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Abstract 

We consider the model Z, = +(0, k ) +  +(I, k)Z,_, + a,(k) whenever r,_, < 
Z,_,S r,., 1S k k 1, with r,, = -m and r, = m. Here {+(i, k); i =0 , l ;  1 5  k 5 1) is 
a sequence of real constants, not necessarily equal, and, for 1 5  k 5 I, {a,(k), 
t 2 1) is a sequence of i.i.d. random variables with mean 0 and with {a,(k), 
t 2 1) independent of {a,(j), t 2 1) for j #  k. Necessary and sufficient conditions 
on the constants {+(i, k)} are given for the stationarity of the process. Least 
squares estimators of the model parameters are derived and, under mild 
regularity conditions, are shown to be strongly consistent and asymptotically 
normal. 

NON-LINEAR TIME SERIES; SETAR MODELS; AUTOREGRESSIVE MODELS; MARKOV 

CHAINS 

1. Introduction 

It seems generally agreed (see, for example, the discussion of Tong and Lim 
(1980)) that the class of threshold time series models forms one useful class of 
non-linear time series models. The practical relevance of non-linear analysis of 
time series data seems to be self-evident (see for example Tong (1983)). 

Recently, Petruccelli and Woolford (1984) have discussed a simple first-order 
threshold model, which we denote by SETAR (2;1,1) following the usual 
convention in the area (see for example Tong (1983)). In fact they have 
considered the model 

Z, = 4,ZL1+ (62z1-1+ a,, t = 1,2, . . ., 
where x' = max(x,O), x- = min(x,O) and {a,) is a white noise sequence. They 
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have obtained the surprising result that for {Z,} to be ergodic it is both necessary 
and sufficient that 

1 4 z < l  and 4 1 4 ~ < 1 .  

Thinking linearly, we could perhaps expect to require something like 

which is in fact used in Tong (1983). Non-linearity seems to allow us greater 
freedom. 

The present paper deals with the more 1 , .  . .,1) model general SETAR(~;  
defined in Tong and Lim (1980). In particular, for any integer I, let 

and define 

where Rk= r k ] ,  1Ik 5 1. Equivalently, (1.1) may be written as 

where I ( A )  is the indicator function of the set A. In both (1.1) and (1.2) we take 
{+(i,k); i = 0 , l ;  1 6  k 6 1) to be real constants and assume that for each k, 
1 5  k k 1, {a,(k); t 2 1) is a sequence of independent and identically distributed 
(i.i.d) random variables, each having a strictly positive density fk  ( .  ), on W, and 
mean 0. Additionally, we assume that {a,(k)) and {a,G)} are independent for 
j #  k. 

In Section 2, we obtain necessary and sufficient conditions on the parameters 
{+(i, k); i =0 , l ;  1 k k S l} for the process (1.2) to be ergodic. These conditions 
are broader than those given by Tong and Lim (1980) and more complex than 
those in Petruccelli and Woolford (1984). 

In Section 3, assuming that {Z,} has a stationary distribution which has a 
second moment and that a2 (k )  = E(a,(k)') is finite, we establish the strong 
consistency of the least squares estimators for {4(i, k); i = 0 , l ;  1 d k 5 I} as well 
as for the estimator for a2(k).  In addition, a central limit theorem is shown to 
hold for the estimators for {4(i, k); i = 0 , l ;  1 S k k 1). Finally, in Section 4, we 
give some concluding remarks. 

2. Ergodicity 

We note, as in Petruccelli and Woolford (1984), that {Z, ; t 1O), as defined in 
(1.2), is a Markov chain with state space (R, B),  where B is the Bore1 a-algebra 
on the real numbers W. The transition density is given by 
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Using the definitions in Orey (1971), we note also that {Z ,;t h 0) is p-irreducible 
and aperiodic for p taken to be Lebesgue measure on R. However, contrary to 
the situation in Petruccelli and Woolford (1984), the transition law {P(x,. )), 
corresponding to (2.1), is not necessarily strongly continuous (a condition 
required to obtain ergodicity in Petruccelli and Woolford (1984)). Hence, we 
shall require the following lemma to prove the ergodicity results in Theorem 2.1 
below. 

Lemma 2.1. Let {P(x,. )) be the transition law corresponding to the transition 
density (2.1). Then if X is the set of compact sets in 9having positive Lebesgue 
measure, then 0 < T(K) <m for all K E X,where T( .) is a subinvariant measure 
for {Z , ) .  

Proof. Let D be the set of discontinuities of {P(x, - )). Then, by construction, 
D is finite. By irreducibility we have a subinvariant measure T( . )  such that 

A E 9..(A) b 1 n(dy)P(y, A), 

Iterating the above equation we obtain 

where 0 < p < 1 and G, (y, A )  = C:=l PnPn(y, A). It is not hard to show that 
G, (y, - ) is continuous for y e  D and 

lim G,(x,A)>O, i i ~G,(x,A)>O
x f d  

for all d E D  whenever p ( A )  >0. Hence, we have, for any K EX, 

whenever p ( A )  >0. Using (2.2) and taking A E 9 such that 0 < T(A) < m, then 

-1 

T(K) L P(1- P)-'T(A) inf G, (y, A)] <m. 
F y € K  


That T(K) >0 follows from the fact that p(K)  >0. 

Remark. The above result is true for more general Markov chains than the 
one we have defined here. In particular, let {P(x, .)) be the transition law for an 
aperiodic and M-irreducible Markov chain with state space (R,93). Let D be the 
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finite set of discontinuities of { P ( x ,.)} and let T ( . )  be the associated subin- 
variant measure. Then, if Go(x , . )  = 2:=,pnPn(x ,- )  and 

lim G B ( x , A ) > O ,  $pld G o ( x , A ) > O
x l d  

for all d ED, whenever M ( A )>0 , we have that every compact K E 9?has finite 
T-measure. This is an extension of Lemma 4.1 in Tweedie (1975)and indicates 
that the compact sets are still status sets in this case (see Tweedie (1976)). 

We now prove necessary and sufficient conditions on the parameters { 4 ( i ,  k ) ;  
i = 0 , l ;  1 ik 5 I )  for the process {Z,}to be ergodic. 

Theorem 2.1. The process { Z , } ,  defined by (1.2), is ergodic if and only if one 
of the following conditions holds : 

(2.3) 4 ( 1 , 1 )< 1, 4 ( 1 , 1 )< 1, 4 ( 1 , 1 ) 4 ( 1 , 1 )< 1 ;  

(2.4) 4 1)= 1, 4 1 ) 1 4 ( 0 ,  

(2.5) 4  ,  )  1, 4 = 1, 4 ( 0 , 1 ) < 0 ;  

(2.6) 4 ( 1 , 1 )= 1, 4 ( 1 , 1 )= 1 ,  4 ( 0 , 1 )<0 < 4 ( 0 , 1 ) ;  

The proof of Theorem 2.1 is divided into two lemmas, the first of which proves 
sufficiency, the second necessity. 

Lemma 2.2. I f  {Z,),given by (1.2), satisfies one of (2.3)-(2.7) then {Z,}is 
ergodic. 

Proof. Similarly to the proof of Lemma 2.1 in Petruccelli and Woolford 
(1984),Lemma 2.1 above implies that the result of the theorem will follow from 
Theorem 3.1 of Tweedie (1975) if we can find a compact set K E 24, having 
positive Lebesgue measure, and a non-negative measurable function g on R such 
that 

(2.9) 1p(x ,  y ) g ( y ) d y  = A ( x ) C  R <m, x E K, for some fixed R >0 .  

We prove that {Z,) is ergodic for each of (2.3)-(2.7) separately below by 
indicating a function g and a set K for which (2.8) and (2.9) hold. 

(2.3): As in Petruccelli and Woolford (1984),we note the existence of positive 
constants a and b such that 1 >4( 1 , l )> - (ba -') and 1 > 4(1, I )  > - ( a b - ' )and 
take 
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ax, x >0 
= 

b l x l ,  x 5 0 .  

Then there is an M > 0 such that (2.8) and (2.9) hold for K = [ - M, MI. 
(2.4): In this case we take 

where c1> 21 4(1,1)1[4(01 I)]-'. Then, again, there is an M > 0 such that (2.8) 
and (2.9) hold for K = [ - M, MI. 

(2.5): By symmetry, we can take 

-2[4(0, ~)I-'x, x >o 
g(x) = 

- c2x, x s o  

where 	cz> -2 14(l ,  l)l[+(O,l)]-l. The result follows as for (2.4). 
(2.6): Again the result follows as for (2.4) and (2.5) with 

(2.7): In this case we consider the Markov chain {Z2,)with transition law 
{P2(x,. )). Taking 

ax, x >0 
= 

- bx, x 50, 

where a and b are positive constants, we obtain, for x E R,, 

where 

P (k ,x )=  - 4(ol k) -  '$(Il k)4(0,1)- 4(11 k)4( l1 l )x  

and 

R(k , j )  = {Y  :Y + 4(01j )+  4 ( l1 j )x  E Rk). 
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Clearly I(x)  5 B,, 0 < B,<m, for x E R,, j = 2, . . .,1- 1. In addition, it is not 
hard to show that there is an M >0 such that 

Hence we can define a and b so that (2.8) and (2.9) hold for K = [ -M, MI.  Thus 
we conclude that {Z2r}is ergodic which, due to the irreducibility and aperiodicity 
of {Zl},implies the ergodicity of {Zr}. 

Lemma 2.3. If {Z,),given by (1.2), does not satisfy one of (2.3)-(2.7) then 
{Zr)is not ergodic. 

Proof. We can distinguish four cases: 

(i) +(I,  l ) >  1 or 4(1,1)> 1. 
(ii) ( 4  (1, l )  = 1 and 4(0, l )  5 0) or (+(I, 1) = 1 and 4(0,l) 2 0). 
(iii) 4(1,1)<0,  4(1,1)4(1,1)> 1. 
(iv) 4 ( l ,  1 )<  0, 4 ( l ,  l ) 4 ( l ,  1) = 1 and 4(O, 1)4(1,1)+ 4(O, 1 ) s  0. 
For Cases (i)-(iii), slight modification of the proof of Theorem 2.1 in 

Petruccelli and Woolford (1984) applies and we do not repeat the proof. 
In order to prove Case (iv), we appeal to Theorem 9.1 (ii) in Tweedie (1976) to 

show that {Z,)is not ergodic (what Tweedie (1976) calls 'null'). Thus it suffices to 
find a non-negative Bore1 measurable function, g(x), a set A of the form 
[ - a , ,  a2], a ,  >0, a 2  >0 and a constant B >0 such that 

As 4 ( l ,  1)4(1,1) = 1, there exist positive constants a and b such that 

Define, for a,p >0, k >0, M >0, 

ax + a, if x >0 
= gap 

- bx + p, otherwise 
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and 

k, i f l x l S M  
I ~ M(x) = 

0, otherwise, 

where the constants a ,  p, k and M are chosen so that 

(2.13) a 4 ( 0 , 1 ) 2 p - f f 2 b + ( 0 , 1 )  

(2.14) M ~ m a ~ ( ~ ~ ( o , l ) / , ~ ~ ( o , ~ ) ~ )  

(2.15) k z ( a  +b)max(l4(0,1)1,I4(0,l)I). 

Note that (2.13) is always possible since +(O, 1)+(1, I )+ +(O,l)SO. 
Thus, for 

and x E R,, large and positive, 

But 

so that 

Similarly, for x E R,, negative with Ix 1 large, 
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However, using (2.13)-(2.15) in (2.16) and (2.17), we see that, for w > O  
sufficiently large and A = g-'([O, w]), 

Clearly, (2.12) is satisfied and (2.11) can be easily shown to hold with 

Remarks. (1) We note that the conditions of ergodicity in Theorem 2.1 
depend only on the parameters +(O, I), +(O, I), +(I,  I), +(I,  I )  and, hence, only 
on the behavior of the process in regions R 1  and R,. 

(2) The regions of ergodicity are illustrated in Figures 2.1 a-c. We note that in 
the proof of Theorem 2.1 we have shown that the process is transient in regions 
(VI) and (VII). However, on those portions of regions (11)-(V) where the process 
is not ergodic we conjecture (but have been unable to prove) that the process is 
null recurrent. 

Theorem 2.3. Assume E ( J  a f ( i ) lk)<  m, 1 5 i 5 I, and some integer k. Then, if 
4 (1,1)+(1, I) < 1, @(I, 1) < 1, and + (1,l)  < 1, the invariant probability distribu -
tion for the chain {Zf} has a finite kth moment, and the model is geometrically 
ergod ic. 

Proof. Choose a, b > O  such that 1 > 4 ( 1 , 1 ) > - ( b a - ' )  and l > + ( l , l ) >  
- (ab-I). Let c >O and define 

It is not hard to show that for Ix 1 large 

some E > O.jRP(X.Y )g(y)dy 5 (1 - ~ ) g ( x ) ,  

The result then follows from Tweedie (1983). 
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(VII) ! 
I 
I I 

+(I, 1)4(1,1) 1 : 
4(1,1) = 1 

Figure 2.la. {Z , }is ergodic for +(I, I), 4(1, 1) in (I) and not ergodic for 4(1, I), +(I, 1) in (VI) and 
(VII) 

With 4(1, I), 4 ( l , l ) i n  With +(I, I), 4 ( l , l )  in 
region (11) of Fig. 2.la region (111) of Fig. 2.la 

With 4(1,1), 4 ( l , l ) i n  
region (IV) of Fig. 2.la 

Figure 2.lb. {Z,}is ergodic for 4(0, I), 4(O, 1) in the shaded regions 

Figure 2 .1~.  With d(1, I), 4(1, 1) in region (V) of Figure 2.la, {Z,}is ergodic for 4(0, I), 4(0, I) in 
the shaded region 
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Remark. These results strengthen those described in Theorem 2.2 and the 
remark following it in Petruccelli and Woolford (1984).However, it is not known 
if similar results hold under the other conditions of Theorem 2.1, each of which 
ensures the ergodicity of {Z,). 

3. Estimation of model parameters 

Throughout this section we make the following assumptions. 

Al :  { Z , )is ergodic and its stationary distribution has a finite second 
moment 

and 

A2: E ( a , ( k ) ' ) = u 2 ( k ) < w ,  1 5 k 5 1 .  

We note that if 4(1 ,1)4(1 ,1)<1,  4 (1 ,1)<1,  4 (1 ,1 )<1 ,  and u 2 ( k ) < m ,  
1 5  k S I ,  then, by Theorem 2.3, the stationary distribution of { Z , )has a finite 
second moment. In what follows we take Z to be a random variable having as its 
distribution .rr(.), the invariant probability distribution for {Z,).Z ( k )  will 
denote the random variable Z I ( Z  E R k ) .  We shall also denote by J ( k ) ,  
15 k S 1, the set of integers {05 t 5 n - 1 :Z ,  E R k )  and let n ( k )  be the 
cardinality of J ( k ) .  

Assuming rk, 1 2  k 5 1, are known, the least squares estimators for the 
parameters { 4 ( i ,  k ) )  are given by (for 15 k 5 1 in all cases): 

where 

and the corresponding natural estimator for u 2 ( k )is 

The next two theorems establish the strong consistency and asymptotic 
normality of the estimators in (3.1)-(3.3) when the process {Z,)is ergodic. 

Theorem 3.1. Under assumptions A1 and A2, /(i, k )  and b 2 ( k ) ,  i = 0 , l ;  
15 k 5 1, are strongly consistent estimators of 4 ( i ,  k )  and u 2 ( k ) ,  i = 0 , l ;  1 5 k 5 1 
respectively. 
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Proof. Rewrite (3.1), (3.2) as 

(3.4) 	 80, k )= + ( I ,  k )+ [ re5;L )  Zrar+l (k )- re$.( k )  Zrre$.( k )  a r+ l ( k ) l n ( k ) ]/ n s 2 ( k )  

d ( 0 ,  k )  = +(O, k )  
(3.5) 

+ n(k)- '  [ 5; 	 Z: 7 ar+l(k)- ~ ~ a ~ + ~ ( k ) ]5; zr / ns2 (k ) .  
re 	 k )  re ( k )  rs k )  

By arguments analogous to those of Theorem 3.1 of Petruccelli and Woolford 
(1984) we have, 'as n +03, 

n ( k ) l u+ .rr(Rk) a.s. 1 5  k  5 I, 

so that 

S2(k)+ E ( Z ( k ) ' ) -  E2(Z(k))l .rr(Rk).  

Now by the Schwarz inequality S 2 ( k )2 0 with equality holding if and only if 
Z ( k )  is almost surely constant. As this is clearly not the case, S2 (k )>0 .  
Applying (3.6) to (3.4) and (3.5) we see that, as n +m, 

To prove the strong consistency of u 2 ( k ) ,rewrite (3.3) as 

+ ( $ ( I ,k ) -  4 ( 1 ,  k ) ) ' ~ :  -2ar+l(k)(d(o, k )  - +(O, k ) )  
(3.7) 	 -2ar+1(k) (d( l ,  k ) -  4 ( 1 ,  k ) ) Z  

+2(8 (0 ,  k ) -  4(0,k ) ) ( d ( l ,  k ) - 4 ( 1 ,  k))Zr}.  

By applying (3.6) to (3.7) it is clear that 

e 2 ( k ) +  u 2 ( k ) ,  a.s. as n +m. 

To state the next theorem we shall need some notation. Let y ( k ) =  
E ( z ( ~ ) ' ) -~ ~ ( z ( k ) ) l ~ ( R , ) ,  let @ ( n )be the 21 x 11 5 k 5 I. For n = 1,2,. . 
vector whose (2k - 1)th element is 
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and whose 2kth element is 

[ n ~ ( k ) l a ~ ( k ) 1 ' / ~ ( $ ( 1 ?k ) -  4 (1 ,  k ) ) .  

For k = 1, . .,1 let D ( k )be a 2 X 2 matrix with entries of 1 on the main diagonal 
and off-diagonal entries of -E(Z(k) ) l [E(Z(k)2) . rr (Rk)]1 /2 .  

Let D be the 21 X 21 matrix with matrices D ( k ) along the main diagonal and 
entries of 0 everywhere else. 

Theorem 3.2. Under assumptions A1 and A2, as n  -+ w, @(n) converges in 
distribution to an N(0, D).  

Proof. Consider [ny(k).rr(~k)la~(k)~(~(k)~)]'/~($(~,4(O, k ) ) .  This is k )-
easily shown to be asymptotically equivalent to 

where 

Co(k, n )  = [T(K) l ~ ( k ) a ~ ( k ) E ( Z ( k ) ~ ) I ~ / ~  

and 
Y ,  ( k )  = IRk(Z t )  [ E ( Z ( k ) ' )  -E ( Z ( k ) ) Z , ] l r ( R k ) .  

In a similar manner we see that [ny(k) la2(k)] ' /2($(1 ,k ) -  4 (1 ,  k ) )  is asymp- 
totically equivalent to 

where 

Cl(k,  n )  = [y(k)cr2(k)]-112 

and 

W . ( k )= I R ~(Zl )[Zt-E ( Z ( k ) ) l r ( R k ) ] .  

Letting = . ., $2r]be a 1 x 21 vector of real constants, it follows that for 
each n, 

W@(n)= n '  2 [$2,-lCo(k,n ) Y ,  ( k )  + $zkC~(k,n )W.( k ) ] ~ , + ~ ( k ) .  
1 = 1  k = 1  

However, 
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is a martingale difference sequence satisfying the conditions of Theorem 23.1 in 
Billingsley (1968). From this we can conclude that Y'@(n) converges in 
distribution to an N(O,YfDY) which implies the result. 

4. Discussion 

The thresholds are assumed known in this paper. In practice, they are seldom 
known. The estimation of the thresholds remains a challenging problem. 
Although estimates have been proposed their sampling properties are unclear 
(see Tong (1983)). 

The main results of this paper carry over quite easily to the fuzzy extension of 
model (1.1) as described by Tong (1983). 
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