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Time Series Segmentation: A Sliding Window Approach

CHIA-SHANG JAMES CHU

Department of Economics, University of Southern Cualifornia, Los
Angeles, Californta 96089

ABSTRACT

The aim of this paper is to present two on-line, sliding window segmentation
aigorithms. Detection nonstationarity is based on parameter fuctuations w..a
change point localization of the Akaike information criterion. Asymptolic prop-
erties of the proposed algorithms are analyzed. Specifically, the limiting distri-
butions are derived and the asymptotic threshold values are tabulated for future

reference. Finite sample simulations are performed to illustrate the usefulness of
these algorithms.

1. INTRODUCTION

The problem of segmentation of Piecewise statiopary time series fre-
quently arises in econometric maodeling. The parameters in an econometric
model are often subject to shift due to policy changes. For example, the'ex-
change rate volatility may depend on U .S. monetary policy regimes, that is,
nonstationarity of the variance in exchange rate time series. Such param-
eter shifts, if unaccounted for, will bias parameter estimates and forecasts.
Similar problems arise jn many applied sciences such as speech recagnition
system analysis and biomedical signal processing (e.g., electroencephalo-
grams). Engineering and statistics literature in this field are quite-exten-
sive; see [6, 29, 31), Handbook of Statistics (edited by Krishniah and Sen),
and references therein.

Segmentation consists of two interdependent steps: detecting nonsta-
tionarity and localizing change points. Generally, there are two types of
segmentation methods, methods based on one model and methods based on
two models. The one-model method {perhaps better known as the residual-
based approach) bases segmentation on significant deviations of the resid-
vals from its bebavior-should-be under the null model. Segmentation of
this kind only requires estimation of the null model. Due to its relative
simplicity in computation, the one-model segmentation procedures have
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been: widely used in practice. - Examples include the CUSUM segmenta-
tion of Brown et ol [11) and its variants such as the MOSUM {moving
sum of recursive residuals) of Baul and Hacki [8], later resumed by Chu ef
al. [12] and the OLS-CUSUM (cumulative sum of ordinary least sguares
residuals) of Ploberger and Kramer [24]. The main drawback of these seg-
mentation procedures is the power deficiency against alternatives in which
the parameter jump is orthogonal to the mean regressors [25, 12].

On the other rmnmmnnrm two-models approach bases segmentation on
some convenient measures of differences between twe models, which we
refer to as the reference model (hypothetical model before the change) and
test model (the model after the change). Two questions underlying the
two-models segmentation arise: first, how to identify the reference and test
models; second, how to measure the differences between the two models.
Several statistics have been suggested to measure the difference between
the two models, such as the maximal generalized likelihood ratic {max-
GLR}) of Appel and Brandt [4] and Quandt [27], Chernoff’s distance as
used in Basseville and=Benveniste {6], maximal Wald statistic (max-W) of
Hawkins 18], maximal Lagrange multiplier statistic {max-LM) of Andrews
[2], quadratic mean of the difference between the two spectra of Bodenstein
and Praetorius [10], and the fluctuation statistic of Sen {28] and Ploberger
et al. [23).

The first question arises because the model before and after change is
typically unknown, and has to be identified from the reference and test
window. There are many possibie selections concerning the location of the
-reference and test window in the literature; most of them can be classified
into the following four identification schemes (see Figure 1):

(1a) A fixed reference window and sliding test windows, e.g., Bodenstein
and Praetorius [10], in which the reference model is identified in a
fixed window of size, say k, and a sequence of test models is identified
from sliding test windows of the same size.

(1b) Growing reference windows and sliding test windows, e g., Appel and
Brandt [4] and Basseville and Benvenifte [6], in which reference mod-
els are updated in such a way that the reference window is always
adjacent to the test window of size A.

(e} A fixed (global} reference window and growing test windows, e.g.,
Ploberger et al. [23], in which the reference model is estimated from
the whole sample and a sequence of test models is identified from test
windows of increasing size.

(1d) Growing reference windows and shrinking test windows, e g., Andrews

: [2] and Deshayes and Picard [16], in which a sample split point k is
used to determine the location of the reference window {containing
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Fig. 1. Identification schemes.
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all the pre-k observations} and the test window {containing all the
post-k observations) such that the size of reference and test windows
always sums up to the size of the whole sample.

The fundamental difference is that {12) and (1b} permit on-line segmen-
tation, while (1c) and (id) do not. Since the change point localization
depends very much on the structure of the nonstationarity detector, the
choice concerning on-line or off-line is crucial. Specifically, in what way
should we implement a detection procedure—the first step in segmenta-
tion?, on-line or ofi-line? In light of the results in the sequential tests
literature, off-line detection is more powerful than the on-line detection
essentially because they use all of the data that will {ever) be collected.
However, there is a tradeoff, namely, the off-line detector offers a less ap-
peeling procedure in change point localization.

Off-line detection procedures based on identification scheme ( 1c) and
{1d} are well known in the econometrics and statistics literature; the max-
AGLR, max-W, and max-LM statistic use (1d}, while the fluctuation statistic
uses (Ic}. Identification scheme (1d) is well motivated by the alternative
hypothesis of a one-time parameter shift at an unknown point of time. This
alternative apparently excludes the possibility of multiple change points;
hence, it may appear questionable in practice to implement the max-GLR,
max-W, or max-LM detector because there can be more than one change
point. When multiple change points are present, these tests are poten-
tially insensitive to multiple changes because multiple changes could be
“absorbed” in the estimates of the variance of the process. However, from
a detection point of view alone, the one-time shift alternative is harm-
less since it is proved by Andrews [2] that the max-GLR, max-W, and
max-LM detectors all have nontrivial asymptotic power against quite gen-
eral alternatives, including a multiple change points alternative. The same
conclusion also holds for the Auctuation test. These celebrated results to-
gether with certain optimal properties of off-line detectors (16, 3, 7] seem
overwhelmingly favorable to an off-line approach.

The structure of the maximal type detectors only permits a maximum
likelthood estimator of a single change point; they can be rather mislead-
ing if multiple change points are present.! Motivated by the intuition
that on-line identification such as (1a} or {1b) appears more promising in
change point localization, applied researchers have been using some seg-
mentation algorithms that basically borrow the structure of the off-line
detector and implement it in an on-line fashion known as the sliding win-
dow approach. Although some success is documented, to the best of the

'In the econometrics and statistics literature, most of the previous work on change
point localization assumes single change point alternative; cf, {5, 18, 19, 21{.
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author’s knowledge, there is no formal analysis of the statistical properties -
of segmentation based on a sliding test windows approach.

This paper investigates asymptotic properties of segmentation that use -

fluctuation statistic coupled with sliding test windows, ie., identification
schemes (1a) and (1b}. The fluctuation statistic is studied because it Jeads
to a relatively simple asymptotic theory. The difficult question of opti-
mality is not addressed here, in part because we encounter an inherent
tradeoff between powerful detection and accurate change point localiza-
tion. This paper is organized as follows. In Sections 2.1 and 2.2, I derive
the asymptotic distributions of the detection procedures based on the slid-
ing fluctuation test for a simple autoregressive modei. Extensions to pth
order autoregressive models are considered in Section 3.1. Based on a mini-
mized Akaike information criterion, a procedure of localizing change points .
Is suggested in Section 3.2. Section 4 contains various wmu_:}_ﬂa.oa results,
and Section 5 ends the paper with concluding remarks. proofs are
contained in the Appendix.

2. AUTOREGRESSIVE PROCESS OF ORDER ONE

2.1. A FIXED REFERENCE WINDOW AND SLIDING
TEST WINDOWS

We copsider first the fluctuation detector with identification scheme {1a}
for a sinple AR(1) process. We shali refer to the segmentation procedure
based on a fixed reference window and sliding test windows as an FSw
procedure. In the next section, we take on identification scheme {1b}, and
use the GSW procedure to denote segmentation using growing reference
windows and sliding test windows. Let 3 = ey, +ent=12...,T,
where {¢,} is a white noise process. The prototype of the change detec-
tion problem can be formulated as Ho:ay = oy, for all t gl < 1. A
standard one-time change alternative hypothesis is that Hyey = o for
=12, . rlml<l;and o, = a; for ¢ = T+1,....T; |as} < 1, where r
is an unknown change point.

One can perform the likelihood ratio test of Hp against H,. Typically,
the parameters before and after change are unknown, and are estimated
using, say, the maximum likelihood principle. It can be shwn 2, 18]
that the likelihood ratio process indexed by the sample split point fi.e.,
identification scheme (1d)} has a well-defined imiting distribution in the
space of continuous functions C|0, 1}, known as the tied down Bessel pro-
cess. Moreover, it is well known that max-GLR, max-W, and max-LM
are asymptotically equivalent. These asymptotic results permit a formal
off-line detector. However, the detector considered in this paper is based
on the fluctuation statistic first proposed by Sen {28] and later extended
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by Ploberger et of [23] and Chu and White (14). The Auctuation statis-

tic assumes no particular alternative, and is computationally easier since
recursive 'algorithms for parameter estimates in linear models are often

-available.

We assume that the stochastic sequence {ve-15¢ /o.} obevs a functional
central limit theorem (FCLT). Formally, let {v; = V16,8 =2, T}y =
0, and define Sy to be the piecewise constant interpolation of

TH H r
.w.&m.,v H Qul c.. _mnw.w...._ua. (1)
H.IH vIT -1 m
so that

MQ.ISL.I

1
Sr{r) = — eru_ MU v, T €[0,1].
t=2

Throughout thig paper, we use the notation [z] and “=" to denote the
integer part of = and “weakly converges to,” respectively. Sy(r}is a random
element in DJ0, 1), the space of CADLAG {rctl) functions on interval [0, 1.
The FCLT assumption is that

Sr(r) = W{r), T € [0,1]j, {2)

where W(7) is the standard Wiener process and

1 LA

2 bim -
o ,..._Wmnvu..l_.m. Mﬁ; < 0o,

The FCLT requirement is weak and applies to a wide class of sequences
{yt-18:/0,}. For more details on the type of weak convergence, we refer
to {9, 26, 30].

The ¢ can be simplified under stronger conditions, such as €; is Gaussian

{sothate, and y,_; are independent} or 2 martingale difference sequence, i.e.,

Ele | By} =0and E(2 | Fiy) = o2, where F,_; is the g-algebra gen-
erated by {y._;, y;_,.. -}. These conditions imply that E(v,u_,) = 0, for
k # 0. It follows that E((Y7, v,)?) = Bl v] = Tl,02 E(2.,) =

(1/T -1)o%(1 — aZ)!. Hence, 02 =g}l -ad) 1.

The reference model of the FSW procedure is identified from the first

... window of size &, a subsample consisting of observations at t = 2, {T-

——he

3
[}
:
;
i
}
!
1
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1)h]+1, h e (0,17 2. Let the parameter estimate of the reference model be

-1

{T~1}h}+1 HT-134)4+1
an = M Yi-a M Yeye-1|, he(0,1/2)
=g t=2 :

The kth test model is identified from a wirdow of the same size h, con-
taining observations at t = [(T = Dhj+k+1, 2T - 1DR) + k. As we
vary k, we slide the window of size h forward to obtain a sequence of test
models indexed by k, k = 1,2,... T — 2{(T ~ 1)h]. Note that the first
test window is adjacent, not averlapping with the reference window. For 3
k=1,2....T~ 2UT - 1)A], define the parameter estimated from the ith o
test model as | ;

e

(T~ 1)h)4+k R T TS

Gpp = M Vi M Yele-1} - (3}

t=[{T~1}h}+k+1 t=|{T - 1)A]+k+1

Following the spitit of the fluctuation test, the deviations of test models
from the reference model, measured by the |a, , — ap|, should be insignif-
icant under the null hypothesis. Straightforward algebra shows that

T~ 13h]+k e TN

(Gip —8n) = > > u

- t=[(T~1}hl4-k+1. t=[{T-1)Al+k+1

-1

KT-1)A]+1 HT~1)8)+1
- MH @Wt~ M th
t=2 t=2
2A(T—1}A)+k 1 L2 - 1Ak (T~ 1))k
= > ¥ > u- > u
t={(T=1)h}+k+1 ‘ =2 t=2
(T=1)h)+1 - g
- M .SNIH M L
=2 t=2

To analyze the asymptotic properties of a discrete sequence {{&en -8},
we consider the constant interpotation of normalized (Gk.s ~ &n) and in-
vestigate its limiting behavior in space C[0,1]. For this, we introduce a
random function FSWr, = (T - AT = :?wxaexm»» —ap). In
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terms of St(-), we have

m..msﬂ"
(T~1)h}+k -1
k—1 T-1D4
=0 > /T -1 Q??- Lol g
t=[{T~ 1} h}4+k+1
2UT-1h)+k -1
k-1 T-1)a
- MU @_W.L\:HISE nmhﬂﬁﬁlg + :‘WIW _v
t={{T~ 1}h]+k+1
-1
HKT~1)hl+2
- T-1A
T X vAT-va) s (1T 3] @
t=2

The limiting behavior of FSWr4, in (4) can be established by using the
weak law of large numbers and the FCLT, as the following theorem shows.

THEOREM 1. Suppose that

(@) w = QoY=1 + &, jao] < 1, where {g,} is a white noise process with
finite second moment,

{b) the sequence {vi—16¢/0,} obeys the FCLT with fmite 062 = limy o,
/T =DEIE pvecsed)?), - __ :

{0 iz oo (LT — DAY STIIR AN | 42 1 02 unformiy in

T 0<T<1-2h foragivenh € (0. 1/2}, where N = {r-1 -
2[(T - 1)AJ}/(2 - 2k). Then

gwx m.ma_c. Um: FW,(7)],
#H—.....u.,ln:u..lz._i_ u....un_ ﬂmﬁa.__wpm__-w_ rﬁ z

where FWy,(7) = W(r + 2h) - W(r+ha) - Wik}
Theorem 1 permits contstruction of an asymptotic test;

: (T-1a5;
»u_,u.,..w_\,_w.w:?:z VT =1 me_n:l. - - ()

Note that we have replaced the unknown QW and g, in (5) with their con-
&2 and 7,, estimated from the reference window or the

sistent estimates oy
entire sample. This does not alter the conclusion of Theoremn 1. Cansistent
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estimation for &, is straightforward under the assumption that {e.} is
a Gaussian or martingale difference sequence. In practice, possible mis-
specification can cause {#¢}, and hence {:}, to be autocorrelated, which
makes the consistent estimation of oy a challenging task. In this sitya-
tiocn, some sort of vmﬁmSwrm&wm:n:w and autocorrelation consistent esti-
mation is called for, such as the Andrews’ automatic bandwidth proce-
dure {1).

The asymptotic threshold value can be determined from the probability
of FM;, (7} crossing a pair of constant boundaries since

. 4,. u .
ﬂ__J:Uﬂ0 l Bmimmfs_v & i fpax, [FWy(r)f > _&.

Given that the window size is & and that the false alarm rate is con-
trolled at a%, we can solve for the asymptotic threshold value 3 from
mu*:_m.xammc;l?_ [FWr{r)| > 8} = o%. The process FWy(7) is clearly
Gaussian with a continuous path. It is easy to see that the covariance
function of FW, {7} is Cls,7) =5+ 2h - min(7, s+ A). It follows that the
variance of FWy (7} is 2h. As the variance is constant, it is legitimate to
consider the probability of the FW, {7} process crossing a constant bound-
ary. However, this covariance function is nonstandard, which makes the
problem of solving boundary crossing probability difficult. Nevertheless,
Theorem 2 ‘below provides partial analytical solutions for the asymptotic
threshold value when 4 is constrained between 1/3 and 1/2, in which case
it is easier to deal with the covariance function. The theorem is not only
interesting in its own right, but useful in assessing the accuracy of sim-
ulations. The case of A < 1/3 is obviously of interest. Although we do
not have analytical solutions in this case, we can simulate the FW,{r} to
obtain asymptotic threshold values.

THEOREM 2. Let h € [1/3, 1/2) and hg = 1 = 2h/6h ~ 1.

1

Varh Jimica

1
VATh Jimics

un.ﬁ max  {FW,(r}} > mw = Eﬁm.avmlsnm? dm

TE{D1-2k]

+ pa( 8, Eumqsu,::_ dm,,

where

PUBm) = 1= Bl(8hho)™ V(6 ~ m) + (m+ Bk}
+expl=(B" —m?)/4h|@{(8hko)™ 2 ((m ~ 8)  (m + B)ho),
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aend

p2(f,m) = 1~ ®[(8kho) " M2((m + B) — (m - B)ho)]
+exp(—(8% ~ m®)/4R|® [ (8hho) M2((B + m) + (m ~ Bho)].

2.2. GROWING REFERENCE WINDOWS AND SLIDING
TEST WINDOWS .

Detection procedures based on the fuctuation statistic and identification
scheme {1b} can be analyzed similarly, although they yield quite different
asymptotics. Define the parameter estimated from reference windows to be

.

-1

KT—1}hj+k (T~ 1k)+k
Chp = MU Y1 M 123 121
=2 =2

The parameter estimated from sliding test windows is O 5, defined earlier
in [3]. The parameter fluctuation is then

(axn ~ axp)

-1

T -1l +k 2T - 1pAb+E (T-1)h1+&
=1 MU i M Et¥r-1 — M Et¥e-1
e=[{T~1)h)+k+1 t=2 =2
(e YA RN ! T -k
- M Vi1 M Eelfe-1
t=2 =2

-+

Suppose that we use the random function as in (4); a proof similar to
" Theorem 1 yields {{T" — 1}A]/VT ~ io2/oy) (Gxp ~ Br) = GWy({r) =
- WA{T+2h) ~ (14 (h/7+ R))W(r + h). Routine computation shows that for
§ <, the covariance fuaction of GW,(7) is given by (1 + (h/r + RI(s +
k) — min{r, s + k)], and hence the variance (1 + (/7 + k))h. The variance
of GMx(r) is not constant, and is always less than that of F Mp(r) for
all 7 > 0. This is owing to the device that. more informatjon is used to
update the reference model, and the accuracy of the reference parameter
estimate continues to increase until a change is detected. In contrast, the
FSW detector by construction discards the observations between the test
and reference window.

TIME SERIES SEGMENTATION 15T

a

Unlike FM,(7), it is not appropriate to consider a constant boundary
function to monitor the behavior of the GW,, {7} process, which means that
it is not appropriate for a test progedure based on the GM(r) process
to use constant threshold values. However, the normalized process {(r +
h}/{7+2h)]"/2GW (7} does have a constant variance, h. The normalization
factor [(7 + h)/{7 + 2R)] is precisely the ratio of the reference window size
to the total observations used tc identify both reference and test models.
The proof of the following theorem is quite similar to that of Theorem 1;
we omit the treatment here.

THEOREM 3. Given the same conditions as in Theorem 1, let

i/2

- (T -1 +{k-1) (T - 1}k o2 _ ~

Wy, = —= - 3
GSWr, AT - DA = (A1) NS (Bk,n ~ Gip)

Then .
T+ h
M IGSW —ICW
»n_.u..:.umww_qts_.__ G ﬁ_.._nvam_wmmuz ﬂ+M#ﬂD A (s

where GWr{r) = W(r +2k) - (1 + (/7 + A))W(r + k), h € (0, 1/2).

To initialize either the FSW or the GSW detection procedure, ene must
determine the window size k. It is advisable that the window size be
chosen such that the reference window is not contaminated, i.e., it does
nat contein a change point. This can be accomplished by applying off-line
tests for the constancy of the reference parameter. The consequences of
different A values on the segmentation performance will be discussed via
stmulations in Section 4.

3. EXTENSIONS AND CHANGE POINT LOCALIZATION
3.1. EXTENSIONS TG AR(p) MODEL

The previous analysis can be easily extended to autoregressive models
of higher order. Consider a stationary and causal AR(p) model, y, = ¥;¢+
&, t =1,2,....T, where Yo = (ye-1, 412+ Yt-p), & = (1,02, -, ¢p)
and £, is a white noise with finite variance o%. Again we assume that {Y/s,}
obeys the multivariate FCLT {22], i.e.,

[{(T—pir]+p

- ! =12 / T
Srin) = =0 M_ Vea=Wr),  refol (©
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r

T T
1
Q= lim — F > e Yie d |,
T/xT—p i ~H_wM~

and W(r)isa p-dimensiona) independent standard Wiener process. Let the

parameters estimated from a fixed reference window and from a sequence
of growing reference windows he

-1

- {T~p)rj+p UT—-p)h]+p
&y = MH u\hu\h M H\n,.wk
t=p+1 i=p41

HT~p)Al+ktp—1 Rl e RS TST

Bin = > v >, Y|,

t=p+1i =p+1

k=12, (T-p+1) ~2[(T~1}h). Also denocte the parameters estimated
from sliding test windows by

(T ~p)k|+k+p 1 2T - iR ke per

B = > yw > Y

t=[(T-ph]+k+p t={{T—p}k]+k+p

For a p-dimensional vector V, let [V = Mmax;=12..p1V;! be the norm of
V. We have the following theorem.

‘wmmommz 4. Suppose that

-

(@) w» = Yigo + ¢ 43 stationary and causal process, where {¢,) is g
white noise process with fintte variance, and

(b) the sequence { Yie:} obeys a multivarigte F, CLT,
. T T-phh ~ - - .

() limp oo (1/K(T — p)h)) SISty p uniformiy in
T € [0, 1-2h] for a gjven h, where N = ﬁﬁﬂlﬁvlmzﬂ.lh;:\?Img.

Let

FSWp, = :,u\wﬁl.!lhwui DM (g - 1)

)
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and

rn = [ AT =P+ (k +1) 12Ty s~
st = [ ) I=p 1 O 3 )

he(0,1/2,
Then under the nuii hypothesis,
et o M5 JESWo o e, I (o)
and
Max IGSWral =  sup (fIER ou 0
k=12, (T-p+1}~2{(T-p}a| reo—2a) ¥ T + 2k

where Dr = ﬂm_bﬂm". FW,(7n) = W(r +2n) - Wir+h) - W(h) and
CW,(r) = W(r+2h) - (1+ (h/r + RNW (T + k).

Several remarks are in order. First, it is necessary to estimate the un-
known matrix D7 to implement the FSW or GSW test. Under stronger
assumptions, e.g., Gaussian or martingale difference, Q can be stmplified
to the familiar autocovariance matrix [, a Toeplitz form of (AG -3 )
Hence, Dy reduces toT . ! and consistent estimation of T p is well known.
Second, asymptotic threshold values of the ESW or GSW proeedure can
be computed easily given the results in Sections 2.1 and 2.2 since

P{ sp :g,z__v&

tE{0,1-2]

V-P{IEW, (<8, forall 7 e 0.1 - 2]}

i

1

1 -[P{FW, (7} < g, forall r ¢ |p,1 — 24P (n

Hence, only asymptotic threshold valyes for univariate FW,, () need to be
tabulated.

3.2, LOCALIZING THE CHANGE POINTS

When the FSW or GSW test signals nonstationarity, the next mnm.v is
to localize the change points. If the parameter estimates from the kth
*sliding window are sufficiently different from the reference parameters for
the first time, the test rejects the stationarity and the detection procedure
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TABLE 1
_ 3 Critical Values of FSW Procedure for p-th Order Autoregressive Model
1 T
inly a positive alarm delay. _ A =010 A=015 A =020 h =033

dary point can be used to initialize the procedure of [ 10% 5%

. 10% 5% 10% 5% 10% 5%
localizing change points.

ESS,i1,, = et (B~ Yi#ss1.,)%, where Pe+1s and G40y, are the
barameter estimates from pre-s and post-s observations respectively. Seg-
mentation is done when s* — argmin(ESS,,, , + ESS,41,,) is achieved.
The detection procedure is resumed after the first change point is local-

Let ¢, be the time point when the detection procedure stops. To search a __ Pz w NM.WM HMWM ”M.mw H_www ”MMMW WNN“ wwww WWMN
change point from ¢ = P+1ltot =1, the sample needs segmentation | =3 1480 158 1793 1857 1938 2092 ‘295 2.485
{fromt=1to¢= ts), and is then divided into two portions by the split “ =4 1521 1617 17 1908 2002 2158 2347 2.547
point 3, s = p+41,... ¢, Change point localization cap be based on T3 1888 1645 1807 1951 g4 219 2418 g415
classical test statistics such as the meximal likelihood ratio statistic [4], ‘ ' = w ”.mqm Loay B9 1978 20e7 3y 2dm 2.659
' : ARl X st _ = 597 1693 1881  20m 213 2245 2510 270
max-LM or max-W. In this paper, the Akaike information criterion is _ =8 1616 1705 1900 202 255 2284 2544 2743
used, which is equivalent to minimized error sum of squares. Specifically, { =9 1683 1722 1992 opz 2177 2305 2584 2.763
We are minimizing the sum of ESSpy,, = Zimprt(® ~ Yidy41,)? and __ =10 1643 1738 1937 2080 288 2326 2607 279
|

-t ized. The reference window now contains observation t = s* L. .t of N TABLE 2
- - - P s i . : Critical Values of GSW Procedure
size [{t, —s*) /(T —s ), with reference barameters ¢, ., already identified ﬂ T P, Py o
in the localization stage. { ! ) =0 =0 =0. =0

10% 5% 10% 5%  10% 5% 10% 5%

1.030 1.108 1147 1.242 1.308 1.418 1.444 1.575
1.104 1.176 1241 1.328 1.417 1.513 1.57¢ 1.703
1.146 1.229 1.292 1.375 1472 573 1.647 1774
1.173 1.250 1.325 1.412 1.50% 1.608 1.696 1815
L202°  tonn 1.348 1.446 1.544 1.636 1.739 1.867
1.219 1.284 1.369 1471 1.569 1.664 1.769 1.897
1.235 1.208 k353 1.483 1.590 1.68% L.797 1.918
1.249 i.309 1.406 1497 1.606 1.702 1813 1.942
1.261 1.326 1.426 1.512 1619 1.712 1.840 1.952
= I 1.267 1.336 1.440 1.523 1.631 1.722 1.863 1.961

4. SIMULATIONS : .

We first simulate the univariate FW,(r) and ({(T+h) {7 +2h)]1/2 GW, (1)
Process to approximate asymptotic threshold values. For this, we partition
the [0, 1] interval into 3000 and 6000 subintervals of equal length, and
discretize the standard Wiener process using the GAUSS normal random
number generator. Simylated thresholds using finer 8000 partitions are re-
ported in the first row of Table 1. Although results using 3000 partitions
are not reported, the simulated critical values change very little from 3000
to 6000 partitions. Moreover, when 4 = 0.33, the simulated critical val-
ues with 6000 partitions are fairly close to the asymptotic values solved
for analytically using Theorem 2. The same simulation technique is used
to obtain critical ‘values of the GSW procedure. For future reference, we
also tabulate critical values of the FSW and GSW procedure for the higher

1
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finite sample size results regardless of the choice of window size. How-
ever, when the observations are highly correlated, we observe significant
finite sample size distortion (increasing false alarm rate) in the FSW apd
GSW procedures. Further inspection of Tabie 3 shows that the smaller
the window size (h = 0.1 or 0.2}, the greater the distortion. Heuristi-
cally, the parameter shift information contained in the sample is obscured
by the autocorrelation, and the more seriously autocorrelated the obser-
vation, thes more slowly the information is revealed. Morecver, since the
variance term Dr in Theorem 4 is estimated from the reference window
in the simulations, a slight estimation error for Dr will Breatly bias the

eter equal to 0.2, 0.5, and 0.8, respectively, and use the asymptotic critical
values in Tables 1 and 2 to check empirical sizes. Resuits are summarized
: in Table 3. It js interesting to note that when the data are moderately
L correlated (a < 0.5), both FSW and GSW procedures deliver satisfactory
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5 TABLE 3
Empirical Sizes of FSW and GSW Procedure
g a=02 a=05 a=08
s W% 5% 1% 0% 5% 1% 10% 5% _n\.m

”f, .FSwW:
) .w o h=010 9.50 4.90 06.380 10.50 580 1.30 16.80 12.10 5.00
M =0.20 11.00 4.80 100 10.30 520 1.00 1250 7.00 1.90
s, ‘ =1/3 950 450 0.80 990 5.10 110 1000 4.90 1.20
GSwW:

h=010 980 420 08 12% 650 170
=020 1120 470 090 1050 546 110
=030 1610 520 140 9.90 500 L.00

22.00 16.50 7.10
1520 8.00 3.00
1250 650 2.00

Note: 3000 observations are generated from an AR(1} process with AR coefficient
a. The aumber of replications is 2300.

detection statistic. Intuitively, a larger window size in the case of highly
correlated data improves’the accuracy in estimating Dr. An unrealis-
tic simulation has also been performed using the true variance instead of
the estimated variance from the reference window. Results (not reported
here) indicate that finite sample sizes of all choices of window size become
acceptable.

An important message from Table 3 is that as far as controlling the false
alarm rate is concerned, choose a larger window size for strongly dependent
observations. )

Turning to the finite sample detection power and change point localiza-
tion performance of the FSW and GSW procedure, we generate a sample
of size 3000 from two AR(1} processes: y, = 05y +¢ fort < [TH] and
Y =08y + &, for t < [TH], where ¢, is normal 1id{0,1) and b € (0,1) is
the location of the change point. We vary the window size & and the change
point as follows. First, in Table 4, we set the change point Iocated right
after the first reference window (b — kh = 0), cases most favorable to our
segmentation procedures. Second, in Table S, we let the break point fall
inside the first reference window (b - h < 0}, cases when the first reference
window is contaminated. Lastly, we consider a change peint outside the
first reference window (b— A > 0) in Tables 6 and 7.

As shown in Table 4, although the FSW procedure exhibits perfect
power, the performance of the FSW procedure in localizing ghe change
point crucially depends on the choice of k. Frem the seconl to fourth
column of Table 4, we observe the following:

g {a} The mean delay {mean segmentation point minus T x 4] when 4 =
u. . 0.1, 0.2, and 0.33is'8.4, 8.6, and 0.3 periods, respectively? indicating
: ‘ that larger window size siguificantly lowers the bias.

L o
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TABLE 4
Noncontaminated Reference Models (Most Favorable Alternative)
FSW Procedure GSW Procedure
h=2b h=h h=b h=5b h=5 h=1b
=0.1 =02 =1/3 =0.1 =02 =
Dectection:

Power 1.0 1.0 1.0 1.0 : 1.0 1.0
Segmentation:

Mean 3094 609.6 1001.3 312.1 6109 909.4
Std. deviation 46.9 40.8 324 471 36.1 36.6
1st quantile 208.0 599.0 992.0 299.0 600.0 899.0
Median 305.0 605.0 996.0 305.0 606.0 904.0
3rd quantile 320.0 619.0 1011.0 321.0 621.0 919.0
Maximal delay 401.0 291.¢ 209.0 541.0 3%4.0 240
Localization

% within £ 10 46.4 49.2 53.0 483 48.7 50.1

% within + 20 64.3 66.4 70.6 64.8 66.3 67.2

% within + 50 84.6 86.9 90.0 86.1 B7.9 88.0
Note: T = 3000 and the number of replications = 2500.

TABLE 5
Contaminated Reference Models
FSW Procedure GSW Procedure
=01; b=028; b=01; b =025

h=015 h=1/3 h=015 h=03 7
Power 1.0 1.0 0.7 X
Mean segmentation 3125 852.7 3205 762.1
Std. deviation 40.6 33.6 67.0 32.1
Ist quantile 300.0 838.0 300.0 750.0
Median 306.0 846.0 306.0 756.0
3rd quantile 323.0 861.0 324.0 769.0
Maximal delay * 3370 309.0 528.0 260.0
Localization

% within £+ 10 45.6 47.2 47.2 479

% within + 20 63.4 67.2 63.6 67.9

% within + 50 87.9 88 .4 84.7 89.0

Note: T = 3000 and the number of replications = 1000,

(b} The localization accuracy is increased with respect to the window size
in the sense of decreased standard deviation and a higher percentage
of estimated change points: within the interval of Th 4 g periods,
¢ = 18, 20, and 50. N

(¢} The maximal delay {maximal estimated change point minus Th) is
401, 291, and 209 for h = 0.1,0.2, and 1/3, respectively.

_ -
P
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TABLE 6
FSW with Noncontaminated Reference Models {Late Break Alternative}
< =035 R =07
. ‘h=61 r=02 adyp A=01 A=02 h=1/3
Power 1.0 1O 1.0 1.0 1.0 1.0
‘Mean segmentation 1442.3 14857 1508.8 2018.7 2047.6 2085.G
Std. deviation 254.2 1271 35.2 350.3 268.5 2207
1st quantile 1493.0 1489.0 1499.0 2084.0 200980 2099.0
Median 1504.0 1504.0 1505.0 2104.0 2105.0 2104.0
3rd quantile 1519.0 1515.0 15200 2119.0 2121.0 21200
Maximal delay 313.0 168.0 238.0 219.0 180.0 211.0
Localization
% within + 10 44.0 47.5 50.5 42,2 427 46.6
% within + 20 61.7 653 66.1 _ 590 59.0 83.6
% within + 50 80.7 86.1 88.2 80.0 K s 843
T = 3000 and the number of replications = 1000.
TABLE 7
GSW with Noncontaminated Reference Models {Late Break Alternative)
bz=05 b=07 i
h=01 h=02 h=1/3 h=0: h=o02 h =03
Power 1.0 1o 1.0 | N H 1o 1.0
Mean segmentation 1479.7 1488.5 1506.2 2025.0 2058.2 20569.7
Std. deviation 155.6 129.7 46.6 320.8 246.1 195.6
1st quantile 1498.0 14930 1499.0 2098.0 2094.0 2097.0
Median 1505.0 1505.0 1504.0 | 2105.0 2103.0 2105.0
3rd quantile 1521.0 1520.0 i51T.0 21200 ;21180 2119.0
Maximal delay 187.0 2870 349.0 174.0 1700 238.0
. Localization
% within + 10 -44.0 46.2 50.7 44.3 459 446
% within + 20 60.0 64.5 67.9 59.4 59.8 61.5
% within 4 50 81.9 845 87.6 78.5 787 814

Note: T = 3000 and the number of replications = 1900,

Similar results are observed in the GSW power simulations, i.e., the bias
and maximal delay of the GSW procedure decreases with respect to h and
the localization accuracy is improved with large window size. However,
when compared to the FSW procedure, we see that the change point de-
tection ability of the GSW is slightly less accurate than the FSW in terms

- of the maximal delay. Other statistics such as the estimated quantiles,

. mean, and standard deviations are rather similar. Note that the simulation
. environment here is set up in favor of the FSW procedure since the break
point is located right after the first reference window. Obviously, the in-

tuitive advantage of using growing reference windows to update reference
‘parameters disappears.

165

power and localization accuracy.
bias, lower standard deviation, and shorter
ated quantile statistids are similar.

we find that the detection power is improved,
reference model is misspecified, the closer the
end of the reference window, the higher the d
when compared to the FSW with &

indicating that if the first
change point is to the right
etection power.? Moreover,
=1/3and b=028 {change point at ¢ =
840), it is seen that the GSW and FSW perform similarly® This is owing
to the fact that the change point locations relative to the frst referen
window (the ratio of b to A in the third and fifth columns} differ very i
Results not reported here confirm
is from the right end of the reference window (i.e

the power. But we need not worry about this kind of misspecification since

it can be effectively avoided by applying off-line detection statistics to a
reference model.

Based on our simulations

so far, it seems that the FSW procedure out-
of detection power and location accuracy pro-

preper & in such a way that the change point is

close to the first reference window. In practice, this cannot be guaranteed.
It is therefore interesting to perform simulations j i .

of the sample (b = 0.7).
Table 6 summarizes simulation results for the
h, we observe higher localization accuracy when

FSW procedure. Given
b =05, confirming the

2However, when com

pared to the FSW with h — p = 1/3 in Table 4, with see that
misspecification in the

reference model results in a little deterioration in localization

accuracy.
3Note that the location of break points in the third column and fifth columns differs
by 80 periods. If we add ag to the fifth column’s mean

and quantile statistics, the
resulting figures resemble the third column.
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intuition that it is more difficult to localize a change point close to the right
end of the sample. On the other hand, given b = 0.5 or 0.7, the jarger the
window size, the smailer the bias and the lower js the standard deviation.
Moreover, it is interesting to note the nonmonotone relations between the
maximal delay and the window size. In particular, we see that A = 0.2
gives the shortest maximal delay. This seems to suggest & conjecture that
an optimal window size may exist in the sense of minimized maximal delay,
a well-accepted optimality criterion in the sequential test literature.

The results of GSW power simulations in Table 7 are similar to Tabie 6,
except that no information was obtzined on the potential optimal window
size. Comparisons of Tables 6 and 7 show that neither procedure dominates
the other. It appears that the GSW performs better than the FSW in
the case of smaller windows. Specifically, when b = 0.5 or 0.7, the GSW
with & = 0.1 yields smaller bias, lower standard deviation, and shorter
maximal delay, although the localization accuracy is comparable. However,
when k = 0.2, it is not clear which procedure performs better. This is
somewhat inconsistent with the intuition that the advantage of updating
the reference parameters in the GSW should lead to superior performance.
One possibility could be that our simulation sample is so [arge that the
mechanism of updating reference parameters actually gains very little. To
confirm this conjecture, we performed the same simulations with a smaller
sample size (T = 600 and h = 0.2) in favor of the GSW. Results not
tebulated here support the conjecture.

5. CONCLUDING REMARKS

We have analyzed the asymptotic properties of sliding test window seg-
mentation procedures (FSW and GSW) which base nonstationarity detec-
tion on fluctuation statistics and change point localization on the Akaike
information criterion. Their limiting distributions are dgrived and asymp-
totic threshold values are tabulated for future reference. Although the
discussions are limited to the AR models, techniques presented here can
be applied to general ARIMA models. Finite but large sample simulations
on the change point localization accuracy are performed to illustrate the
usefulness of the propesed segmentaticn algorithms. Major findings are
summarized as follows. .

{A) When the time series exhibits less autocorrelation, the choice of the
window size is pot crucial in the sense of controlling the false alarm
rate. On the other hand, if the time series is strongly autocorrelated,
the FSW seems to have better size performance than the GSW.

{B} Segmentation with a larger window size performs better than with
a smaller window size, provided that the reference window is not
contaminated.
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point is located near the end of the first reference window. .

(D) Localization accuracy deteriorates as the change point moves toward
the end of the sample.

APPENDIX
I. PROOF OF THEOREM } .

LEMMA A (Chu et al ({13]). Let X7 be a sequence of a random pro-
cess in D[0,1]™ converging in distribution (with respect to the Skorohod
topology) to a random process X in Cl0, 1™ (ie., the limiting process has
continuous path). Further, let D < hr < 1 be a sequence converging to
0 <h <1, and et kr:[0,1 — h] —.f0,1 - hr| be a sequence of maps such”
that sup, . 0,1-h} |KT(T) = 7| tends to zero. Then if Z7 is the rendom pro-
cess on b?L — h™ given by Z1 = X7(sr(r) + h7), we have Zy ='Z
where Z(7) = X(r+ h), forr € [0,1-h).

To prove Theorem 1, We first show that the first term on the right-hand
side’of (4), Sr{(k - 1/T - 1) + 2(i(T - DAY/T - 1)], weakly converges to
W{r + 2h). Put Xp{r) = S7r{r) and X{r) = W(r); we have X7 = X by
condition {b). Define Ay = (T-1A)/T-1, N = (T-1)=2[(T~1}h]/1-2h,
and xr(7) = [N7]/T—1. Observe that St{([N7}/T-1)+2h1} is a piecewise
constant interpolation of Srf(k~1/T-1) +2({T-1)A/T-1)) on Io, 1-24)
with interpolation nodes k — 1/N, k = L....2{(T - 1)A]. Since Kkr{r} -7
and hy — k as T —'o0, it follows from Lemma A that Srl(iNT))T - 1) +
Mb.ﬂw = S\T‘ + M.&.u. jl

Simiiarly, for the second and third terms on the right-hand side of (4),
one can prove that Sr{{[N7]/T - 1) + hy] = W(r + k) and Sp(hr} =
W), Since |57 TS s B0 /UT — DAY and [RET-0M
{(T — 1)h))! converge to the same limit o2 by condition (c), the theorem

v
follows from the continuous mapping theorem {9, p. 35].

Ii. PROGF OF THEOREM 2

Given that h € {1/3,1/2], the process FW,(t) is such that E[FW,(t)] =
0¥t and for s < t,5,t € [0,1 ~ 2h), Cov[FWh(s), Fws(t)] = s+2ht.
Conditional on FW,(0) = m, routine computations show that E[FW,(t))
FW, (0) = m] = (1 - t/2h)m, Cov[FW(s), FW,(t)|FW,(0) = m} =
25— (st/2h). This conditional covariance function thus satisfies the Markoy
property, that is, Cov[FWi(s), FWo{t)[FWr{0} = m] = u(s)(t), where
u(s) =sand vi{t) =2 {¢/2h). This suggests that we ean rescale the time
parameter [17} to characterize the conditional F Wi(t) process in terms of
a Brownian motion, as shown in the following _\mn.:dw. .

it ety i B

i
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LEMMA B.  Let h € [1/3,1/2]. Conditional on FW4(0) = m,

1 2 ” -
g&m&ha\mlbas\qﬁmv + ﬁ.ﬂ - H‘“a_ fe ED_ &om. mua = M...\m lm”..

PROOF. Let aft) = u{t)/v(t) = t/(2 - (t/2h)), which is monotoni-
cally increasing with ¢. The Zero-mean process (2 — {t/2R))W (a(t}) has
covariance 2s — (st/2h), for s < ¢. Since this is identical to the covari-
ance of conditional FW,(t) process, (2 — (t/2R))W(a(t)) + (1-(t/2h)m 2

E:ST:..STS. where “ 27 signifies equality in distribution. Put A =

(2 - (¢/2R)) so that A 3—{1/2n), 2]. We have

m - va W(a(t)) + T - %va SAWOTI2R2 - A)) + (0 — 1)m
VZRAW (A2 - 2)) 4 (4 - 1im
Vah2 x:\a{%lwI:mT

LS

1L

g+1 g+1

IEN

~ m
,\m}’m+ ] :AS._, an'l, 7~ LS.
where

1-24
=x"lp —
g=2x"12 umbammT‘ m.:l;

Lemma B shows that the conditional probability of the FW a{t) process
crossing constant boundaries £ is equal to the unconditional probability
of a standard Wiener process crossing linear boundaries. That is,

p(B.m) = mu:—uﬁw\.s_ > B, conditioning on FWy{0) = m,
" forsometc [0,1 - 2n)}
1-P{-8< FWa(tHrw,@)=m < 8}

1 2
ml.muﬁlhm.,\mmﬂggun*.ﬁwﬂlugs M._QW

=1=P{Br)2[~(m + §) + (m - B)8]
S W) < BMVH(B - m) + (8 + m)g))
: =P{W(8) > (8h)"?[(B—m) + (3 + m)6}}
N .+ P{(8RY [~ (mt ) - (m — B8] > w(e)) {Al)

il

K.
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mwuomnwmwwormr::wnrwnm aefnmnv_.ogmmnwomm@mronr boundaries is neg-,
ligible. _

To evaluate the two probabilities in (A1}, we borrow 2 result from Cuzik
(15] that P{W(r} > q + cr, forsome r < T} =1 - B(T-1/2g + 7)) +
exp(—2ac)B(T~1/%(~a 4 ¢T)). 1t follows that

Pi(B,m) = P{W(8) > (8h)~1/2{(3 - m) + {8 +m)8], for some § < ko)
=1 - ®[(8hho)T2((B - m) + (m + B)ho) A
+exp[— (8% ~ m?}/4h]
x ®[(8hha)~"*((m - B) + (m + Blhol],
and
P28, m) = P{(8h)"2[(m — ) — (8 + m)8] > W(6), for some 8 < ho}
=p{W(6) > 8R) " Y2((3 - m) + (8+m)8], for some 8 < ho}
= 1= ®[(8hk0) " /((m + £) — (m — B)ho]
+exp[— {82~ m?}/4h]
X { — (8hho) M2((8 +m) + (m — Bhy)].

The urconditional probability P{|FM,(t)] > B} is given by

1 2 3 2
B,m)e=™ hgn, p1{B, m)e~™ [y,
Tk Jomies r(8,m) =4 . 1(8,m)
1 2
ym)e™ ™ /hge,
i _3_€ES )

+

(m]

Il PROOF OF THEOREM }

Let Sr(3 —p/T - p) = NVT=P)QV25) Ve j=py Lp+
2,...,T. Since *

-1

~ HT - phhj+k+p-1 AT -ph)+ktp-1
(P — On) = > Y'Y, > Ve
t=[{T-plhl+k+p t=[{T-p)h)+k+p
{(T-p}h}+p -t {T—-p)h)+p
PR Y el .
. t=p+1l, i=p+1




(T - p)aj

T Dr(@rn ~ dn)

~1
2{T—p)k]) +k+p—
MA.H. - ﬂwb_ I« i !
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Turn to the second part of the theorem.

_@ml.u% D:Y(Gn - 30)

The random function

= BN D DR

[2UT-p)h}+k+p—1

t={{T—p}hl+k+p

KT-phl+k+p—1’

- (T —ph] _1p
YT

[(T-p)h]+k+p—1t

(T —pHh|+k+p—1 -1

DR 47

t=((Tp)h]+k+p

|3

t=p+1

Ve~

HT-p)a}+k+p~1

> v

t=p4i

S YRR S
t=p+1 t=p+1
-1
{T-p)hj+p {(T-p)n
(-4 s ‘
Y et DR A7
- t=p+1 FM.
(T - p)h) 2(T~p)Aj+k+p—1 -t

Y, e L > vy

t=((T—p}h+i+p

x|, »|~+u=u,l.u§

vi A\T-p T-p
. k=1 [@-ph\] _(T-pn__,,
KT-p)k)+p -1
5 I \:% — ﬂvw&
I 3 vv| s :
t=p+1 T P

Similar to the proof of Theorem 1, let hy = [T - p)
N = (T —p) - 2(T ~ p)h|/1 - 2 and xr(r) = [N+}/T - p.
Lol(1/(T = phif) TPkt

+p

Yie

R/T — p,
Note that

=T +isp YV = I, — 0 in probability by

(¢} and Sp{{[N+} /T - P} + 2h7) is 2 piecewise constant int
on (0,1 — 2k of Sy((k — 1/T — p)
k-1/N1<k<(T-p+1) - 2[(
ter applying the FCLT and the continuous mapping theorem.

erpolation

+ 2(H(T — p)A)/T - p)) with nodes
T - p)&]; the proof is compieted af.

-1
HT—p)hl+k+p—-1

(2 P grrar, HM e
vT-p

t=p+4]

T-p)Aj+k+p—1

x M Y/e,

t=p+1

. | 2T-hlskp- -
- Q-1 ¥ Y'Y,
vT-p {T - p)#] t=UT—plhi+k+p
k=1 (T - k-1  [T-ph
< _ 5
X 27 H..'ﬂ..TM H._lﬂ .Mu; _H..luquT m..n!uu
_ 1 bl—\uﬁ;ﬂ :H,_ |Hu~uy
/T—p _AHIEEA_.*IH
. U(T-p)Al+k+p-1 -
x Y'Y,
(T - p)h] +k -1 _uumH
. Ss k-1 [T ph)

T-p T-p

. 2A(T—plhj+k+p—1 -t

T, . vy -
(T~ p)h) t={T-plh]+k+p

. (T=p)Al+k+p—1 -
[EEPTEr S DR 4 q A

t=p+}

— I,,T,




. and

the
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KT = p}h)/(T - p)r) + k-1 —, Rt + &,
result follows from the FCLT and the continuous mapping ﬁ.rmo:wu.
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