NONLINEAR TIME SERIES ANALYSIS
FOR DYNAMICAL SYSTEMS OF CATASTROPHE TYPE

Loren Cobb Shelemyahu Zacks

Department of Biometry Department of Mathematical Sciences
Medical University of South Carolina State University of New York
Charleston, SC 29425 Binghamton, NY 13901

1 Introduction

This chapter is concerned with a class of nonlinear time series models inspired by
catastrophe theory, a branch of differential topology. The nonlinear models of
catastrophe theory offer interesting modes of behavior that are not found in the usual
linear models of time series analysis. For example, the cusp catastrophe model exhibits a
phenomenon called “bistability,” which means that the state variable has two attracting
equilibrium points, separated by a repelling equilibrium point. Figure 1.1 shows a
bistable time series generated by a stochastic cusp catastrophe model. The two attracting
equilibria are at 1 (indicated by dotted lines), while the repelling equilibrium is at zero.

Figure 1.1 A time series generated by a bistable stochastic catastrophe model.
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Note the tendency of the process to remain for a while within the domain of attraction of
one attracting equilibrium, before finally moving past zero and into the domain of
attraction of the other.

Catastrophe models share with most nonlinear models the characteristic that their
qualitative behavior (e.g. the number of attracting equilibria) depends on their
parameters. Thus slowly changing one parameter of a catastrophe model can result in the
sudden appearance or disappearance of pairs of equilibria. Characterizing these
qualitative modes of behavior is, in fact, the subject matter of catastrophe theory.

The models of catastrophe theory are not statistical models, but we present a
method for deriving statistical time series models from the canonical catastrophes. The
resulting models would most naturally take the form

= 2 3 d
xt+1_eo+elxt+92xt + 63X, +.. +0,X] +U, (1.1)

were it not the fact that such models are, in general, neither stationary nor ergodic. This
is a major problem for the statistical analysis of such models, since.most methods assume
that their models are both stationary and ergodic. As Tjgstheim (1986) has remarked, the
task of finding nonlinear models satisfying these assumptions is far from trivial! In
Section 2 of this chapter we show that the source of the difficulty for models of the form
(1.1) lies in the existence of a periodic orbit in the deterministic version of these models,
and possibly uncontrolled oscillations. In Section 3 we present a modification of the model
that is both stationary and ergodic, while still retaining the essential characteristics of the
canonical catastrophe model from which it was ultimately derived. We consider in some
detail a special case of the modified cubic time series model, and analyze the maximum
likelihood estimators of its parameters. This article is designed to show that the array of
research problems that is opened up when nonlinear time series analysis is seen from the
perspective of dynamical systems theory is vast, and that straightforward applications of
results which are available in the statistical literature is not always possible.

2 Polynomial Time Series Models
2.1 Nonlinear Dynamical Systems

In this section we describe the varieties of behavior exhibited by the class of first-
order time series models that are nonlinear in their state variables, namely models of the
general form

X, =FO.X)+U, 2.1.1)
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where f is a function that is nonlinear in its second argument, and {U,} is a sequence of

independent and identically distributed normal random variables. Note that if f is linear
in its first argument, the parameter vector 6, then in statistical terminology it is a “linear
model.” In order to avoid confusion in the usage of the terms “linear” and “nonlinear”,
we shall call the models discussed here “time series models for nonlinear dynamical
systems.” For example,

X,, =a+bX +cX 2+ U, 2.1.2)

t+1

is a linear model for a nonlinear dynamical system, whereas

X, =X +U, (2.1.3)

t+1
is a nonlinear model for a linear dynamical system. Our interest lies with models of the
former kind, not the latter. Further, we shall restrict our attention in this section to the
behavior of the deterministic parts of these models. The stochastic behavior will be
reserved for Section 3.

The subclass of models of the form (2.1.1) in which f is a polynomial in the state
variable is of central importance in the description of the varieties of behavior that can be
exhibited by the entire class. This importance originates in the theorems of catastrophe
theory, which use the polynomial models as the canonical members of equivalence classes
of nonlinear models. However, the subject matter of catastrophe theory is the
classification of deterministic systems in continuous time, not stochastic systems in
discrete time such as (2.1.1).

The major topic of this section is the classification of nonlinear dynamical systems
as seen in catastrophe theory, and the additional considerations implied by the use of
discrete time in time series models.

2.2 First-Order Stochastic Dynamical Systems

A first-order dynamical system in discrete-time is characterized by the fact that the
rate of change of the state variable is dependent only on the current value, and not upon
previous values:

Axt = f(xt)At, 2.2.1)

where A is the forward difference operator (with interval At) defined by

X,. 2.2.2)

AXy =X A~ %y
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When this dependence is modified by the presence of additive stochastic noise, as in

AX, = f(X)At+U, U, ~N(Q,c%an, (2.2.3)

then we have a model which is an autoregressive nonlinear dynamical system. The
connection between (2.2.3) and the AR(1) model (as it is known in the time series analysis
literature) is evident if we let At = 1 and f(x) = ¢ + 0x, which yields:

Xt+1 = W+ (1+6)Xt +U,. (2.2.4)

Both equations (2.2.3) and (2.2.4) are examples of stochastic difference equations.

A first-order (non-stochastic) dynamical system in continuous time is charac-
terized by the differential equation:

)'(t = fx), (2.2.5)
where X is the time derivative of x. The corresponding stochastic differential equation is:

dX, = f(X)dt + cdW,, (2.2.6)

where W is the standard Wiener Process (Liptser & Shiryayev, 1977, pp. 82-88). The

close relationship between this system and the discrete-time system (2.2.3) becomes
apparent when we identify U, with OGAW : the continuous-time version is just a discrete-

time system with an infinitesimal At (see Stroyan & Bayod, 1986, for a rigorous deriva-
tion of stochastic differential equations from infinitesimal difference equations).

The theory of statistical estimation and inference for the continuous-time non-
linear systems (2.2.6) is quite well developed (Liptser & Shiryayev, 1977, 1978) in
comparison to the discrete-time nonlinear systems (2.2.3). The goal of this chapter is to
show that statistical estimation and inference for discrete-time nonlinear systems is both
feasible and practical, provided care is taken in the initial specification of the statistical
model. We restrict this exposition, however, to the special case of cubic models.

2.3 Attractors and Repellors in First-Order Systems
The class of nonlinear systems presents a dramatically greater variety of behavior
than the class of linear systems. Consider first the equilibrium structure. The equili-

brium points of (2.2.2) and (2.2.5) are defined as the points x such that Ax =0 or x = 0,
respectively, i.e.

{x: fx)=0}.
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{xfx)=0}. (2.3.1)

Clearly, if the system is linear and nontrivial then there is at most one equilibrium point.
A nonlinear system, by contrast, has as many equilibria as there are roots of f(x) = 0.

An equilibrium point is said to be repelling if the state variable eventually departs
from any arbitrarily small neighborhood of the point, never to return. Conversely, an
equilibrium point is said to be attracting if the state variable approaches the point asymp-
totically as t—eo, For example, the nonlinear dynamical system defined by

x = B(a-x)(b-x)(c-x), ©<0. (2.3.2)

has three equilibria, two attracting and one repelling, as depicted in Figure 2.1:

Figure 2.1 Trajectories of the system defined by (2.3.2). The
equilibria at a and c are attracting, but the equilibrium at b is
repelling.

The domain of attraction for an attractor is the set of points in the state space that are
attracted to it. Thus the interval (-e0,b) is the domain of attraction for a in the above
figure, while (b,ee) is the domain of attraction for c.

Now consider the discrete-time dynamical system

Ax = -6x3At, 6>0. (2.3.3)
This system clearly has an attracting equilibrium at x = 0, but what is its domain of
attraction? From Figure 2.2 we see that there is an interval (-A, A) within which the
system moves asymptotically towards the origin. However, given an initial position
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outside this interval the system begins oscillating about the origin with an ever-increasing
amplitude. We shall call such destructive oscillations an explosion.

5

L 4

L 4

-~ o
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Figure 2.2 A “cobweb” graph for two trajectories of the
system defined by Equation (2.3.3), from two initial positions:
3.1and 3.2, with = 0.2 and At = 1. The set {+V10} is a period-
2 repellor, while the origin is an attractor.

The boundary of the domain of attraction for the origin in the system (2.3.3)

depends upon 6. It consists of the set of points A such that if x,=Athenx , =-A.
Equation (2.3.3) is easily solved for these points:
A =2(2/0)2 At (2.3.4)

Notice that the set {-A, A} constitutes a periodic orbit (of period 2) for this system. It is
easy to see that this orbit is repelling, since any deviation from the orbit will cause the
system either (a) to move towards the attractor at the origin, or (b) to begin an explosion.
A periodic orbit that is attracting is also known as a limit cycle.

Repelling (or attracting) periodic orbits are not found in linear dynarhical systems.
The periodic behavior of the linear second-order system
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X1 = xt—ext_l, 2.3.5)

is neither attracting nor repelling, since any deviation from a periodic orbit of this
system results only in the establishment of a new periodic orbit of the same frequency but
different amplitude and phase. Thus the periodic orbits of nonlinear systems constitute a
form of behavior that is qualitatively different from anything seen in linear dynamical
systems,

These two examples illustrate the two most important characteristics of nonlinear
dynamical systems which are missing in linear dynamical systems:

(1) Multiple attracting and repelling equilibrium points.
(2) Attracting and repelling periodic orbits.

To describe the entire range of behavior of first-order nonlinear dynamical
systems, it will be necessary to introduce some additional terminology. In these notes we
follow in part the survey by Zeeman (1982). Suppose now that the state space S is R™. As
before, we are concerned with either differential or difference systems:

dx = f(x)dt or Ax = f(x)At. (2.3.6)

The collection of solutions {xt} for dx = f(x)dt constitutes a flow, which is a function

y:S—S such that Y (x) = x_,, or, stated a little more elegantly,

VW) = Ve , 23.7)

For systems in discrete time vy is often called a map instead of a flow, and is defined only
on multiples of At. Note that y, (x)) = X, + f(x)At. The fixed points of y ¢ 2re the

equilibria of the system.

An orbit passing through a point x is the curve described by y(x), forall t. In the
discrete-time case, the orbit is the set of discrete points encountered by y(x). An orbit is
periodic if Yr(x,) = x, for some 0 < T < oo and all points x in the orbit at any t. A period-n
orbit of a discrete-time system consists of points x such that Voad® =x, but g\ (x) #x

forall0<m <n.

A point x is non-wandering if for every neighborhood N of x and all t e R (all /At
e Z if discrete-time), there is an s > t such that N o \ys(N). The set of all such points is

the non-wandering set Q. The non-wandering set of a nonlinear system may include
equilibria as well as periodic orbits and non-periodic orbits.
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A subset A of the state space is said to be attracting if there is a closed neighbor-

hood N of A such that \yt(N) C Nforallt>0, and trjo ‘Vt(N) = A. Four kinds of

attractors are known, in general:

i. Point attractors (equilibria).

ii. Periodic attractors (limit cycles).

iii. Toroidal attractors (quasi-periodic orbits).
iv. Strange attractors (chaotic orbits).

Strange attractors are particularly important. A flow or map which contains a strange
attractor typically exhibits an extreme sensitivity to initial conditions, such that orbits
that begin close together rapidly diverge. This gives an unpredictable character to the
motion, which explains why it is called “chaos.” All of the nonlinear discrete-time
catastrophe models that we consider here are capable of exhibiting chaos.

The cubic dynamical system
X = 6y+0x+0,x>+ 93x3 (2.3.8)

may have from one to three equilibria; the number depends upon the parameter vector .

In the case of three equilibria, as in Figure 2.1, there are typically two possibilities for
the non-wandering set: an attractor surrounded by two repellors, or a repellor sur-
rounded by two attractors.

The discrete-time case,

AX = (8y+0,x + 0,7 + 8,0\, 2.3.9)

has a much more complicated non-wandering set. In addition to three equilibria, located
at the roots of the cubic polynomial, the non-wandering set can contain periodic,
toroidal, and chaotic orbits. An example of a chaotic orbit is shown in Figure 2.3, on the
next page. Note its characteristic pseudo-random trajectory.

Recall that the cubic dynamical systems (2.3.8) and (2.3.9) have one or three equi-
libria depending upon the parameters of the model. In general the structure of the non-
wandering set of a nonlinear dynamical is very dependent upon the parameters. As a
parameter is smoothly varied, the non-wandering set may undergo sudden changes in
composition, e.g. from one to two attracting equilibria, or from a toroidal attractor to a
strange attractor, etc. A catastrophe (in the broadest sense) is a transition in which an
attractor disappears from the non-wandering set. The cubic dynamical systems con-
sidered here are among the simplest nonlinear models which can exhibit catastrophes.
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Figure 2.3 A cobweb graph that exhibits chaotic motion. The
system is governed by Ax = -0.09(x-5)(x-1)(x+5)At, with an
initial position at x = 3, and At = 1,

A sufficient condition for chaos is the existence of a period-3 orbit (Li & Yorke,
1975). The boundary of the chaotic domain for “bimodal” maps (a category which
includes the polynomial systems considered here) has been analyzed exhaustively by
MacKay & Tresser (1985).

A cubic dynamical system of the form (2.3.8) with 685 < 0 may or may not have any

period-2 orbits. If it does, then one period-2 orbit is a repellor which encloses all of the
equilibria of the system. Lemma 2.1 (below) gives sufficient conditions for the existence
of such a period-two orbit. We provide the proof in complete detail because of the
importance of the existence of this orbit for the censored model presented in Section 3.

Lemma 2.1: Let X1 = ¥ (x)), where
\yl(x) =0+ 0X + a2x2 + 0(3x3, 0y < 0. (2.3.10)

If this system has at least one attracting equilibrium point, then it also has at least one
period-2 orbit, and the largest such orbit encloses all fixed points of 2%

Proof of Lemma 2.1: Let Yo%) = y,(y,(x)). Thus y, is a ninth degree polynomial,
say Yy(x) =B+ Byx + ... + [39x9. Notice that 8 = a34 > 0, and that all the fixed points of
V, are also fixed points of y,. Obviously, y,(x) — x = 0 has at most three real roots. We
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distinguish between two cases:

Case 1; \pl(x) - x = 0 has one real root of multiplicity 1;

Case 2: Y, (x) —x = 0 has three real roots (not necessarily distinct).

Case 1: If r is the unique attracting fixed point of ¥y then |\|!1’(r)| < 1. Indeed, as
is easy to check, if \pl’(r) < -1 then r is not an attractor. Moreover, \vl’(r) < 0;
otherwise, since Y, (x) — e as x—reo, the assumptions of Case 1 are violated. By simple
differentiation, we find that \vz’(x) = \yl’(x)\yl’(\yl(x)). Hence \uz’(r) = [\yl’(r)]z, and 0 <
y,’(r) < 1. Furthermore, \yz’(x) is a continuous function, such that W, (x) = 9(134)(8 +
O(x7) as x—oo, Hence, Js>r such that \|;2’(x) > 1 for all x>s. Let t be the point such that
Y,(t) = t. Thus t is a fixed point of y, which is not a fixed point of y,. Consequently

{t,\yz(t)} is a period-2 orbit of the system defined by (2.3.10).

. (3,3)

(-3,-3) r s t

Figure 2.4 The functions y, and y, are graphed here in thin
and thick lines, respectively, with wl(x) = -0.8x + 0.1x>. The
origin is the fixed point of y,. Note that y,’(0) = -0.8, and that
, has three fixed points. This illustrates Case 1 of Lemma 2.1.
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Case 2: Let the fixed points of Yy, ber,r, and r3, withr, <1, < 13 (see Figure
2.5). There must exist a point, say s, such that s < n and \Vl(s) =13, because 0y < 0. The
line labelled A in Figure 2.5 extends from (s,r3) to (r ,r3). But Y, (s) = Iy also, since
\yz(s) = \yl( \yl(s)) = \|!1(r3) =13 Now the fact that [39 > 0 implies that there must exist a
point, say t, such that t < s and Y,(t) = t. The point (t,y5(1) is labelled C in the figure. A

similar argument using the line labelled B in the figure shows the existence of the point
labelled D. The points C and D constitute a period-2 orbit, within which lie all the fixed
points of ;.

(10,10)
D
A .
/
/| s
S’ NS
Cc
(-10,-10) Iy Iy .

Figure 2.5 The functions y, and y, are graphed in thin and
thick lines, respectively, with wl(x) = X — 0.04(x-5)(x-1)(x+5).
The period-2 orbit is {C,D}. This illustrates Case 2.

(End of Proof)
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3 Nonlinear Time Series Analysis
3.1 Introduction

Three main questions are connected with the topic of nonlinear time series
analysis. One is related to the choice of model, the second with the estimation of the
parameters of the chosen model, and the third with assessing the statistical properties of
the estimators. The question of which nonlinear model to choose depends on the type of
data under consideration, and on the characteristics of the model. In the present paper,
we focus attention on cubic models of order one, with or without covariates. This class of
models is derived from the catastrophe models presented in Section 1. The general form
of the cubic time series (CTS) model without covariates is;

AX, = 8,+6,X +8,X2+0,x3+0U, (t=0,1,.), 3.1.1)

where {U; t=0,1,...} is a stationary stochastic process with mean zero for all t and a

specified correlation function. The general form of the CTS with k covariates is similar
to (3.1.1), with ’

k
8 = o + _leijytj, (i=0,1,2,3), (3.1.2)
J=

where { Yt-} is a given sequence of (non-random) k-dimensional covariates.

Unfortunately, models (3.1.1) and (3.1.2) are ill-behaved for the purposes of time
series analysis, since they are not, in general, stationary. The nonstationarity is due to the
finiteness of the domain of attraction—outside the domain of attraction the system
exhibits destructively increasing oscillations. There are several possible ways to over-
come this problem: (1) the cubic polynomial can be approximated with a piece-wise
linear function, or (2) the model can be modified so that it is polynomial on a finite
interval surrounding its equilibria, but changes to a different form outside this interval.
We have chosen the latter alternative, so as to preserve the close connection between these
models and the polynomial models of catastrophe theory. The former alternative is also
viable, as in the piecewise linear SETAR models of Tong (1980, 1983), but these models
lack the close connection to catastrophe theory that we are seeking.

In this section we present a class of “censored” polynomial models for time series
analysis. These models are ergodic, and manage to preserve almost all of the desirable
features of discrete time catastrophe models. We devote the remainder of this section to a
thorough analysis of a special one-parameter model with no covariates which, it is hoped,
faithfully reflects the essential difficulties that will be found in the more general models,

3.2 Properties
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3.2 Properties of a Special Cubic Time Series Model

Consider the CTS given by
X0 = (,
AX, = -wX2+0U, (t=0,1,2,.), (3.2.1)

with > 0, 5 > 0, and {Ut} an i.i.d. sequence of standard normal random variables. In
the deterministic case (6=0) there is one attracting equilibrium, at the origin. By Lemma

2.1 there is also a period-2 orbit at {-A,A}, where A = \j 2/®. All points in the interval

(-A,A) are attracted to the origin, while all points outside of (—A,A) are repelled towards
*oo. Thus the origin is an attractor, while the periodic orbit is a repellor.

Let g(x,t) denote the PDF of Xt' From the Markovian properties of the CTS
(3.2.1) we obtain

g(x1) = (o) o,
3.2.2)

g% = [ o [x-yroy’o)gyt)dy, (22),

where ¢(z) denotes the PDF of the standard normal distribution. One can prove, by
induction on t, that g(-x,t) = g(x,t), for all t > 1, therefore the distribution of Xt is
symmetric around the origin. Hence, all the odd moments of Xt are zero forall t = 0,

The variance of X, satisfies the difference equation:
Var[X,] = 0,
_ a2 4 2 6 _
AVar[X] = 6 - 20E[X "] + @ E[X}’], (t=1,2,..). (3.2.3)

This shows that Var[X | may grow very fast with t, if @ is sufficiently large. Indeed,
when t=1 we have X1 ~ N(O,oz) and

AVar[X,] = 6 - 60c* + 150205, (3.2.4)

This difference is greater than o whenever m > 6/1562. Moreover, if ® is large then A =

\] 2/w is small, and with high probability the stochastic process will rapidly exit the
domain of attraction (-A,A), and begin destructive oscillations towards *oeo, The
following lemma shows that the time required for the CTS (3.2.1) to exit the domain of
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attraction is stochastically smaller than a random variable having a geometric distribu-
tion.

Lemma 3.1: Let Xt satisfy (3.2.1), and let T A be the first exit time from the domain of

attraction (A,-A), where A =\ 2/®. Thus

Th= least t=1 such that Ith Z A, 3.2.5)

Then

P{1,>t} < [®(2ZcVw)], (), (326)

where ®(z) is the standard normal integral.

Proof of Lemma 3.1: Define the “defective” cumulative distribution function

Hixt) = P{X,<x, Ty 2t}, (t21). 3.2.7)
Notice that H(x,1) = ®(x/c). Because the CTS has the Markov property,

H(x,t) = f D( [x—y+0)y3]/6 h(yt-1)dy, (t22), (3.2.8)
-A
where h(x,t) = 0H(x,t)/0x. In particular, forallt =2,
A
H(A) = | B([A-y+ 0y 1/o Jh(y,t-1)dy. (3.2.9)
-A

It is easy to verify that

sup { A—y+oy> } = 2A, (3.2.10)
-ASy<A

Hence, from the monotonicity of ®(z), we obtain

A
H(A) < ©(2A/6) [ h(y,t-1)dy (3.2.11)
A

< ®(2A/c) [H(A,t-1) - H-At-1)].
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Notice that, from definition (3.2.7),

P{t,>t} = HAD-H(-A}) (3.2.12)
< H(A,t)
<

ORA/IO)P{ A > -1 }

IA

[®4/0) 1" P{1, > 1}
< [®QA/0) 17! [20(A/6)-1 ]
< [®QA/0) T

= [02¥YoVw) 1t (End of Proof)

Thus the first exit time T 4 is stochastically smaller than a random variable ¥
having a geometric distribution:

P{t" =1} = [1-02%%cVw) || 22¥%cVw) I, (t50). (3.2.13)
It follows that the expected first exit time from the domain of attraction satisfies

E[t, ] < 1[1-02¥%cVw) 1. (3.2.14)

If oV is large then this expectation is small and the first exit will occur rapidly.
Conversely, if 6Vo is small then the expected time to the first exit is very large.

In a similar manner we can show that, once the process (3.5) is outside the domain
of attraction, the time until the first entrance back into (-A,A) is stochastically greater
than the geometric random variable having a mean of 1/[1/2 — (D(-23/2/0\/(o)].

3.3 A Censored Cubic Time Series Model

In order to avoid the undesirable behavior of the unmodified cubic time series
model, we now consider a version which is “censored” within the domain of attraction,
namely

YO = 0,
+A
Yt+1 = [Yt— (DYt3 + OU[]A ’ (t = 0’ 1, 2: -"), (33.1)
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where A=N2/w, ®>0,020, and

+A A, x>A
[x] = x, -ASXx<A. (3.3.2)
A -A, x<-A

Like the uncensored model (3.2.1), the censored model is Markov, but unlike
(3.2.1) it is ergodic, with positive recurrent states. Oscillations of the censored CTS
(3.3.1) can occur at the points +A, which are the boundaries of the domain of attraction.

Moreover, if T*(A) denotes the number of trials needed to return to the domain of

attraction, given that Yt = %A, then T*(A) has a geometric distribution
P{t"(A)=k|Y,=2A} = PAI-FAN, (k=1,2,.), (3.3.3)
regardless of t, where

Y(A) = o2¥%ovVw) - 1/2. (3.3.4)

The transition cumulative distribution function for the censored process has two
mass points, at x = tA. Itis given by

px,y; ,0) = P{Y,  <x|Y,=y} (33.5)
0 if x <-A,
= @ [x—y+0)y3]/c ) if ~ASXxSA,
1 if x2A.

Furthermore, the cumulative distribution function of Yt’ G(x,t; ®,0), can be determined

recursively, according to these equations:

0 if x<-A,
G(x,1; 0,0) = D/0O) if -A<x<A (3.3.6)
1 if A<x,

G(x,t; 0,06) = I{x2A} + I{-A<x<A} G(-At-1;,0,0) O([x-A}/c)

A
+ ,( gy t-1 ;0),0)(D([x-y+0)y3]/o)dy + (1-G(A,t-1;0,6))D([x+A)/0) ],
-A

(3.3.7)

where I{"} is an indicat
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the stationary distribut
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(3.3.1).
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mp = mir

MT = ma

w*p = mir
Since |Yt| < (2/w)
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where I{*} is an indicator function and g(y,t; w,0) = dG(y,t; »,0)/dy.
The stationary distribution of Y, ie. G*(x) = tlim G(x,t), can be approximated by
00

the stationary distribution of a discrete Markov Chain obtained by partitioning (-A,A)
into N subintervals, and including two additional states corresponding to the points -A
and A.

3.4 Maximum Likelihood Estimators for the Censored Model

In this section, we present an algorithm for the determination of the maximum
likelihood estimators of the parameters (w,0) of the censored cubic time series model
(3.3.1).

Let ym = [y, .., Yyl be a vector of T observed consecutive sample values of the
stochastic process Y|, where Y is governed by (3.3.1). Define the random variables

mp = min{yl, ey yT},
M = max {yp s yrh
o*.. = min{ 2/m..2, 2/M,? }
T T? T I*
Since |Yt| < (2/(»)”2 for all t with probability one,
o< m*T. (3.4.1)

Thus, the likelihood function of (w,s), given the observed vector y[T], satisfies
L(w,0; ym) =0, forall v > m*'l“ Foroe (O,m*T), the likelihood function can be written

as
T-1

Loy = o Texpl - (y,, -y +oy, ) 207 ), (3.4.2)
t=0

with Y0 ={0. The value of the likelihood function at o* can be determined as follows.
Define

K, = {ty, =—~2e*)"? andte {0,1,..,T} },

K, = {t:y,= +2o*)?andte {0,1,..T} },
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K; = (=K) N (=K,).
Let Ji = IKil be the cardinality of Ki' Notice that Ji 20fori=1and 2, but J1+J2 2 1. Both
J, and J, are positive if mp. =-Mp. Thus the likelihood at 0*p is
Liw*0; yT) = o Ute*t-170) TTo( V(o pt-10) 73 expl -Q(o*p) 1,
ek, €y (3.4.3)
where

U@ = )%~y +ay?,
V(o) = +(2/co)”2 +Y, - wyt3, and

Q@) = X (¥, 7Y+ wyt3)2-
te K3

Notice that if K, is empty, then the corresponding product in (3.4.3) is equal to 1 by

definition.
The log-likelihood function Alw,o; ym) is, form < a)*T,
T-1
Mooy = -Tlogo- X (y,,, -y, + oy 4262 (3.4.4)
t=0

Ate = m*T we have

Mo*po; ¥ = X log o Ulw*pt-1)/0) + 2. log a( V(o t-1)/0)

te Kl te K2

~ I, log o - Q(u*)/20%. (3.4.6)

Note that U(m*T,t—-l) < 0 for all te Kl’ and V(w*.r,t—l) < 0 for all te K2, since |yt] <
/w2 for all t.

The Maximum Likelihood Estimator (MLE) of (v,0) is the point in [O,w*T] X

(0,00) at which A(w,o; y[T]) attains its supremum. In order to determine the MLE, we
find first a point (w,6) for which A(w,s; ym) attains its supremum over the subset (O,m*T)
% (0,00), i.e. we first ignore the possibility that @ = w*;. It is easy to check that the unique

point maximizing (3.4.4) is

= 1 * P
min{ o ™

__§>

=0
T-1
oy = [Z (g1 -
t=0
The maximal likelihood
Ay = MBp, 5 yUT
is then compared with th

A’z = sup X(m*T,

0<O<oo

If ?».1 2> 12 then the MLE
value of ¢ for which 12 i

Furthermore, due
P{ (J1>l) v (J2>1

Hence, for all ym such t

Mo,o; yIThH 1
=0
We show now th:
which X(co*.r,o; ym) att:
respect to o, and equat

equation

o = Qu* )l +

+ zl‘
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T-1 T-1
bp = min{ o*p, -Xy Ay / Ty Py if Xy Ay, <0,
=0 =0
=0 if X,y 4y, 20,
T-1
172
8, = [T, -y, +opdiT] (3.4.7)
t=0
The maximal likelihood
A = MBp 835y (3.4.8)

is then compared with the boundary likelihood

Ay = sup l(co*T,c; ym). (3.4.9)

0<0<oo

If A 24, then the MLE is (&r,GT), otherwise the MLE is (m*T,é*T), where c*.r is the
value of ¢ for which Ay is attained in (3.4.9).

Furthermore, due to the continuity of the distributions Gt(y), for |yl<A,
P{UpHu J>1} = P, c{“’* =} (3.4.10)

Hence, for all ym such that the event {J 1>1} ] {12>1} occurs,

Mo,o; yIT]) 1 ifo = o*,

0 otherwise.

We show now that, if J l+J2 < N, there exists a unique point c*T, in (0,00), for
which Mw* .1, 0; ym) attains its supremum. Indeed, partially differentiating (3.4.6) with
respect to o, and equating the derivative to zero, we find that o* is the root of the

equation

o* = Q* )i, + (o1y) { ZIU(e*pt-1)] o Ue*p,t-1)/0 ) / @ Ulw*,t-1)o)
teK
1

+ ZIV(m*T,t-l)l o( V(o*pt-1)/c ) / @ V(w*,t-1)/c) }. (3.4.11)
teK
2
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We see immediately that (c:r*T)2 > Q(m*T)/J3. Thus, when J5 = 0, there is no finite ML

estimator of 6. Moreover, if H¥(c) denotes the r.h.s. of (3.4.11), we see that H*(o) is
continuous, that H(0) = Q(m*T)/J3, and that

H*(6) < Q* /I, + o +1)) / {I(re* )2 @(-Qlsw* ') 1. (3.4.12)

As 600 the increase of the r.h.s. of (3.4.12) is approximately linear, while the Lh.s. of
(3.4.11) is quadratic. Hence there exists a unique root, o*., of (3.4.11).

3.5 Properties of the MLE for the Censored Model

We have seen in Section 3.3 that, with probability one, almost all realizations of the

censored model (3.3.1) attain the boundaries 1A infinitely often. Thus sooner or later,
with probability one, J,+], > 1, and w* [ = o', where ’ is the true value of w. Thus the

MLE of wis strongly consistent, i.e.

lim Pco’,c{ MLE{(w)=w"} = 1, (3.5.1)

T—oo

where MLET(m) denotes the MLE of , given ym. The likelihood function of o, under
o*p, Le. L(o*0; ym), satisfies the regularity conditions for consistency and asymp-
totic normality of MLET(c), as can be checked from (Basawa & Rao, 1980, pp. 122-125).
The asymptotic distribution of MLEr(m) is, however, not normal.

3.6 Discussion

It is noteworthy that the our maximum likelihood estimator (3.4.7) is, in many
cases, identical to the least-squares estimator

T-1 3 T-1 6
LSEy(0) = -3 vy, / T y5, (3.6.1)
t=0 t=0

and also closely resembles the maximum likelihood estimator for the stochastic
differential equation (recall that At = 1)

dy, = -y dt + odw,, (3.6.2)

namely

T
MLE (@) = -Jy;
0
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namely
T T
MLE(0) = -Jydy, /[ ySat. (3.6.3)
0 0

We have overcome the nonstationarity problem by censoring the model at its
largest period-2 orbit, and studied the properties of maximum likelihood estimators in a
simple special case of a censored model. We have not discussed here the asymptotic
distribution of the MLE of w. It is clear that the classical theory does not apply here
because of the non-ergodicity in the non-censored case. In the censored case simulations
have shown that the asymptotic distribution of the MLE of w is, apparently, a mixture of a
normal distribution and a singular mass centered at .

In the present paper we have considered only cubic polynomial models, inspired by
the cusp catastrophe model. More general polynomial models are available (see Cobb &
Zacks, 1985). Extending the results and methods of catastrophe theory to discrete time
stochastic systems is, however, quite problematic. The classification theorems of
elementary catastrophe theory (Poston & Stewart, 1978) apply only to continuous time
deterministic systems that have non-wandering sets which contain only discrete points.
The problem is not the distinction between stochastic and deterministic differential
equations—that is easily dealt with by restating the theory in terms of perturbations of the
deterministic part of the stochastic differential equation. The fundamental problem is
that one-dimensional discrete-time nonlinear systems do not, in general, have non-
wandering sets that contain exclusively discrete points. Even the simple quadratic model
Ax = a+bx+cx2 has a chaotic domain within its parameter space. Thus one cannot use the
theorems of catastrophe theory to claim the existence of an exhaustive equivalence
relation on discrete-time models of low codimension. However, one can use catastrophe
theory to motivate the selection of polynomial models for nonlinear time series analysis,
on the basis that the family of polynomial time series models does at least exhibit generic
bifurcations of its isolated equilibria—this much we can recover from catastrophe
theory. Elementary catastrophe theory is silent on the question of bifurcations to
periodic and chaotic orbits, which requires further mathematical research.

In summary, this is our approach: First, we claim that the family of polynomial
time series models is sufficiently rich in its range of qualitative behavior to justify its use
as the fundamental class of models for nonlinear time series analysis. Second, we show
that all the isolated equilibria of a cubic polynomial model lie within an enclosing
periodic orbit. Third, we show that by censoring the model at the enclosing periodic
orbit, we obtain a stationary and ergodic process. Fourth, we derive estimators for the
parameters this model that converge to the correct values with probability one.
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