and the location of outliers are determined by a
random mechanism:

Zt = Xg + m (3)

where Zs are the observations, 5/s are i.i.d. with density (1 — a)do(-) + ax, 7 follows
N(0,A%s}), 0(*) represents a degenerate density at 0, and « is the percentage of
contamination (0 < a < 1).

The plan of the rest of the paper is as follows. In the next section we describe the least
squares estimation method of SETAR models. The class of generalized-M estimates of linear
time series is extended to non-linear threshold models in the third section. Simulation studies
in the fourth section compare the estimation and forecasting performances of these two
methods. The fifth section demonstrates the proposed method through a real example. Some
conclusions are given in the final section.

LEAST SQUARES ESTIMATES

In this section we shall describe the procedure of least squares estimation for a two-regime
SETAR model. However, the method can be easily generalized to the k-regime case (k > 2)
without difficulty when & is known. Let us therefore consider the following SETAR(d; p1, p2)
model:

¢61) + ¢f1)Xt—1 + et ¢1(;})Xr—p| +a if Xe—a<r
Xe=1 0 2) @ ;
08 +oPX 1+ + 0P Xip+ arif Xe—a>r
Suppose that we have observations {Xi, X3,...,X,] and (d, p1,p2) is given. We want to

estimate the parameter © = (&', ®?',r) where &V = (9§, ...,¢5”)’, j=1,2, by the
conditional least squares method.
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When r is known
Let p = max(p1, p2, d). For fixed r, the effective observations {Xp+1, ..., X»} may be divided

into two regimes by the rule:
X; € the first regime iff X;_a<r ®)
X € the second regime iff Xi—a>r

Let {Xiii, X1is ---» X1in,) and {X2i,, X2z, ..., X2,,) denote the data in the first and second

regimes, respectively, after the division. Note that n; + n, = n — p. With each regime of data,
we have a linear model of the form:

X;=A@D + g ©
where
Xj = (Xji, ..., Xji,,)’ )
Y =987, ... 65"y ®)
aj = (aji,, ..., @ji,))’, and
1 X1 Xjn-2 ... Xjn-p
Aj= 1 inz—l Xj;'z—Z = in:z-p/ (10)
1 Xﬁ;,—l in:.,-Z inJ,-m
for j=1,2. Let ¥ denote the least squares estimate of . Then
0 = (A{A) 1 (AfX)) an

for j=1,2.

When r is unknown

Let Xy €< Xy € - € X(n) be the sorted observations (in ascending order). For any
Xay < r < X, the data can be divided into two regimes according to equation (5) and the
least squares estimates of # and ® can be computed from equation (11). The associated
residual sum of squares (SSE) is given by

SSE(r) = i 1X;— AP |2 (12)
Jj=1

Following Tong and Lim (1980), we consider the empirical percentiles as candidates for . We
also assume that r is not too close to the zeroth or hundredth percentile. For these cases there
are not enough observations to obtain efficient estimates. Moeanaddin and Tong (1988)
suggested that r is allowed to vary from X(g1) to X(g3), where X(g1) and X(gs) are the first
and the third quartile of the data, respectively. Therefore, we can search 7, the least squares
estimate of the threshold value, by the least squares principle, i.e.

SSE(F) = min SSE(r) (13)

r € {X(@n: X(@1 41 Xcon}

After obtaining the 7, it is easy to get the corresponding @ and @ through equations (5)
to (11).
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GENERALIZED-M ESTIMATES

Denby and Martin (1979), Miller (1980), and Chang ef al. (1988) showed that the least squares
estimates for linear autoregressive parameters not only lack robustness in terms of variability
but also suffer from a severe bias problem when the observations are contaminated by outliers.
Therefore it is expected that the existence of additive outliers may also cause similar problems
in estimating threshold autoregressive models which are piecewise linear. In this section we

shall modify and apply the generalized-M estimation techniques to obtain robust estimates for
threshold autoregressions.

When r is known

We consider the class of generalized-M estimates (GM estimates) of the SETAR model in
equation (4). For given r, we first separate the data into two regimes and obtain the matrices
of X; and A; as in equations (7) and (10), respectively. Then the GM estimate,
Y = (3§, ...,05”), of P is defined as the solution of the following equation:

2 A(ink - M(” Xjin — (87 + El:_x ¢f’)ink-1)) -0
=1 CSY C.S§7

for j=1 and 2, where A(-, ) is a bounded robustifying function, M” is a robust estimate
of the location parameter ux in the jth regime, and S§” and S{” are robust estimates of the
scale parameters ox and ¢, in the jth regime, respectively. Cx and C, are known as tuning
constants because they can be chosen to fine-tune the GM estimators so that they can obtain

high efficiencies at Gaussian and non-Gaussian distributions simultaneously (cf. Andrews et al.
1972).

Equations (14) may be conveniently solved using the iterative weighted least squares (IWLS)

technique suggested by Beaton and Tukey (1974). To obtain the GM estimate of &), we use
the following IWLS iteration:

B 1 = 3P + (AJWRA)) TIA{ W (X; — AdY) (15)

where ) ; is the GM estimate after the gth iteration from an initial estimate ®§’ and W,
is a diagonal matrix with elements

W, (k k)—A XJlk M X.ll ’(¢(1) Ipil $l(j)ink—’)
I M T .59

The function A(-,-) is a ‘down-weighting’ function to discount the effects of extreme
observations and extreme residuals. One commonly used choice of a A function is

A(uy, uz) = wo(ur) wo(uz) 17
where wyp is the redescending Tukey bisquare weight function,

(@ —-u?y if |u| <1
w"(“)'{o if [u|>1

Several other choices of wo(-) function are available in Hoaglin ef al. (1983, p. 366).

(14)

(18)

When 7 is unknown
For fixed r, the algorithm in equation (15) will converge to the GM estimate of ®¢. In fact,

6

Wai-Sun

the GM

where L
by Hoag

For g
may def

A robt
{Xon,

After o

Time-s¢

are gen
18 par
(1990).
regime
to disc
SETAI
omitte
models
the cas
and m
with n
metho
propo:
outlier

The
equati
param
divide
the at
tuning



.

w No. 1

squares
riability
autliers.
roblems
‘tion we
1ates for

10del in
matrices
stimate,

a4

estimate
.25 of the
$ tuning
1 obtain
ws et al.

i (IWLS)
" , we use

1%
and W,

{ - a6

{ extreme

an

(18)

In fact,

Wai-Sum Chan and Siu-Hung Cheung Estimation of Threshold Autoregressions 41

the GM estimate is a solution of minimizing the following objective function:

. n; X — MWD Xii, — (¢6i) + Eﬁ—l d,,(i)x.. -1)
) — Ji Ji Ji
p00= 8 (S (et e

where Lo is a loss function with respect to wo. The Lo(+) for Tukey bisquare weights is given

by Hoaglin et al. (1983, p. 366):

[1-(-u?))f6 if |u] <1

1/6 if ju|>1
For given r, we have an objective function pP(r) for each of the two regimes. Thus, we

may define an overall objective function by

Lo(u) = { 20

2 .
p)= 2 P @1
p-

A robust estimate (F) of r, therefore, can be obtained by searching over the set
{Xcon, X(@1+1)s ---» X(g»} such that p(r) is minimized, i.e.
p(F)= min o(r) (22)

re€ [ Xcon,---» Xi@n)

After obtaining 7, ®® and $® can easily be computed from algorithm (15).

MONTE CARLO RESULTS

Time-series data of a simple SETAR process,

X, = dVX,1+aif Xecasr
! ¢(2)X1_1 + a; if Xt—d >r

are generated for a fixed sample size of n = 100 with 1000 replications and o2 =1. We consider
18 parameter combinations for (¢, ¢ ®,r,d). Some of them are taken from Petruccelli
(1990). Other combinations are chosen such that there are adequate observations in both
regimes for efficient parameter estimation. The start-up value, Xo, is set to zero. It is important
to discard a sufficient large number of observations to remove transient effects in generating
SETAR time series (Moeanaddin and Tong, 1988). Therefore the first 1500 observations are
omitted in each replication. The observations Zi, ..., Z, are then contaminated according to
models (2) or (3). The results for these two models are very similar and hence we only report
the case of model (2) in this section. Two separated outlier situations are considered: the single
and multiple-outlier case. For the single-outlier case, an additive outlier is located at 7= nf2
with magnitude w times the standard deviation of the process. When |w| > 5, the eyeball
method can easily detect most of the additive outliers. To study the practical usefulness of the
proposed GM method, we only consider w =0, 3, 4, and 5. For the multiple-outlier case, three
outliers are fixed at T= nf4, nf2, and 3n/4 with magnitude — w, w, —w, respectively.

The GM estimates are obtained via the iterative weighted least squares (IWLS) algorithm in
equation (15). We employ the sample median as robust estimator (M () for location. The scale
parameter o, in each regime is estimated by the median of the absolute values of the residuals
divided by 0.6745, and the scale parameter ox in each regime is estimated by the median of
the absolute deviations of observations from their sample median divided by 0.6745. The
tuning constants are set as Cx = 6.0 and C, = 3.9. Following Denby and Martin (1979), four

(23)
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iterations are calculated with the LS estimates as initial points for the GM estimates with
Huber weights. The latter values are then used as starting points for the final GM estimates
with Tukey bisquare weights. The iterations are stopped when the absolute difference between
two consecutive estimates of the parameter is less than 0.0001. Since we assume that both
(p1,p2) and d are known, the LS and GM estimates can be computed for the case of (1) when
r is known and (2) when r is unknown.

First, we study the relative estimation performances of the proposed GM method. When r

Table I. Ratios of the RMSE of the GM estimate to the LS estimate (when r is known)

Parameters oW @

o® @ r d =0 3 4 5 w=0 3 4 5

(a) Single-outlier case

09 -0.1 0.0 1 1.042 0915 0.851 0.796 0.992 0930 0.913 0.878
09 -0.77 00 1 1051 0921 0.852 0795 1.076 0.951 0879 0.826
-0.5 -1.0 00 1 1072 0992 0933 0873 105 0.637 0429 0315
-1.0 -0.5 00 1 1.084 0.993 0.929 0.866 1.063 0.888 0.757 0.642
0.3 0.8 00 1 1052 0972 0914 0857 1038 0968 0810 0.636
0.5 0.8 00 1 1.048 0956 0.898 0.842 1.036 0.940 0.777 0.614
-0.3 0.8 00 1 1084 1012 0.955 0.895 1.042 0.999 0.846 0.668
-0.5 0.8 00 1 1065 1024 0987 0945 1066 1052 1.032 0997
0.8 0.3 00 1 1046 0949 0.891 0.840 1.046 1.016 0.992 0.970
0.8 0.5 00 1 1.043 0940 0.884 0.832 1044 0978 0924 0.843
08 -—03 0.0 1 1.056 0.962 0901 0.846 1.065 1.019 1.003 0.970
08 -05 00 1 1058 0964 0902 0.847 1.074 1.032 0.992 0.946
0.3 0.8 0.1 1 1.052 0971 0913 0.856 1042 0968 0.812 0.639
03 -038 -0.1 1 1.070 0.985 0.961 0.909 1.064 0.901 0.892 0.789
0.3 0.8 0.0 2 1.074 1067 1.037 0995 1012 0978 0.880 0.752
03 -038 00 2 0957 0.948 0.940 0936 1.033 1.004 0.947 0.954
0.3 0.8 0.1 2 1052 1.033 1.012 0975 1016 0985 038 0.757
03 -038 ~0.1 2 0962 0950 0941 0936 1.037 1025 1.002 0.988

(b) Multiple-outlier case

09 -0.1 00 1 1.042 0724 0509 0.361 0992 0.866 0.822 0.801
09 -0.77 00 1 1051 0720 0.49 0.343 1.076 0.943 0878 0.851
-0.5 ~1.0 00 1 1072 0804 0700 0.632 1.056 0.747 0.505 0.360
-1.0 =05 00 1 1084 0574 0.38 0.273 1063 0.998 0.937 0.808
0.3 0.8 00 1 1052 098 0971 0.967 1.038 0.830 0.666 0.523
0.5 0.8 00 1 1048 0976 0921 0865 1.036 0.816 0.650 0.516
-0.3 0.8 00 1 1.084 1.002 0921 0.863 1042 0.847 0671 0.520
-0.5 0.8 00 1 1.065 1.006 0.987 0.965 1.066 0.847 0.670 0.519
0.8 0.3 00 1 1.046 0.880 0.714 0.562 1.046 0.905 0.848  0.825
0.8 0.5 00 1 1.043 0.859 0.697 0.558 1.044 0.875 0.801 0.738
0.8 -03 0.0 1 1.056 0.902 0.718 0.554 1.065 0.969 0.944  0.945
08 -0.5 00 1 1058 0902 0714 0.546 1.074 1014 0.990 0.928
0.3 0.8 0.1 1 1.052 0966 0.903 0.833 1.042 0.833 0.668 0.525
03 -0.8 -0.1 1 1.070 0.924 0914 0.906 1.064 0902 0.888 0.828
0.3 0.8 00 2 1.074 1.043 1.007 0987 1.012 0.808 0.658 0.526
03 -038 00 2 0957 0939 0935 0934 1033 1003 098 0935
0.3 0.8 01 2 1052 1031 1003 0961 1016 0.806 0.649 0.525
03 -08 —01 2 0962 0949 0935 0923 1.037 1015 0.99% 0.947

Table II. Ratios of the RMSE of the GM estimate to the LS estimate (when r is unknown)
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is known, the ratios of the RMSE of GM estimate to LS estimate are given in Table I. For
w = 0, most of the ratios are greater than one. It indicates that the LS estimates are better than
the GM estimates when there are no outliers. On the other hand, when w = 3, more than 75%
of the ratios are less than one. The GM estimate reduces 43% of the RMSE of the LS estimate
in the best case. The performances of the GM method improve with increasing value of w.
When o = 5, all of the ratios are less than one and the GM estimate enjoys an average 23%

Table 111. Forecasting performances. (Entries are ratios of average RMSE of GM forecasts to LS
forecasts)

Parameters When r is known When r is unknown

oM @ r d 3 4 5 w=0 3 4 5

€
i
(=1

(a) Single-outlier case

0.9 -0.1 00 1 1.002 0.988 0.98 0.981 1.009 0985 0.975 0.978
0.9 -0.77 0.0 1 1.005 0978 0971 0.952 1.003 0.999 0.993 0.991
-0.5 -1.0 0.0 1 1.003 0961 0922 0.883 0.997 0.964 0926 0.882
-1.0 -0.5 00 1 1.003 0988 0971 0954 1.002 0976 0.955 0.941
0.3 0.8 0.0 1 1.004 0976 0951 0.922 1.000 0.982 0964 0.935
0.5 0.8 0.0 1 1.001 0988 0965 0.935 0.995 0967 0.944 0.920
-0.3 0.8 0.0 1 1.000 0995 0979 0.956 1.002 0.989 0.974 0.956
-0.5 0.8 0,0 1 1.007 0.990 0.972 0948 1.003 099 0.992 0.976
0.8 0.3 00 1 1.002 0.993 0987 0983 1.001 0989 0.983 0.975
0.8 0.5 0.0 1 1.002 0991 0980 0.972 0.996 0.983 0.964 0.960
0.8 -0.3 00 1 1.005 0989 0.980 0.972 1.004 0999 0.997 0.996
0.8 -0.5 0.0 1 1.002 0995 0.991 0.987 1.006 0.994 0988 0.983
0.3 0.8 0.1 1 1.001 0992 0971 0.947 0999 0982 0.963 0.935
0.3 -0.8 -0.1 1 1.005 0.991 0.982 0.981 1.007 0.997 0.995 0.990
0.3 0.8 00 2 1.005 0.999 0.988 0.971 1.003 0.979 0.970 0.968
0.3 -0.8 00 2 1.006 1.005 1.001 0.997 0.990 0.990 0.988  0.986
0.3 0.8 0.1 2 1.010 0988 0982 0976 1.002 0981 0972 0971
0.3 -0.8 -0.1 2 1.006 1.004 1.001 0.998 0.988 0.989 0.988  0.984
(b) Multiple-outlier case
0.9 -0.1 0.0 1 1.002 0.952 0928 0.841 1.009 0.968 0.946 0.908
0.9 -0.77 0.0 1 1.005 0968 0.922 0.850 1.003 0976 0958 0.930
-0.5 -1.0 0.0 1 1.003 0968 0932 0.895 0.997 0.957 0946 0.910
-1.0 -0.5 0.0 1 1.003 0956 0.889 0.865 1.002 0.955 0.928 0.885
0.3 0.8 0.0 1 1.004 0987 0979 0.950 1.000 0.975 0953 0.944
0.5 0.8 0.0 1 1.001 0.977 0943 0.908 0.995 0.964 0.943 0915
-0.3 0.8 0.0 1 1.000 0983 0933 0.824 1.002 0.995 0972 0.962
-0.5 0.8 0.0 1 1.007 0996 0.953 0.922 1.003 0.990 0.986 0.966
0.8 0.3 00 1 1.002 0989 0.964 0.934 1.001 0994 0976 0.959
0.8 0.5 0.0 1 1.002 0981 0926 0918 099 0.980 0.959 0.935
0.8 -0.3 0.0 1 1.005 0977 0.988 0.965 1.004 0.998 0.995 0.994
0.8 -0.5 0.0 1 1.002 0995 0976 0.950 1.006 0.998 0.980 0.978
0.3 0.8 0.1 1 1.001 0979 0942 0920 0.999 0975 0.954 0.947
0.3 -0.8 -0.1 1 1.005 0.999 0.997 0.991 1.007 0.996 0.994 0.992
0.3 0.8 00 2 1.005 0982 0.952 0.909 1.003 098 0976 0.970
0.3 -0.8 0.0 2 1.006 0.991 0941 0.896 0990 0.991 0982 0.979
0.3 0.8 0.1 2 1.010 0960 0.944 0914 1.002 098 0975 0.970
0.3 -0.8 -0.1 2 1.006 1.000 0999 0.997 0.988 0.990 0.981 0.978
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reduction in RMSE for all models considered. In general, the GM method performs better in
the multiple-outlier case as compared to the single-outlier case.

When r is unknown, the simulation results are given in Table II. The performances of the
GM estimates for the threshold autoregressive parameters (¢ and ¢ @) are very similar to
those in Table 1. However, the improvement of the GM estimate over the LS estimate for the
threshold value r is not so impressive. The reason for this phenomenon is related to the
algorithm of searching the least squares 7. Following Moeanaddin and Tong (1988), we search
the 7 from the first quartile X(g) to the third quartile X(gs) of the data. This procedure not
only guarantees adequate observations in each regime but also ‘trims’ out the additive outliers
as potential candidates for 7. The least squares estimate 7 obtained by this method has a built-in
resistance to additive outliers.

Second, we study the relative forecasting performances for these two estimation methods.
Ten one-step-ahead forecasts and the associated RMSE are computed for each estimated
model. The ratios of the average RMSE of GM forecasts to LS forecasts over the 1000
replications are reported in Table III. The results show that the GM method provides better
forecasts when the observations are contaminated by additive outliers.

AN APPLICATION

We consider the monthly average wholesale prices of regular leaded gasoline in the United
States between January 1973 and December 1987. The data are listed in Liu (1991) and the
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Figure 1. Time plot of the GAS data
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series is non-stationary and volatile. Therefore we shall only consider the first differenced series
of the logarithmic transformed data in this study. A time-series plot of the transformed series
is given in Figure 1. The plot displays some large jumps between /= 150 and ¢=168. It
indicates that non-linear threshold and/or outlier models may be useful for forecasting
purposes.

As the first step in our analysis, we apply the test for threshold-type non-linearity proposed
by Tsay (1989) to the GAS data. The sample autocorrelation function of the series is given in
Table IV and it indicates the AR order p = 2. Following the suggestions by Tsay (1989), the
delay parameter d = 2 is selected. The F-statistic of the test is then sequentially computed with
p=2, d=2, and n rolling from 120 to 179. The results are plotted in Figure 2. The critical
value of the test is around 4.0 at the 1% level.

It is evident that the series is non-linear with some outliers located between ¢ =155 and
¢ = 168. These outliers create aberrant F-values in Figure 2. Moeanaddin and Tong (1988) have
pointed out that most tests for non-linearity are quite sensitive to outliers. Therefore, we shall
employ the first 150 observations (¢=1 to 150) for model specification; the first 169
observations (¢ = 1 to 169) for model estimation; and the last 10 observations (f = 170 to 179)
for calculation of post-sample one-step ahead forecasts.

For comparison purpose, we build a linear time-series model to the GAS data. From the
sample autocorrelations in Table IV, an AR(2) process is specified. Both the LS and GM
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a8
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~ ' 1 i 1 1 1 A [ A 1
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Figure 2. Test for threshold-type non-linearity in the GAS data
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Table IV. Sample autocorrelation of the GAS data (first 150 observations)

k 1 2 3 4 5 6 7 8
k) 0.62 0.35 0.17 0.10 0.09 0.09 0.03 0.01
Standard error (0.08) (0.11) 0.12) 0.12) (0.12) 0.12) 0.12) 0.12)
k 9 10 11 12 13 14 15 16
a(k) 0.07 0.18 0.23 0.19 0.10 0.03 0.03 0.11
Standard error 0.12) (0.12) 0.12) 0.12) (0.13) 0.13) (0.13) 0.13)
4 17 18 19 20 21 22 23 24
k) 0.08 0.03 0.02 -0.00 -0.00 0.00 -0.04 -0.12

Standard error 0.13) 0.13) 0.13) 0.13) ©0.13) 0.13) (. i3) (0.13)

Table V. Estimation results and forecasting performances of various models
for the GAS data

Lag

Regime 0 1 2 MAE RMSE

(a) Linear AR(2) using LS estimation
0.0050 0.5139 —0.2106 0.0336 0.0437

(b) Linear AR(2) using GM estimation
0.0031 0.2333 -0.2422 0.0317 0.0422

(¢) Non-linear SETAR(2; 2,0) using LS estimation (with estimated threshold
value 7= 0.0249)

(4)) —0.0005 0.7185 —0.4331

2 0.0225 0.0311 0.0417

(d) Non-linear SETAR(2; 2, 0) using GM estimation (with estimated threshold
value 7= —0.0102)

1) -0.0017 0.9288 —0.4422
) 0.0186 0.0298 0.0414
Notes:

MAE = Mean Absolute Error
RMSE = Root Mean Squared Error

estimates are computed. The mean absolute error (MAE) and the root mean squared error
(RMSE) for ten post-sample one-step-ahead forecasts are obtained.

Following the AIC identification procedure by Tong (1983, pp. 228—-302), we specify a
SETAR(2; 2,0) model for the series. It is interesting to note that both methods from Tong
(1983) and Tsay (1989) are consistent in choosing p = max(p1,p2) =2 and d=2. The LS and
the proposed GM estimates are calculated. Post-sample forecasting comparisons are also
obtained.

Table V summarizes the results. There is a 4.18% reduction in MAE of the GM threshold
model over the LS threshold model and a 11.31% reduction over the LS linear AR model.
Results of using RMSE as comparison criterion are very similar. In summary, the overall
performance of the proposed GM method is reassuring in this example.
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CONCLUSIONS

We have demonstrated that the GM estimates have advantages over the LS estimates in
estimating the threshold autoregressive parameters in the presence of outliers. Our study,
however, concentrates on the additive type of outliers. The generalization of the innovational
outlier model in linear time series to threshold models will be a research topic of some interest.
However, Chan (1989, p. 89) recognized the potential difficulties of innovational outliers in
threshold models. An innovational outlier in a threshold model not only affects the
observations inside the original regime but also may force an erroneous shift of the dynamic
structure to another regime. Hence, direct application of the M-estimation techniques as in
Hau (1984) may not be appropriate. Furthermore, Moeanaddin and Tong (1988) reported that
some tests for non-linearity are quite sensitive to outliers and tend to regard a linear series with
outliers as non-linear. Therefore, it is interesting to derive robust tests for non-linearity.
Research in some of these topics is in progress.
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