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STRUCTURAL CHANGE 

IN AR(1) MODELS 


TERENCETAI-LEUNG CHONG 
The Chinese University of Hong l<ong 

This paper investigates the consistency of the least squares estimators and derives 
their limiting distributions in an AR(1) model with a single structural break of 
unknown timing. Let and ,BZbe the preshift and postshift AR parameter, re- 
spectively. Three cases are considered: (i) PI 1 < 1 and 1 P21< 1; (ii) lp11 < 1 
and P2= 1; and (iii) = 1 and lP21< 1. Cases (ii) and (iii) are of particular 
interest but are rarely discussed in the literature. Surprising results are that, in 
both cases, regardless of the location of the change-point estimate, the unit root 
can always be consistently estimated and the residual sum of squares divided by 
the sample size converges to a discontinuous function of the change point. In 
case (iii), p2does not converge to P2whenever the change-point estimate is lower 
than the true change point. Further, the limiting distribution of the break-point 
estimator for shrinking break is asymmetric for case (ii), whereas those for cases 
(i) and (iii) are symmetric. The appropriate shrinking rate is found to be different 
in all cases. 

1, INTRODUCTION 

Previous studies in the literature of structural change focus mainly on changes 
that take place in stationary processes, for example, a process that changes from 
one stationary process to another. Recently, there also have been studies on 
changes in nonstationary time series (Hansen, 1992). An interesting case of 
structural change is found in Mankiw and Miron (1986) and Mankiw, Miron, 
and Weil (1987); these authors conclude that the short term interest rate has 
changed from a stationary process to a near random walk since the Federal 
Reserve System was founded at the end of 1914.However, the asymptotic theory 
on this kind of structural change still remains unexplored. 

In this paper, we develop a comprehensive asymptotic theory for an AR(1) 
model with a single structural break of unknown timing. Specifically, we ex- 
amine the case where an AR(1) process changes from a stationary one to a 
nonstationary one (or the other way around). In each case, the asymptotic cri- 
terion function is derived, consistency of estimators is established, and limiting 
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Q 2001 Cambridge University Press 0266-4666101 $9.50 87 



88 TERENCE TAI-LEUNG CHONG 

distributions of estimators are also derived. As far as economic applications are 
concerned, we will restrict our discussion to the case where both the preshift 
and postshift parameters are in the interval (- 1,1]. 

The plan of the paper is as follows. Section 2 presents our basic model. Sec- 
tion 3 deals with the case where the preshift and postshift parameters are both 
less than one in absolute value. Section 4 studies the case where the preshift 
parameter is less than one in absolute value and the postshift parameter equals 
one. Section 5 examines the case where the preshift parameter equals one and 
the postshift parameter is less than one in absolute value. Section 6 discusses 
Monte Carlo experiments, and Section 7 concludes the paper. Mathematical de- 
tails are collected in Appendices A-K. 

Interesting findings include the following results: (i) in Sections 4 and 5 the 
asymptotic criterion f~lnction is random and has a sudden jump at the true break 
point; (ii) in Section 4, the asymptotic distribution of the break-point estimator 
for shrinking break is asymmetric; and (iii) in Section 5 ,  the preshift estimator 
is always consistent, whereas the postshift estimator ,6, does not converge to 
P2once the change-point estimate is lower than the true change point. 

2.THE MODEL 

Our basic model is an AR(1) model without drift, with a structural break in the 
AR parameter P at an unknown time ko. We consider the following model: 

yr = P 1 y r - l l { t s  k o ) + f i 2 y f - , l { t >  ko) + E, ( t = I , 2 ,  ...,T), (1) 

where I{.} is an indicator function that equals one when the statement in the 
braces is true and equals zero otherwise. 

We let ro = ko/T be the true break fraction and make the following 
assumptions. 

(Al)  yo is drawn from an independent and identical distribution with zero 
mean and a finite variance. 

(A2) E, - i.i.d.(0,a2) tlt, 0 < a2< a,and E ( E ~ )  < a. 

We let k = [TT]where [.I is the greatest integer function and define k = 

[?TIand k = [?TI. 
Our interests are to estimate the structural parameters pl and P2and the time 

of change 70.We estimate the following model: 



STRUCTURAL CHANGE IN AR(1) MODELS 89 

The estimation method employed here is the least squares method proposed 
in Bai (1994a, 1994b) and Chong (1995). For any given T, the ordinary least 
squares (OLS) estimators are given by 

and the change-point estimator satisfies 

.iT= Arg min RSS, (T), 
.rE(O,l) 


where 

We write = [+,TI, 8, = PI(?,), and p2= ,h2(+,). Throughout this paper, 
we let B1(.) and B2(.) be two independent Brownian motions defined on the 
non-negative half real line R+ and B(.) and B ( . ) be two independent standard 
Brownian motions on [O, 11. The symbol +denotes the weak convergence of a 
stochastic process, 3 represents convergence in probability, -% denotes con- 
vergence in distribution and = 

d 
stands for identical in distribution. To achieve 

notational economy, the integral of a Brownian motion with respect to Leb- 
esgue measure JB(r) dr is written as SB . The stochastic integral SB(r) dB(r) 
is written as JBdB. 

3. CASE WHERE la,I < 1 AND la,l < 1 

3.1. The Asymptotic Criterion Function 

Consider the model in (1) with ,!?,1 < 1 and lP21 < 1. A similar model has 
been studied by Salazar (1982), who provides a Bayesian analysis of structural 
changes in stationary AR(1) and AR(2) models with a known change point. In 
our model, the change point r0is unknown and has to be estimated by .i,. To 
show the consistency of t T ,  the usual practice is to show that (l/T)RSS,(r) 
converges uniformly to a nonstochastic function that has a unique minimum at 
T = TO. Thus, we will focus on the asymptotic behavior of (l/T)RSS,(r). The 
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following lemma is useful in deriving the limiting behavior of the criterion func- 
tion (l/T)RSST(7) and in proving Theorem 1, which follows. 

LEMMA 1. Let {y,)L1be generated according to model (1) with lP1/ < 1 
and IP21< I .  Under Assumptions (A1)-(A3), we have 

Proof. See Appendix A. 

Note from (3e) that when 5 7 I70, b1(7) converges uniformly to PI.This 
should be obvious because p , ( r )  only utilizes the data generated by the pro- 
cess y, = Ply,-l + st. However, from (3f), b2(7) converges uniformly to a 
weighted average of PI and p2.The weight depends on the true change point, 
the true preshift and postshift parameters, and the location of 7. When < 
7 5 T ,  (3h) and (3i) display similar results. 

From Appendix B, the asymptotic behavior of the residual sum of squares is 
as follows: 
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FIGURE1. Graph of (1 /T)RSST(7)for PI = 0.5, p2 = -0.5, T = 4000. 

One can easily verify that (I/T)RSST(r) converges uniformly to a piecewise 
concave function of T that attains a unique global minimum at T = rO.A sim-
ulation of ( I /T)RSST(~)  for T = 4,000 is plotted in Figure 1. 

3.2. The Consistency and the Limiting Distributions of B, and B2 
If both P1and P2are less than one in absolute value then the process is said to 
be stationary throughout. It is not difficult to show that all the OLS estimators 
are consistent in this case. Bai (1994a, 1994b) shows that, in the conventional 
stationary case, the change-point estimator is T-consistent. This convergence 
rate is fast enough to make the limiting distributions of Bl and B2behave as if 
the true change point TO is known. Theorem 1 establishes the asymptotic nor- 
mality of ,hl and B2. 

THEOREM 1. Under assumptions (A1)-(A3), if lP1/ < 1 and I P21 < 1, the 
OLS estimators ?T, f l l ( ? T ) ,  and B2(?T) are consistent and 
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Proof. See Appendix C. 

Thus, Dl(?,) and D2(BT) are asymptotically normally distributed, with vari- 
ances depending on P I ,  p 2 ,  and 70. 

3.3. The Limiting Distribution of +7- as p p  Collapses to PI 

In this section, we consider the limiting distribution of B,. For a shift with fixed 
magnitude, Hinkley (1970) showed that the limiting distribution of the change- 
point estimator depends on the underlying distribution of the innovation &, in a 
complicated manner. Thus, statistical inference on the change point under a 
break of fixed magnitude is difficult to perform. To obtain a limiting distribu- 
tion of .i7invariant to E ~ ,we have to let the magnitude of change go to zero 
at an appropriate rate. Further, to ensure the consistency of t,,we should let 
lp2- P,I shrink at a rate slower than the rate of convergence of p , ( ro)  and 
p2(r0) SO that there still exists a relative shift in parameters. To achieve this, 
we fix PI and let PzTbe a sequence of p2 such that l P 2 T  - PI /+ 0 and 
fiIp2T - PII as T a. 

Recall from equation (5) that the change-point estimator is defined as 

.i, 2 Argmin RSS,(r) = Argmin{RSS,(.r) - RSS,(r,)}. 
7 

Let u E R be a finite constant. We first examine the asymptotic behavior of 
RSST(7) - RSST(rO) at the region r = r0 + u/T(PZI - P1)2 .  From Appen- 
dix D, we have the following expressions. 

For v 5 0, 

For v > 0, 

where B I ( . )and B2(.) are defined in Section 2. 
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Let r = v/(l - p:) and applying the continuous mapping theorem for 
argmax functionals (Kim and Pollard, 1990), we have the following theorem. 

THEOREM 2. Under assurnptioas (A1)-(A3), suppose wef ix  jPll < 1 and 
let PZTbe a sequence o f p 2  such that / P 2 T  - P ,  / -+o arzd .\JT/P,, - pI 1 + oo 
as T + oo. Then the linzitirzg distribution of .iT is given by 

where B * ( r )  is a two-sided Browniarz motion on R defined to be B*(r )  = B1(-r)  
for r < 0 and B * ( r )  = B2(r )  for r r 0. The ternzs B1( . )  and B2( . )  are defined in 
Section 2. 

Proof. See Appendix D. 

The exact distribution of the right hand side in (1 1 )  was first derived by Pi- 
card (1985).Yao (1987) tabulates the numerical approximation of this distribu- 
tion. To understand the implication of Theorem 2, consider a Brownian motion 
moving along an inverted-V shape linear function with a kink at rO.Because .iT 
is the location where this motion achieves its maximum, its limiting distribu- 
tion will be symmetric. 

One should be careful that (11) is not the exact distribution of the change- 
point estimator for fixed shifts as we are letting the shift shrink to zero when 
deriving the theorem. Rather, the theorem serves to provide a conservative con- 
fidence interval for r0 when the shift is small. 

4. CASE WHERE l ~ ,( < 1 and P, = 1 

We now consider the case where the AR(1) process shifts from a stationary 
process to an [ ( I )  process. It is well known that the distribution theory for the 
least squares estimator in an AR process with a unit root or near unit root is 
nonstandard. See, for example, White (1958);Dickey and Fuller (1979);Lai 
and Siegmund (1983);Ahtola and Tiao (1984);Chan and Wei (1987, 1988); 
Phillips (1987, 1988), and Perron (1996). 

4.1. The Asymptotic Criterion Function 

In our case, when pZ = 1, the criterion function ( l /T )RSS , ( r )  behaves very 
differently. The following lemma is useful in deriving its limiting behavior and 
in proving Theorem 3, which follows. 

L E M M A  2. Let { y , ) ~ = ,  be gerzeraterl according to model (1) with lPII < 1 
and P2 = 1. Define 

1,2,...,[(l - r O ) ~ ]and lim 
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Then under Assumptions (A1)-(A3), we have 

4 I , = 0 1  for r  ,i;1 
T [ ~ ~ r ] + l  

(41) T y l - l ~ r  = O p ( l )  for r  t 8:;'I[b+.l I 
( 4  r - = f o r r E ~ : .  

Proof. See Appendix E. 

Note that the set B: is different from the set ( r O , f ]as BT excludes se- 
quences of r that converge too fast to TO. For example, ZT contains all given 
constants r such that r0 < r 5 ?. The sequence r7.= r0 + (l/log T )  also be- 
longs to 5:. However, the sequence r7.= r0 + (1/T) is not in B:. From Ap- 
pendix F, we have 

(1 - @ , ) ( T O  - 7 ) g 2  
sup I -RSS,(r) - w - = o,(l) 
rs7570 2- 1 + P ,  

and 

- RSS,(r) -% (T + ( 1  - P , ) r o g 2  
for r E B:. 

T 1+P1 

1 
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Note from (12) and (13) that (l/T)RSST(r) converges uniformly to a down- 
ward sloping linear function for % r 5 r0 and it converges to a flat line 
located above a2 for r E Z:. Further, there is an asymptotic gap between 
(l/T)RSST(r,) and (l/T)RSST(r) for .r E 3:. The transitional process begins 
at r0and completes at the left boundary of By.Thus the set 3; establishes the 
rate at which plim(l/T)RSST(r) jumps from a2to a flat line located above a2  
once r > rO.This rate serves as a conservative rate of consistency of .iT. 

To examine the consistency of D l ,  we have to investigate the transitional 
behavior of (l/T)RSST(r). It should be noted that, for any constant c > 0, 

where BT(a,c) = (E';Oy ~ l ) / ( C ~ Y ~ . l  yLI) .+ ~ 2 1 ~ ~ ' ~  
For a < i, we have 

and 

For < a < 1, we have 

and 

This implies that if the convergence rate of .iTis faster than T ' / ~then fil will 
be consistent; otherwise it will be inconsistent. 
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Note that the transition is defined only when a = i,which means the speed 
of the transition is I/*. For a = i,Appendix F shows that 

where B3(. ) is a Brownian motion defined on R,. Note that when c = 0, 
(11T)RSS7(ro)3 f f 2 ,  and as c -+ a,( l / T ) R S S T ( r O+ (cI*)) -% f f 2  + 
[(l - P l ) r o a 2 ] l ( 1+ P I ) . Because dp(c)/dc > 0, the transition is monotoni- 
cally increasing. 

Figure 2 simulates the behavior of ( l / T ) R S S T ( r )using T = 4,000. For 
r 5 70, it is linear and decreasing. For T > TO, it is flat and has a sudden 
jump near ro. 

4.2. The Consistency and the Limiting Distributions of + ,  B , ,  and B2 
For a fixed magnitude of the break, Theorem 3, which follows, shows that b1 
is asymptotically normally distributed with a variance depending on P I  and TO,  

whereas ,b2has a scaled Dickey-Fuller distribution. 
Similar to Section 3.3, we should let the magnitude of the break go to zero at 

a certain rate to obtain the asymptotic distribution of +,. However, if we make 
P I  converge to P2(= I ) ,  the process { y , } ~ 2 ,will be a near unit-root process. 
Thus, we are dealing with a structural change from a near unit-root process to 
an exact unit-root process. 

We fix P2 at 1 and let P I T  be a sequence of P I  such that P I ,  -+ 1 and 
T ( l  - PI,) -+ oo as T -+ oo. 

Consider the region T = r0 + u lT(1 - P I T )where u E R. From Appendix G, 
we have the following expressions. 

For u 5 0. 
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FIGURE2. Graph of (l/T)RSST(r) 0.5, ,B2 = 1, T =for PI = 4000. 

For u > 0, 

where B, ( . )  and B2( . )are defined in Section 2. The expression B,(+) is gener- 
ated by $," exp(-s) dB, ( s ) .  

Theorem 3, which follows, states that as PI approaches one, the limiting dis-
tribution of .i, is the argmax of a random process moving along an inverted-V 
shape linear function on the real line. 

THEOREM 3. Under Assuinptions (A1)- (A3) ,  if 1 P I  / < 1 and P2 = 1, the 
OLS estimators +T, und B2(.i7) ~7r.eall consistent and 
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Suppose we fix P2 at one and let P I T  be a sequence of PI such that 
11 - PITl  -+ 0 and T ( l  - P I T )-+co as T -+ oo. Then the limiting distribution 
of .iTis given by 

where C * ( v )is defined to be C " ' ( v )= B, ( - v )  for v 5 0 and 

for v > 0. 

The terms B1( . )and B 2 ( - )are defined in Section 2. Here B,(;) is generated by 
J," exp(- s )  dB,  ( s ) .  

Proof. See Appendix .G. 

An interesting and important feature of Theorem 3 is that the distribution 
of tTis asymmetric about TO. An intuitive explanation for this result is that 
(1 /T )RSST(7 )for breaks with fixed magnitude is asymmetric in the neigh- 
borhood of T ,  as shown in Figure 2. As we compress the size of break, this 
asymmetry perseveres. Thus, .iT= arg min RSS,(T) should also be asymmet- 
ric about 70.  

5. CASE WHERE PI = 1 and < 1 

Consider the case where PI = 1 and lP21 < 1. Intuitively, it seems that the re- 
sults of this case are the mirror images of the case where 1 Dl 1 < 1 and & = 1. 
However, we show that a time reversing argument cannot be applied to model 
(1). The findings in this section turn out to be very different from those in 
Section 4. 
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5.1. The Asymptotic Criterion Function 

The following lemma is useful in deriving the limiting behavior of ( l / T ) R S S T ( r )  
and in proving Theorem 4, which follows. 

L E M M A  3.  Let {y,)r=, be generated according to model ( 1 )  with Pi = 1 
and IP2/ < 1. Define 

,...,[ r O T ]  and l im-=oo 

and let be defined as in Lemma 2. Under assumptioizs (A1)- (A3) ,  we have 

(5g) sup lP,(7) - 11 = 0, 
T E ~ '  

(5h) sup 1b2(7) - 11 = op(l); 
T E Z ~  
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Proof. See Appendix H. 

The set 3' serves a similar purpose to that of 2; in Lemma 2. The term ET 
excludes sequences of T that converge to T, at a speed faster than 1/21?;. For 
example, 8: contains all given constants T such that I 5 r < TO. The sequence 
T, = r, - (l/log T )  also belongs to 25, but the sequence T, = TO - (1/T) does 
not. 

We now derive the asymptotic behavior of (l/T)RSST(r). From Appendix I, 
we have the following expressions. 

For r E ET, 

For T = TO, 

-
1 

RSST(rO)4 v2
T 

For r E BT, 

Note from (16) that, for T E ST,  (l/T)RSST(r) converges to a flat line lo- 
cated randomly above a2+ [(I - P2)(1 - r0)a2] / (1  + P2) > a2. 

For r E Z:, ( l /T )RSST(~)  converges to a random upward-sloping linear 
function of T. The lower support for this line is a2+ [(I - P 2 ) ( r  - T ~ ) ( T ~ ] /  
(1 + p2)  > a2. 

In both situations, ( l /T )RSST(~)  converges to a random line whose position 
depends on the true change point 70, the postshift AR parameter P2,  and the 
realization of the standard Brownian motion B(rO). Note that the larger the mag- 
nitude value of break (1 - P2),  the more easily the change will be detected. 

Note that we work with 3: and E? in this section to reflect the fact that 
plim(l/T)RSST(r) is discontinuous at both sides of r,, whereas we work with 
the interval [7, rO]and 3; in Section 4 because plim(l/T)RSS,(r) is only dis- 
continuous at the right-hand-side neighborhood of T,. 
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Figure 3 simulates the behavior of ( l /T)RSS , ( r )  with T = 4,000. For 
r 5 TO,  it is a random flat line and has a sudden plunge near T,. For T > ro, 
it is linear, random, and increasing, which agrees with our theory. 

5.2. The Monotonic Transition 

Note that for any positive constant c bounded away from 0, there is an asymp- 
totic gap between ( l /T)RSST(r , )and ( l /T)RSST(rOt c) . The speed of the 
transitional process is 1 / f i ,  and the transition is completed in 5: and S : ,  
respectively. To investigate the consistency of the change-point estimator, it is 
sufficient to show that the asymptotic transition of ( l /T)RSS,(r)  from T = ro 
to r = r,, + c is monotonically increasing. 

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 

k 

FIGURE3.Graph of ( 1 / T )RSS&) for ,B1= 1 ,  p2 = 0.5, T = 4000. 
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From Appendix J, for m = 0,1,2,.. . and ( m / T )-+ 0 as T -+ a,we have 

and 

If rr2 = 0,  we have (1/T)RSST(r0)3 a2.As 

Thus, we bridge the gap between ( I / T ) R S S T ( ~ o )and ( l /T)RSST(ro- c). For 
r = TO + (rn/T),m = 0,1,2,...,and (nz/T)-+ 0 as T +  oo,we have 

From Appendix J, we also have 

~f rn = 0, we have ( l /T)RSST(ro)-5a'. AS m -+ co, ( l / T ) R S S T ( ~ O+ 
( m / T ) )+ a2 + { [ ( I  - P2)B2(T0)]/(1+ P2))u2.Thus, we bridge the gap 
between ( l / T ) R S S T ( ~ o )  + c) .and ( l /T)RSST(rO 

Note from equations (20)and (21)that, for all m > 0, we have h,(m + 1 )  > 
h l (m)> hl(0)= 0 and h2(m+ 1) > h2(rn)> h2(0)= 0. Thus the transition is 
monotonic. Note also from equation (19) that, unless in = 0, D2(T0 - (rn/T)) 
does not converge to p2! 

Remarks. However, because of the special behavior of (1/T)RSST(7)de-
scribed in equations (16)-(18) and (20)-(21), we will have lim,,,~r(k f 
ko) = 0. Thus, p2 should be a consistent estimator of ,B2 in practice. See Theo- 
rem 4, which follows. 
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5.3. The Consistency and the Limiting Distributions 
of %, P I ,  and 82 

Despite the fact that B2 is extremely sensitive to the local behavior of i ,  Ap- 
pendix K shows that for a fixed magnitude of break, limT,,Pr(L f ko) = 0. 
This means T(?, - T ~ )-% 0. Hence the distribution of .iTdegenerates very 
fast for any fixed magnitude of break. However, if we allow P2to converge to 
,GI(= I), the process {y,)L,n+, will be a near unit-root process with an initial 
value drawn from an I(1) process. Thus, we are dealing with structural changes 
from an exact unit-root process to a near unit-root process with a nonstationary 
initial value. 

We fix 8, at one and let pzTbe a sequence of p2such that f i ( 1  - P2T) + 
0 and ~ ~ ' ~ ( 1  - P2,) -+ CO aS T +a. 

Consider the region T = r0+ v/(l - P ~ , ) ~ T * ,where v E R. From Appen- 
dix K, we have the following expressions. 

For v 5 0, 

For v > 0,  

where BI(.), B2(.), and B(-)  are defined in Section 2. 

THEOREM 4. Under Assumptions (A1)-(A3), i fP l  = 1 and lP21< 1 then 
t T ,  ,GI(?T), and B2(tT)are consistent, and 

p r ( i  f k,) +0, 

Suppose we fix PI at one and let P 2 T  be a sequence of p2such that f i ( 1  -
PzT) -+ 0 and ~ " ~ ( 1PZT)+ cc Then the limiting distribution of - as T -+co. 
.ir is given by 

(1 - P ~ , ) ~ T ~ ( ? ,- To) 4Argmax 

where B"(v) is a two-sided Brownian motion on R defined to be B*(v) =B1(-v) 
for v 5 0 and B*(v) = B2(v)for u > 0. The terms B1(.), Bz(.), B(-), and B ( . )  
are defined in Section 2. 
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Proof. See Appendix K. 

Thus p, has a scaled Dickey-Fuller distribution. The term p2 can be de- 
scribed as being asymptotically normally distributed with a random variance. 
This is because 

?, approaches one, the limiting distribution of P2Further, as 

the numerator follows a central limit theorem, and the denominator converges 
to a random variable by (5b) and (5d) in Lemma 3. 

The rapid rate of convergence of i in Theorem 4 is very surprising. The rate 
in this case is much faster than those in the previous two cases. In previous 
cases, we only have i - kol = 0,(1); that is, the estimation of k, is always 
subject to an error of order 0,,(1). Now, with = 1 and P2/ < 1, ko can be 
precisely estimated asymptotically, despite the fact that ko + cc as T -+ oo. 

is the argmax 
of a random process moving along an inverted-V shape linear function. 

6. MONTE CARL0 EXPERIMENTS 

For empirical applications, we perform the following experiments to see how 
well our asymptotic results match the small-sample properties of the estima- 
tors. In all experiments, the sample size is set at T = 200 and the number of 
replications is set at N = 20,000; { y , ) ~ = ,is generated from model (1); {c,)T=, -
nid(0,l) and yo - nid(0,l) independent of { c , ) ~ , .  The true change point is set 
at T, = 0.5. 

Experiment la. This experiment verifies equation (19), which predicts that 
when Dl  = 1 and lP21 < 1, the postshift structural estimator D2(7) does 
not conyerge to p2whenever T < TO. We let PI = 1; P2= 0.5, 0, -0.5. 

Let B2(r) be the mean of B2(T) in 20,000 replications. We consider those T 

in the neighborhood of T,(= 0.5). 
Note that when = 1 and IP21 5 1, the estimate of P2 is inaccurate 

for T < TO. The strange behavior of P2( r )  is highlighted by italic figures in 
Table 1. Note that f12(r) is not close to P2even for T = T, - (1/T) = 0.495. 

Experiment lb.  With IP, 1 < 1, P2= 1, and T close to TO, we will show that 
both p l ( r )  and ,&(T) are very close to the true parameters PI and P2,  respec- 
tively. Let PI = 0.5, 0, -0.5; P2= 1. 

The results in Table 2 do not image those in Table 1. Here B,(T) is very 
close to PI. Note that in experiments l a  and Ib, the estimates of the unit root 
are close to one in all cases. 
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TABLE1. Results for experiment l a  

Experiment 2. This experiment simulates the distributions of p, and bz 
Case 1: pl = 0.5, P2 = -0.5; 

Case 2: = 0.5, ,El2 = I ;  

Case 3: pl = 1, p2 = 0.5. 


Figures 4 to 6 display the results for Cases 1 to 3, respectively. 
For Case 1, Theorem 1 states that both and b2are asymptotically nor- 

mally distributed. The theorem is well supported by Figure 4 even for a sample 
size of 200. 

For Case 2, Figure 5 shows that the small-sample distribution of is ap- 
proximately normal, whereas p2 appears to have a Dickey-Fuller distribution. 
Both results agree with the theorem. 

TABLE2. Results for experiment l b  
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FIGURE4. (a) Distribution of .\I-(b, - P I ) ;- (T = 200), .... . . 
(T = ca). (b) Distribution of d ( 1  - T , ) T / ( ~- p z ) ( p 2- P2); -(T  = 200), ... . .. 
( T  = a). 
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FIGURE5. (a) Distribution of d m ( p ,- P , ) ;  - (T  = ZOO),  ...... 
(T  = a).(b) Distribution of (1 - T " ) T / ( P ~- P2);-- ( T  = ZOO), .. . -. . (T = co). 
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FIGURE6. (a) Distribution of . r o ~ ( P I- PI);---- (T = 200), . . . . .. ( T = co). (b) Dis- 

tribution of - p2);-( T = 200), . . ... . ( T = cc). 
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For Case 3, Theorem 4 predicts that pl should have a Dickey-Fuller distri-
bution and p2should have a normal distribution. Figure 6 agrees with Theorem 4. 

Note that in a small sample, the variation of .iTis nontrivial. This variation is 
the main source of the small-sample bias of pl and B2. In Case 1 where both 
the pre- and postshift processes are stationary, the small-sample bias is very 
little. However, in Cases 2 and 3, pl and p2convist of both stationary and non- 
stationary observations; thus their small-sample distribution~ should look like a 
mixture of normal and Dickey-Fuller distributions. From Figures 5a and 6b, it 
is clear that the small-sample distribution has a larger variation and is more 
skew than a normal distribution. From Figures 5b and 6a, the small-sample 
distribution has a smaller variation than and is not as skew as a Dickey-Fuller 
distribution. 

Experiment 3. In this experiment, we simulate the distribution of .iTfor shrink- 
ing break. 

Case 1:  PI = 0.5, P27= 0.5 - T - ' / ~ ;  

Case 2: PIT= 1 - T-'14, PPZ= 1; 

Case 3: pi = 1, PZT= 1 - T-5/8. 


Thus, in each case, we simulate the behavior of T3/l"(.iT - 7,). 
Figures 7(a)-7(c) display the results of Cases 1 to 3, respectively. 
For Cases 1 and 3, Figures 7a and 7c show that .iTis symmetrically distrib- 

uted, as predicted by Theorems 1 and 4. 
For Case 2, Theorem 3 predicts that iTshould be asymmetrically distributed. 

Figure 7b agrees with our predictions. 
Theoretically, as T -+ oo,the domain for ~ ~ ' l " ( . i ~- 70) should be unbounded. 

However, because we fix Ta t  200 in this experiment, and .iTis searched within 
the (0,l)  interval, hence the vimulated distribution of ~ ~ / ~ ( . i ~- rO) is bounded 
in the interval (-20o3l4 X 0.5, 200~" X 0.5) = (-26.6,26.6). Note that the 
distribution of .iThas a "boundary effect," especially for Case 3, in that there is 
a lot of mass near the boundary. The clustering of mass at the boundary is due 
to the large value of var(p,!r) - p1(7)) when T nearszero or one. Although 
1 E ( ~ ~ ( T );A ( T ) )1 5 I E ( P ? ( T ~ )- pr(T,)) 1 for all T, actual realization of 
P 2 ( 7 )  - P1(7)1 may be larger than 1b2(7,) - f i l ( ~ O )  in finite sample, espe- 
cially for the case where r is near the boundary. For example, when r is near 0, 
b l ( r )  will be calculated based only on very few observations, and therefore it 
has a large variance. Note that .i, is generated by the minimization of RSST(r), 
or in other words, by the maximization of / B2(7) - (7) / Thus, the probabil- 
ity that .i, falls into the boundary is nontrivial. This phenomenon will disap- 
pear as the sample size goes to infinity. 

7. CONCLUSION 

AR models have been used extensively in economics. Many economic vari- 
ables such as interest rates, real consumption, and real gross domestic product 



110 TERENCE TAI-LEUNG CHONG 

FIGURE7. Distribution of T3l4(?=- 0.5): ( a ) P1= 0.5, P2= 0.5 - T- ' / ' ;  (b) PI = 
1 - T - ' / ~ ,P2= 1; (c) PI = 1, P2= 1 - T - 5 / 8 .  

(GDP) can be well predicted by their own lags. Some variables exhibit station- 
arity, whereas some variables display nonstationarity. A shock to the produc- 
tion technology or a sudden change in the government policy may cause 
structural changes in these autoregressive models. In particular, the changes 
may cause a stationary process to shift to a nonstationary one or vice versa. 

In this paper, we present a structural change AR(1) model with independent 
and identically distributed (i.i.d.) innovations. We discuss three cases of struc- 
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tural changes. Case 1 deals with the change from a stationary process to an- 
other stationary process. Case 2 examines the situation where a stationary process 
shifts to an I(1)process. Case 3 discusses the situation where an I(1)process 
shifts to a stationary process with a nonstationary initial value. In each case, 
consistency of the least squares estimators is established, and their limiting dis- 
tributions are derived. Having the limiting distributions of these estimates al- 
lows us to carry out statistical inference on the parameters of interest. 

Cases 2 and 3 are intriguing. Results of these two cases do not mirror- 
image each other, which is counterintuitive. A possible explanation for this 
asymmetry is that for Case 2, the initial value of the postshift process is sta- 
tionary, whereas Case 3 is nonstationary. Another explanation is that we are 
excluding an intercept in our model. As pointed out by Banerjee, Lumsdaine, 
and Stock (1992, p. 278), a more proper model for Case 3 should be, in our 
notations, y, = y,-1 l{t 5 ko)  + (yk,](l - P2) + P 2 y r - l )  l{t > kO)+ E,. This 
process avoids a spurious sharp jump to zero at the break point. 

It should also be mentioned that the disturbance terms {E,)L,in this paper 
are assumed to be i.i.d. In the case where both 1 P1 and I P2 are less than one, 
the assumption of i.i.d, avoids the inconsistency of p ' s  due to serial correla- 
tion of E+. This assumption is also very helpful in calculating the long run 
variances of processes such as CE,Y~-, .However, extension to the cases of 
heterogeneous and/or dependent E, should be possible in the nonstationary cases 
at the expense of a more complicated mathematical treatment. Thus, a gener- 
alization of our model to ARMA(p,q) models with an intercept deserves fu- 
ture investigation. 
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APPENDIX A: 

PROOF OF LEMMA 1 


If l p l  < I, lPzl < 1, cr are i.i.d., and yo is drawn from a stationary process, then 

(1) 	(3a), (3d), and (3g) are consequences of the uniform law of large numbers in 
Andrews (1987, Theorem 1); 

(2) (3b) and (3c) are consequences of the weak law of large numbers 	in Andrews 
(1988, Theorem 2). 
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To show (3f), utilizing the fact that 

It: YE, 
[TT]+ 1 

adding and subtracting 

by the triangle inequality, and last by (3a), (3c), and (3d), we have 

It: Y?-l It: F ZJ1r- 1 
[ ~ ~ T l f l  

= sup (P2 -
7-
IS.iS"" 

It: ?:-I 

[ T T ] ~ 
1 

T r (1 - r0)ff2 
El?.?-,C It: 3.:-1 T 

[ ~ T l + l  [ % T I 7 1  -5 sup +lP2-P1I SLIPT T 

1 -P: 
? S T S T "  T 

C 
?.:-I 

~ S 7 5 7 . "  

C x?.:-I ?.:-I 
[ r T ] +1 [.rT]--1 [TT]+I  

(1 - To)ff2 

1 -PI - (1 - 70)(1- P f )
+ IP2-PI1 sup 

T
~Cj .5 . i "  (70 - 7)(1 - P I )  + (1 - 70)(1 - P?)x 
?.?-I 

[ T T ] + ~  
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+ sup 
T

I ~ T ' T ~  

[(TO - 7)(1 - P:) + (1 - ~ 0 ) ( 1- P?)l C Y:-, 
[7T]+l  

T 

C v:-l 
[ ( T O  - ~ ) ( 1- P i ) + (1 - rO) ( l-Pf)]a2 [ T T ] I - ~  

X sup -

i - 5 ~ 5 ~ ~  T 

T 
5 sup

r I ~ T C T ~ 


C C.:-1 
[ r o T ] + l  

The proof for (3h) is analogous to (3f), using the fact that 

adding and subtracting 
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by the triangle inequality, and last by (3a), (3b), and (3g) we have 

[TTI [ T T ~  (7 - To)(TC &,?'t-l E - 1 7-
1 -P,"-5 sup 

[TI]  [771

C ?'?-I C Y;-1 

+ sup 
1P2 -PI  / ( T- ro)( l  - P:)T 

.ro<.i5f [TT] 

[ ~ o ( l- P i )  + (7 - 70)(1 - P?)l 2 ?'?-I 
I 

[ rT I

C Y,"_l
[To(l - P i )  + (7 - 70)(1 - P?)1u2 1 

X sup --

.rg<~si (1 - P 3 ( 1  - P i )  T 

1rTI 

C Y:-1 

+ sup 
(7 - T0)(T2 [.r,T]+l-

T 1 -Pz2 Tv O < r i  
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These prove Lemma 1. 

APPENDIX B: 

DERIVATION OF EQUATIONS (6) AND (7) 


For 1 5 T % 70,we have 

By (B.l) and the fact that 
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we have 

Yr- I "r 

where 
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Let 

(1- ~ 0 ) ( 1- P?) (P2- P1) ) and 

B y  ( B . I ) ,  the fact that 

and the triangle inequality, we have 

We add and subtract ( P 2 ( r )- P1)2[ ( r0- r ) n 2 ] / ( 1- /?;) in the fourth term and 
( P ~ ( T )- &)'[(I - 7 0 ) u 2 / ( 1- P2')] in the sixth term. B y  the triangle inequality, the 
fact that sup1 a2 - b2 1 5 sup1a - b 1 sup1a + b 1 ,  and Lemma 1, the preceding expression 
is bounded by 
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1 	 [ 7 0 T 1  
(70- r ) u 2

+ sup ( b 2 ( r ) - P l ) 2SUP - 2 Y : - ~ -
~ S T ~ T ~  r 5 r C ; ~ ~T [TT]+I I - P ?  

+ 	 sup 
(r0- 7 )(T 


1 ' 7 5 ~ ~  1 -Pf T S T 5 T 0  


This derives equation (6). 

For r0 < r 5 T,  we can write the residual sum of squares as follows: 
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By (B.3) and the fact that 

we have 

Let 

( T  - 7")(1-P?)(P2 -PI) To(l -P3(P2 -PI)" = (  
(T ~ " ) ( 1  

and hr = ( 
-7011-Pz) - -p:) ~ ~ ( 1P:) + (T- -")(I -P:) 

By (B.31, the fact that 

~o(P2.- - rOcT2 (T-P I ) ~ ~ ~ ( T  r ( l j ~ 2  
= A 3  ---

T O ( ~- p i )  + (T- T O ) ( ~- P:) 1 -8; + A' 1 - p i  ' 

and the triangle inequality, we have 

LTTI 

C, ?:-, 
(7-T0)ff2 

- A, 1 -PS + sup 
T , , ( T S ~  r0<7ci I 

T C, y:-,
r.r]+ I 
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We add and subtract (B1(r) - P1)'[r0u2/(1 - P?)] in the third term and 
(B1(r)  - P2j2[(7 - T~TO)CT~]/(I- P22) in the sixth term. Using supla2 - b21 5 

s u p a  - blsupla + bl, sup(a - b)' 5 (supla - bl)2, and Lemma 1, the preceding 
expression is bounded by 

5 	 T sup < ~ ~IS=^:-^^/ + / ~ L ~ ' i i - l e i l  ~ P ( ~ ( T ) - P ~ ~~ 

+- T ~ U '  
sup I(Bl(7) -PI ) '  -


1 -p; 7,,<75? 


+ sup (P,(T) - p,)2 	
(7 - 7,,)ff2 

7 0 < ~ 5 i  


+ 	 sup 
(7 - r 0 ) u 2  

sup I(Bl(7.j - P2)' -

7 1 -P ',,<.rSF 


+ sup lB'(7) - P21 
r0<'Ci 


= o,(l). 

This shows equation (7). 

APPENDIX C: 

PROOF OF THEOREM 1 


~f I iT- r01= O ~ ( I / T ) ,or equivalently 1 % - koJ= 0,(1), then for any q > 0, there 
exists an M < oo such that ~ r ( l i  - kol > M) < q.We shall prove this by using the 
contradiction argument. Suppose iTis not T-consistent; then there exists a sequence 
MT > 0 such that MT -3CO, (MT/T) -+0 as T -+ CO, and 

lim p r ( / i  - k,/ > M,) = a,  
,+a 


where a is a positive constant in (0,I]. 
N o w , l e t A = p 2 - P I , Z T = { 1 , 2  ,....,T } , D l T = { m : m E Z T , ~ n < k o - M T } , D 2 T =  

{ m : m E Z T , m >  k o + M T ) , D 3 T = { n ~ : n ~ ? Z Z T , k o - M r ~ m ~ k o + M T } .  
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Note that 

Because ko E D3Tr we have infmEDlTRSS,(nz/T) 5 RSST(rO) ,and the preceding 
probability is bounded by 

By using (B.2) and (B.4) in Appendix B, the right-hand side equals 

Using -inf x = sup(-x), sup(x + y )  5 supx + sup y, supxy 5 supx sup y, and sup x 5 


sup1 x 1 ,  the preceding item is bounded by 
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where 

by (3a) and (3c) of Lemma 1; 

m i l  -1 Yr-1 "t
A, = sup 5 sup = o,(l) 

n!EDlT  k" men,, ko -m ,,,+I k~

C ?I?- l C Y ? - I / ( k O  - nt) 
1 n f 1  m + l  

by the uniform law of large numbers in Andrews (1987, Theorein 1); 

A, = sup 
,,,EL),., 

+ sup 
mEDlr  

by (3a) and (3b) of Lemma I ;  

ko+ 1 
A,  = sup = o,(l) 

n1 " 

C ?I?- 1 
k,+ 1 
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by a similar argument as in AZ;  

+ sup 
I ~ I E D ~ ~  i 

C YF-1 
k"+ 1 n t T  l 

Because A,-A6 are o,,(l) and A2 is a positive constant, we have 

~ r ( l f f- k,l > M,) 5 Pr(o,(l) > A') fPr(op(l) > A2) +2Pr(A2 < 0) = 0. 

This means a = 0, which contradicts the original argument that a > 0. Thus .iTis 
T-consistent. 

To find the limiting distributions of ,dl(6,) and p2(e7), note that .iT- ro= 0 , (1 /T )  
and 



STRUCTURAL CHANGE IN AR(1) MODELS 125 

Thus, BI(eT)and fi1(7()) have the same asymptotic distribution. Similarly, fi2(e7) and 
fi2(70) have the same asymptotic distribution. 

Define 3, = c(E,: i 5 t ) as the sigma field generated by the past history of { E , } .  

Because {sf y,- ,,~,}FL~:I and { E ?  
- T are martingale difference sequences s , ) ~ = [ ~ ~ ~ ~ + ~  

with -
E ( ~ , y , _ ~ s , - , )= 0 ( t = l , 2  ,...,T ) ,  

Applying the central limit theorem for martingale difference sequences (see, e.g., 
White, 1984, ch. V)  and by (3b) aud (3c) in Lemma 1, we have 

This proves Theorem 1. 
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APPENDIX D: 
PROOF OF THEOREM 2 

To derive the limiting distribution of . fT  for shrinking shift, let PZT = PI + ( l l d m ) ,  
where g(T) > 0, with g(T) --t w and [ g ( T ) / T ]-+ 0 as T + cc . 

For T = TO + v[g(T)/T] and v 5 0, by (B.2) in Appendix B and the facts that 

(i) hr(7) = 
[TOTI 

T 

C Y:-1 

(iii) 
TO TI+^ -51, 

we have 

where B , (.) is a Brownian motion defined on R+ . 
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Similarly, for T = 70 + u[g(T)/T] and u > 0, from (B.4) in Appendix B and the fact 
that [v/(l  - P&)] -+ [u/(l  - P f ) ]  as T + CO, we have 

RSST(T) -RSSr(r0) 

where B2(.) is another Brownian motion defined on R+ independent of BI(.). 
Define r = u/(l - p?)  and apply the continuous mapping theorem for argmax func- 

tional~ (see Kim and Pollard, 1990). We have 

T(P2T - PI), 
(?, - rO)= ? = Arg min{RSS,(.r) - RSS,(7,)}

1 -P?  r 

= Argmax B3"(r) - l r l ) ,
2 

where B";(r) is a two-sided Brownian motion on R defined to be B"(r) = B1(-r) for 
r 5 0 and B'yr) = B2(r) for r > 0. This proves Theorem 2. H 

APPENDIX E: 

PROOF OF LEMMA 2 


Conditions (4a) and (4d) are special cases of (3a). Conditions (4e) and (4f) are identical 
to (3d) and (3e), respectively. 
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Because 

ykn 1 7-

,,'- -% 0 and 4-i --- C E, * uB(l),  
~ = k " + l  

by the continuous mapping theorem, we have 

Therefore 

where s = ( t- ko - 2)/(T - k o ) .  
To prove (4g), we use the triangle inequality, (4b)-(4e), and the facts that 

Then we have 

[TOT] [TO?-] T 

( P I  - 1) E Y:, + C EtYt-1 + C &.Yt-l 
[ T T ] + ~  [ T T ] +l I ~ o T l + 1  

sup /&7) -11 = sup 
Tr575T" _TC'rs7n 

E Y?-1 
[ T T I - l 
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(4h) By the triangle inequality and (4g), 

Conditions (4i) and (4j) can be proved by using an argument similar to that in (4b). 
(4k) For T E ST, 

where 

The proof is completed by utilizing (4a), (4e), (4i) and the following facts. 

(i) By the definition of ST, T / [ ( T- = o(1) for T E 3:.r o ) ~ I 2  
(ii) By the definition of 5; and by using the continuous mapping theorem, we have 

(41) By the fact that 
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and by (4j), 

T 

x Yr-,&r 

[;-TI+ 1 

sup lP2(7) - 11 = sup 
TEST &;T -+ T x Y?-I 


L.rl+i 

These prove Leinma 2. 

APPENDIX F: 

DERIVATION OF EQUATIONS (12)-(14) 


For PI < 1, P2= I ,  by (B. I )  in Appendix B, the triangle inequality, and the fact that 
supjab1 5 supalsupl b ,  we have 
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All six preceding terms above are o,(l) by Lemma 2. To show that the fourth term 1s 
also o,(l), we use the fact that (1 - p,)/(l + PI)= (1 - p,)2/(1- p f )  and the triangle 
inequality that sup1 a - b 1 = sup1a - c + c - b 1 5 sup1a - c 1 + sup/ c - b 1 ,  wlth 

I.oT1 

C v:-l 
[ T T ] +1 (1 - Pl)(70 - 7)g2

a = ( ~ 2 ( T ) - ~ , ) 2  , b =  , and 
1 +PI 

Conditions (4e) and (4h) in Lemma 2 imply that sup a - c 1 and sup1 c - b 1 are both 
o,(l). This derives (12). 

For T E 57, by (B.3) in Appendix B and the triangle inequality, we have 

In the third term, we use the facts that ( I  - P,)/(I + PI)= [(I - P,)2]/(1- P:) and 
the triangle inequality that la - b = a - c + c - 01 5 l a  - ci + lc  - bl, with 

Thus, the preceding equation is bounded by 
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All seven preceding terms above are o,(l) by Lemma 2 and by the definition of 8;. 
This derives equation (1 3). 

To derive (14), first note that for any positive constant c, 

where 

By (3b) and the fact that Y&/T5 0, plus the invariance principle that 

where B3(.)is a Brownian motion defined on R+, we have 

Additionally, we have 

(iii) sup l / ? 2 ( ~ O + ~ ) - 1 1  = o P ( l ) ;  
cER++ 
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From (B.3) in Appendix B, (4e) of Lemma 2, and (i)-(v) given immediately preceding, 
we have 

This derives equation (14). 
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APPENDIX G: 
PROOF OF THEOREM 3 

To show .ip- 7 0  = 0,,(1/T), it is sufficient to prove that A,-A, defined in Appendix C 
are all o,(l) in the case where iPli < 1 and P2 = 1. Now 

by (4b) and (4c) of Lemma 2; 

ili+ 1 
A, = sup = o,(l) 

mEDIT 

C SF-1 

by the uniform law of large numbers in Andrews (1987, Theorem 1); 

C Yr?, 

A, = sup 
i?,+ l + 1 

,?2ED,, Lo x J?- 1 C ??- 1 
boil m + l  k,+ 1 k , - M ,  

+ sup 
mED, ,  r 

k o + l  n i + l  



STRUCTURAL CHANGE IN AR(1) MODELS 135 

1 


( 4 4  and (4e) of Lemma 2; 

-- sup = sup 
n r t D 2 ~  m rnEDz, 

E Y:-I 

k,+ 1 


+ sup 
nzEDZr r

C Y?-1 C Y?-1 

(To prove that A 5  = op(l),  explicit formulae would be needed. I am not able 
to provide a general proof because of the unknown asymptotic properties of 
S U ~ , ~ ~ ~ ~ ~ ( C ~ + ~yf-l s ~ ) / ( ~ ~ + ,  under nonstationarity of y,. No study on the uni- 
form convergence under this kind of nonstationarity has been done in the literature. 
However, the referees and I believe that the result is true and intuitive.) 

Because are o,(l), thus .jT is T-consistent. 
To find the limiting distribution of pl(.jT), note that .jl - ro = O,(l/T) and 
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Thus, pi(?,) and p1(.r0)have the same asymptotic distribution. 

Because {ct  yt- 3,}12T1is a martingale difference sequence, with 


Applying the central limit theorem for martingale difference sequences and the fact 
that 

we have 
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To find the limiting distribution of B2(eT),note that . f T  - TO = OP(1/T)and 

Thus, B2(?T) and B2(r0)have the same asymptotic distribution. Applying (4b) and 
(4c) in Lemma 2, we get 

These derive the limiting distribution of pl(??)  and p2(?,) for fixed magnitude of 
break. 

To derive the limiting distribution of FT for shrinking shift, we fix p2 at one and let 
P I T = 1 - [ l / g ( T ) ] ,where g ( T )  > 0, with g ( T )  3oo and [ g ( T ) / T ]-+ 0 as T -+oo. 
Let v be a finite constant, and B I ( . )and B2(.)be defined as in Section 2. For T = + 
v [ g ( T ) / T ]and v 5 0, we have A7(7) = o p ( l )where I T ( 7 )is defined in Appendix B, 
and 
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CC 

exp(-s)dBl(sj uB.,( f), 
where ~ , ( f )  is a Brownian motion defined on R,. 

Because 

we have 

m 3 c 2 B ~ i ( f ) B l i V ~ land 
0 


Further, because 

and 

equation (B.2) in Appendix B becomes 
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Similarly, for r = .ro + v[g(T)/T]and u > 0, from (B.4) in Appendix B, we have 


Hence, equation (B.4) in Appendix B becomes 
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By the continuous mapping theorem for argmax functionals, we have 

This proves Theorem 3. 

APPENDIX H: 
PROOF OF LEMMA 3 

(Sa) By the fact that ( y , , , / f l )  a o B ( r o )and ( $ 1 ~ )= o , ( l ) ,we have 
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By Assumption (A2) that ~ ' s  are i.i.d., {E]x:=ko+l E,, > l} f~I  and 
{E,xit,:O+l E,,3r}:=ko+1 wlll both be martingale difference sequences with @:-'-I 

/ 	 T \ 

By the central limit theorem for martingale difference sequences and by the indepen- 
dence of the two martingale difference sequences given previously, we have 

I [ ~ 0 ' 0 ' 1  

(Sc) 	- 2 j1;-, = = Op(1);

T 2  1 


1 ['TI 1 I.7'1 I- I 

(Sd) 	 T 2 = - + p p:"
[T,T]+ I r=k,+l s = k O + l  

The first term converges weakly to [ u ~ B ~ ( T ~ ) ] / ( I  P,").-


Because Iyko/2/?;l= =
Op(l) and (1/2/?;)sup, ,kol~r~ op(l), the second term is 
bounded by 
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Last, because IP2I< 1 and E ,  are i.i.d. with finite fourth moment, we have 

By the uniform weak law of large numbers for dependent and heterogeneous processes, 

Thus, 

1 ['TI T - T~+ ~ ~ ( 7 ~ )  
u 2. 

1 -P," 

T [TOTI T 

(P2-1) C $ - I +  C & l Y , - l +  C E1Yt-I 
[TOT l + l  ['TI+ 1 [ ~ o T l + l

(5h? sup l b 2 ( 7 ) - 1 / =  sup 
[.oil TT €Z/  TEZ' 


E y?-1+ x )):-I

['TI+ 1 [ ~ o T l + l  

5 sup 
[.roTI+l + sup 

[rT]+ 1 

~ € 3 1  [TOTI . T E ~ ?  [%TI 

C YLI C ~ ? - l  
[l.T]-tl ['TI +1 
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Using the fact that 

the definition of E?,  (5d), and (5f), the first term is bounded by 

The second term is bounded by 

The last term is o,(l) by (5b) and (5d) of this lemma. Thus, S U ~ , ~ ~ ~ / ~ ~ ( C ~ )  - 1 = 

o1,(1). 

Because I = Op(l) and ( l / f i )  .sf= ol,(l), the first term is bounded yko/fiI 
- = ~ p ( ] ) .  


Further, because ,@-'-' E~s t )  = 0 and ~ar(X:l: , ,+~p;-'-' E, E,) 5
E ( ~ : I : ~ + ,  
u4/(1 - PZ2)< a,by the uniform weak law of large numbers for dependent and het- 
erogeneous processes (Potscher and Prucha, 1989; Andrew?, 1987), the second term 
converges to zero. This shows ( 5 ) .  
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To show (5j), by (5b), (5i), and the triangle inequality, we have 

by (54,  (5c), (5d), and (5i). 

= Op(~)op(1)= o,,(l) 

by (5d) and (5j). These prove Lemma 3. 

APPENDIX I: 

DERIVATION OF EQUATIONS (16)-(18) 


To show that (l/T)RSST(r) converges uniformly to a random flat line above u2 for 
T E Z r , it is sufficient to show that 

(i) (l/T)RSST(r) converges pointwise to a random value above cr2 for all r E ZL 
and 

(ii) ~u~,,,,,,~~I(I/T)RSS~(~~)(l/T)RSST(ra)l -% 0 for any rb,r,  E Zf.-
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To show (i), use Lemma 3 and (B.l) in Appendix B. For T E 3 f ,  PI = 1 ,  and 
lPzl < 1, we have 

(1 -P * ) ( l- 70 + B2(70TO))
3 u 2 +  u2> a'. 

1 + P ,  

To show (ii), use (B.l)  in Appendix B, the triangle inequality, and Lemma 3. We 
have 

1 
- RSS,  ( 7 , )  - - RSS, (7 , )7,,,:E:~ I T T 
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+ sup - I ) ~sup 
[r,T]+I 

-ii 0. 
~ < ~ t s I  7,tn< T 

This derives equation (16). 
For T = 70, 

This derives equation (17). 
To show that (1 /T)RSST(7)converges uniformly to a random linear function above 

g2for 7 E E;, it is sufficient to show that 
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(i) (I/T)RSST(T) converges pointwise to a random linear function above u2for all 
T E E: and 

(ii) SU~, , ,~(~/T)RSS,(T)- (1/T)RSST(7 + (l/T))l 50 for all 7 E 2:. 

To show (i), by Lemma 3 and (B.3) in Appendix B, we have 

To show (ii), use (B.3) in Appendix B, the triangle inequality, and Lemma 3. We 
have 
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~€5: SUP.LIP , b l ( ~ \ l ) ? +  (T -€6: 1b1(~+;) I ! ) ? )
7' 

+ 2  ;ta: ~ t z :sup l ~ ~ ( - + j ) - f i ~ ( ~ ) ( s u p  

+ 2 sup pl  T 1  -
Y171I &[7,; + 1 

- = Z J. -*-Ii , ; ) - ~ 2 1 ; : ! ~ 1 7 l  

sup -SUP (Bl (T + j) ~ f - r ]  
+ ,._-T - ,.-c~ Tc; L-_ 

-ii 0. 

This derives equation ( I  8). 

APPENDIX J: 

DERIVATION OF EQUATIONS (1 9)-(2 1) 


For = 1, lPzi < 1 and for T = TO - (n z /T ) ,m = 1,2,3, ..., and ( m / T )-+ 0 as T -+ 03, 
we have 
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where 

Further, because 

we have 

Therefore 

This derives equation (19). 



150 TERENCE TAI-LEUNG CHONG 

Using (B.1) in Appendix B, (Sa), (5b), and (5d) in Lemma 3, and (Ja)-(Jd), we have 

This derives equation (20). 
For 7 = 70+ (m/T), we have 

by (5d) in Lemma 3; 



STRUCTURAL CHANGE IN AR(1) MODELS 151 

(Ji) ~7€{1,2, ..},( rn/T)-30 lb,(TO+F) 11 = O D ( + ) ;SUP -

Using (B.3) in Appendix B, by (54-(5c) of Lemma 3 and (Je) to (Jj) given previ- 
ously, we can write the residual sum of squares as follows: 

This derives equation (21). 

APPENDIX K: 
PROOF OF THEOREM 4 

It is not difficult to show that i, is T-consistent by using a similar proof as in Appen- 
dixes C and G. We want to prove a stronger result that 

lim,, P ~ ( L# k , )  = 0. 
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Because i 5 ko + 0,(1), for any q > 0, there exists an M < zc such that P r ( f  -
k o  > M) < q. Therefore, 

P r ( i #  k , ) = P r ( ~ i - k , > M ) + ~ r ( l i - k , S M  and i f  k,) 

5 q + P r ( l i - k n 5 M  and i # k , )  

Let h l  (m) and h2(in)be defined as in equations (20) and (21), respectively. The pre- 
ceding probability is equal to 

where 

Because hl(m) and hz(m) are increasing with in, this implies every individual prob- 
ability given earlier is declining with m. Thus, the preceding term is bounded by q + 
MPr(h l ( l )  + llT< 0) + lMPr(h2(l)+ A,, < 0). 

Further, because h l ( l )  and h2(l) are positive and of order O,(I), there exists a T 
large enough such that Pr(h, ( l )  + A, ,  < 0) 5 q and Pr(h2(l) + A2,. < 0) 5 q for any 
q > 0. 

Therefore for any 7 > 0, P r ( i  # ko) 5 (2M + I )q  for all large T. 
Because M is finite, we have limT+,Pr($ = k,)  = 1 and plimbl(?T) = p! impl (~o)= 

PI = 1, plim j2(?T) = plim f i 2 ( ~ o )  = P1. These prove the consistency of PI and b 2 .  
To find the limiting distributions of and ,k2(pT), note that for any given real 

value x. 

lim ~ r ( T ( j , ( ? , )  - P, )  5 x) 
T+m 

= lim Pr ( T ( ~ , ( T , )  - P I )  5 x) l i n ~  PI ( f  = k,) 
T 1m T-Iv; 

+ lim Pr (T(P,  (t,) - P I )  5x i # k,) lim P r ( i  # k,,) 
T i m  T+rn 

= lim P ~ ( T ( / ? ,  (T,) - P I )  5 x). 
T-I 3c 

Thus, p l ( ? ~ )  and pl(r0) have the same asymptotic distribution. Similarly, j 2 ( t T )  and 
b2(7") have the same asymptotic distribution. By (5a)-(5d) in Lemma 3, we have 
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where B(.) and B ( . ) are defined in Section 2. These show the limiting distributions of 
PI(?,) and D2(?T) for a fixed magnitude of break. 

These derive the limiting distribution of pl and p2for fixed magnitude of break. 
To derive the limiting distribution of .iTfor shrinking break, we fix PI at one and let 

P 2 T  = 1 - [ l / m ] ,  where g(T)  > 0, with g(T)  -+ m and g(~)/fi -+ 0 as T + co. 
Let v be a finite constant and B(.), B,(.), and B2(.) be defined as in Section 2. 

For 7 = 70+ v[g(T)/T] and v 5 0, we have 

C Yf-1 

(iii) 
[ roTI+l  4 1; 

1 [ u 8 ( T ) 1 - 1  

(iv) - C yko-r - l  &ko-rm 0 
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Thus, equation (B.2) in Appendix B becomes 

RSS,(r) - RSS,(rO) 

[ T O T ]  [ T O T ]  

- 2 ( ~ r r- 1) 2 Y;-18;+ ( P ~ T- 1)' z Y?-I + op(1)  

[ T T ] + ~  [ ~ r ] + 1  


Similarly, for T = i0+ [ v g ( T ) / T ]and v > 0, by (B.4) in Appendix B and the facts 
that 

I 

= o,(l), 
[TOTI 

C, Y?-l 

(viii) 3 1, 
[TTI  zY?-1 

equation (B.4) in Appendix B becomes 
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Applying the continuous mapping theorein for argmax functionals, we have 

where B Y v )  is a two-sided Brownian motion on K defined to be B * ( v )  = B, ( -v )  for 
v 5 0 and B X ( v )= B z ( v )  for v > 0. 



You have printed the following article:

Structural Change in AR(1) Models
Terence Tai-Leung Chong
Econometric Theory, Vol. 17, No. 1. (Feb., 2001), pp. 87-155.
Stable URL:

http://links.jstor.org/sici?sici=0266-4666%28200102%2917%3A1%3C87%3ASCIAM%3E2.0.CO%3B2-B

This article references the following linked citations. If you are trying to access articles from an
off-campus location, you may be required to first logon via your library web site to access JSTOR. Please
visit your library's website or contact a librarian to learn about options for remote access to JSTOR.

References

Parameter Inference for a Nearly Nonstationary First-Order Autoregressive Model
J. Ahtola; G. C. Tiao
Biometrika, Vol. 71, No. 2. (Aug., 1984), pp. 263-272.
Stable URL:

http://links.jstor.org/sici?sici=0006-3444%28198408%2971%3A2%3C263%3APIFANN%3E2.0.CO%3B2-H

Consistency in Nonlinear Econometric Models: A Generic Uniform Law of Large Numbers
Donald W. K. Andrews
Econometrica, Vol. 55, No. 6. (Nov., 1987), pp. 1465-1471.
Stable URL:

http://links.jstor.org/sici?sici=0012-9682%28198711%2955%3A6%3C1465%3ACINEMA%3E2.0.CO%3B2-G

Laws of Large Numbers for Dependent Non-Identically Distributed Random Variables
Donald W. K. Andrews
Econometric Theory, Vol. 4, No. 3. (Dec., 1988), pp. 458-467.
Stable URL:

http://links.jstor.org/sici?sici=0266-4666%28198812%294%3A3%3C458%3ALOLNFD%3E2.0.CO%3B2-9

Recursive and Sequential Tests of the Unit-Root and Trend-Break Hypotheses: Theory and
International Evidence
Anindya Banerjee; Robin L. Lumsdaine; James H. Stock
Journal of Business & Economic Statistics, Vol. 10, No. 3. (Jul., 1992), pp. 271-287.
Stable URL:

http://links.jstor.org/sici?sici=0735-0015%28199207%2910%3A3%3C271%3ARASTOT%3E2.0.CO%3B2-C

http://www.jstor.org

LINKED CITATIONS
- Page 1 of 4 -

http://links.jstor.org/sici?sici=0266-4666%28200102%2917%3A1%3C87%3ASCIAM%3E2.0.CO%3B2-B&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0006-3444%28198408%2971%3A2%3C263%3APIFANN%3E2.0.CO%3B2-H&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0012-9682%28198711%2955%3A6%3C1465%3ACINEMA%3E2.0.CO%3B2-G&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0266-4666%28198812%294%3A3%3C458%3ALOLNFD%3E2.0.CO%3B2-9&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0735-0015%28199207%2910%3A3%3C271%3ARASTOT%3E2.0.CO%3B2-C&origin=JSTOR-pdf


Asymptotic Inference for Nearly Nonstationary AR(1) Processes
N. H. Chan; C. Z. Wei
The Annals of Statistics, Vol. 15, No. 3. (Sep., 1987), pp. 1050-1063.
Stable URL:

http://links.jstor.org/sici?sici=0090-5364%28198709%2915%3A3%3C1050%3AAIFNNA%3E2.0.CO%3B2-5

Limiting Distributions of Least Squares Estimates of Unstable Autoregressive Processes
N. H. Chan; C. Z. Wei
The Annals of Statistics, Vol. 16, No. 1. (Mar., 1988), pp. 367-401.
Stable URL:

http://links.jstor.org/sici?sici=0090-5364%28198803%2916%3A1%3C367%3ALDOLSE%3E2.0.CO%3B2-Q

Distribution of the Estimators for Autoregressive Time Series With a Unit Root
David A. Dickey; Wayne A. Fuller
Journal of the American Statistical Association, Vol. 74, No. 366. (Jun., 1979), pp. 427-431.
Stable URL:

http://links.jstor.org/sici?sici=0162-1459%28197906%2974%3A366%3C427%3ADOTEFA%3E2.0.CO%3B2-3

Tests for Parameter Instability in Regressions with I(1) Processes
Bruce E. Hansen
Journal of Business & Economic Statistics, Vol. 10, No. 3. (Jul., 1992), pp. 321-335.
Stable URL:

http://links.jstor.org/sici?sici=0735-0015%28199207%2910%3A3%3C321%3ATFPIIR%3E2.0.CO%3B2-K

Inference About the Change-Point in a Sequence of Random Variables
David V. Hinkley
Biometrika, Vol. 57, No. 1. (Apr., 1970), pp. 1-17.
Stable URL:

http://links.jstor.org/sici?sici=0006-3444%28197004%2957%3A1%3C1%3AIATCIA%3E2.0.CO%3B2-9

Cube Root Asymptotics
Jeankyung Kim; David Pollard
The Annals of Statistics, Vol. 18, No. 1. (Mar., 1990), pp. 191-219.
Stable URL:

http://links.jstor.org/sici?sici=0090-5364%28199003%2918%3A1%3C191%3ACRA%3E2.0.CO%3B2-A

http://www.jstor.org

LINKED CITATIONS
- Page 2 of 4 -

http://links.jstor.org/sici?sici=0090-5364%28198709%2915%3A3%3C1050%3AAIFNNA%3E2.0.CO%3B2-5&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0090-5364%28198803%2916%3A1%3C367%3ALDOLSE%3E2.0.CO%3B2-Q&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0162-1459%28197906%2974%3A366%3C427%3ADOTEFA%3E2.0.CO%3B2-3&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0735-0015%28199207%2910%3A3%3C321%3ATFPIIR%3E2.0.CO%3B2-K&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0006-3444%28197004%2957%3A1%3C1%3AIATCIA%3E2.0.CO%3B2-9&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0090-5364%28199003%2918%3A1%3C191%3ACRA%3E2.0.CO%3B2-A&origin=JSTOR-pdf


Fixed Accuracy Estimation of an Autoregressive Parameter
T. L. Lai; D. Siegmund
The Annals of Statistics, Vol. 11, No. 2. (Jun., 1983), pp. 478-485.
Stable URL:

http://links.jstor.org/sici?sici=0090-5364%28198306%2911%3A2%3C478%3AFAEOAA%3E2.0.CO%3B2-3

The Changing Behavior of the Term Structure of Interest Rates
N. Gregory Mankiw; Jeffrey A. Miron
The Quarterly Journal of Economics, Vol. 101, No. 2. (May, 1986), pp. 211-228.
Stable URL:

http://links.jstor.org/sici?sici=0033-5533%28198605%29101%3A2%3C211%3ATCBOTT%3E2.0.CO%3B2-%23

The Adjustment of Expectations to a Change in Regime: A Study of the Founding of the
Federal Reserve
N. Gregory Mankiw; Jeffrey A. Miron; David N. Weil
The American Economic Review, Vol. 77, No. 3. (Jun., 1987), pp. 358-374.
Stable URL:

http://links.jstor.org/sici?sici=0002-8282%28198706%2977%3A3%3C358%3ATAOETA%3E2.0.CO%3B2-P

Time Series Regression with a Unit Root
P. C. B. Phillips
Econometrica, Vol. 55, No. 2. (Mar., 1987), pp. 277-301.
Stable URL:

http://links.jstor.org/sici?sici=0012-9682%28198703%2955%3A2%3C277%3ATSRWAU%3E2.0.CO%3B2-R

Regression Theory for Near-Integrated Time Series
P. C. B. Phillips
Econometrica, Vol. 56, No. 5. (Sep., 1988), pp. 1021-1043.
Stable URL:

http://links.jstor.org/sici?sici=0012-9682%28198809%2956%3A5%3C1021%3ARTFNTS%3E2.0.CO%3B2-D

Testing and Estimating Change-Points in Time Series
Dominique Picard
Advances in Applied Probability, Vol. 17, No. 4. (Dec., 1985), pp. 841-867.
Stable URL:

http://links.jstor.org/sici?sici=0001-8678%28198512%2917%3A4%3C841%3ATAECIT%3E2.0.CO%3B2-U

http://www.jstor.org

LINKED CITATIONS
- Page 3 of 4 -

http://links.jstor.org/sici?sici=0090-5364%28198306%2911%3A2%3C478%3AFAEOAA%3E2.0.CO%3B2-3&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0033-5533%28198605%29101%3A2%3C211%3ATCBOTT%3E2.0.CO%3B2-%23&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0002-8282%28198706%2977%3A3%3C358%3ATAOETA%3E2.0.CO%3B2-P&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0012-9682%28198703%2955%3A2%3C277%3ATSRWAU%3E2.0.CO%3B2-R&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0012-9682%28198809%2956%3A5%3C1021%3ARTFNTS%3E2.0.CO%3B2-D&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0001-8678%28198512%2917%3A4%3C841%3ATAECIT%3E2.0.CO%3B2-U&origin=JSTOR-pdf


A Uniform Law of Large Numbers for Dependent and Heterogeneous Data Processes
Benedikt M. Pötscher; Ingmar R. Prucha
Econometrica, Vol. 57, No. 3. (May, 1989), pp. 675-683.
Stable URL:

http://links.jstor.org/sici?sici=0012-9682%28198905%2957%3A3%3C675%3AAULOLN%3E2.0.CO%3B2-Q

The Limiting Distribution of the Serial Correlation Coefficient in the Explosive Case
John S. White
The Annals of Mathematical Statistics, Vol. 29, No. 4. (Dec., 1958), pp. 1188-1197.
Stable URL:

http://links.jstor.org/sici?sici=0003-4851%28195812%2929%3A4%3C1188%3ATLDOTS%3E2.0.CO%3B2-P

Approximating the Distribution of the Maximum Likelihood Estimate of the Change-Point in
a Sequence of Independent Random Variables
Yi-Ching Yao
The Annals of Statistics, Vol. 15, No. 3. (Sep., 1987), pp. 1321-1328.
Stable URL:

http://links.jstor.org/sici?sici=0090-5364%28198709%2915%3A3%3C1321%3AATDOTM%3E2.0.CO%3B2-8

http://www.jstor.org

LINKED CITATIONS
- Page 4 of 4 -

http://links.jstor.org/sici?sici=0012-9682%28198905%2957%3A3%3C675%3AAULOLN%3E2.0.CO%3B2-Q&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0003-4851%28195812%2929%3A4%3C1188%3ATLDOTS%3E2.0.CO%3B2-P&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0090-5364%28198709%2915%3A3%3C1321%3AATDOTM%3E2.0.CO%3B2-8&origin=JSTOR-pdf

