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The size distortion of the Dickey-Fuller (Journal of the American
Statistical Association, 74, pp. 427–31, 1979) unit root test is examined
in the presence of structural changes in both the level and variance of
integrated time series. In contrast to previous studies, the empirically
relevant situation in which such breaks occur simultaneously is examined.
It is shown that the severe distortion observed for the Dickey-Fuller test
can be dramatically reduced via application of a simple rank-based method.
The simulation results presented are supported by an empirical examination
of the integrated nature of US inflation where differing inferences are
drawn using the Dickey-Fuller test and the rank-based Dickey-Fuller test.

I. Introduction

Examination of the order of integration of time

series data has become a familiar feature of applied

research in economics and finance, with the Dickey-

Fuller (DF) (1979) test frequently employed.

However, following the work of Perron (1989) it

has long been recognized that the DF test can have

low power when applied to series which are station-

ary but subject to a break in either level or trend.

It is therefore possible that non-integrated economic

and financial time series subject to structural change

may be mistakenly classified as unit root processes

on the basis of a DF test. In response to this failure

to correctly reject the unit root hypothesis, a large

literature has emerged examining the issue of unit

root testing in the presence of structural change

or regime shifts (see, inter alia, Banerjee et al., 1992;

Perron, 1989, 1990; Zivot and Andrews, 1992). More

recently, a converse Perron phenomenon has been

proposed, whereby structural change under the

null of a unit root results in the size distortion of

the DF test. While the results of Leybourne et al.

(1998) show the DF test to spuriously reject the

null when applied to unit root processes subject

to breaks in level or drift, the findings of Kim et al.

(2002) show this phenomenon is also apparent in

the presence of breaks in variance. These results

are of obvious importance to practitioners given the

prevalence of such structural change in economic

and financial data (see, inter alia, Aggarwal et al.,

1999; Kim and Nelson, 1999; McConnell and

Quirez, 2000; Sensier and van Dijk, 2004). In this

study the impact of structural change under the

null upon unit root tests is revisited, with two partic-

ular issues focused upon. First, the properties of the

DF test are examined when breaks in level and vari-

ance occur simultaneously. The empirical relevance

of this ‘joint break’ hypothesis has been noted

by Busetti and Taylor (2003) who recognize that

changes in the volatility of time series are often

observed in conjunction with changes in mean.
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Second, the properties of the rank-based DF test
of Granger and Hallman (1991) are examined. The
use of rank-based procedures is recognized in the
statistics literature as a means of achieving robust
inference. In this study it is examined whether appli-
cation of a rank-based procedure results in robust
unit root testing in the present circumstances.

This paper proceeds as follows. In Section II
Monte Carlo experimentation is undertaken to
examine the properties of the DF test and the rank-
based DF test in the presence of structural change
under the null. To provide an empirical illustration
to support the simulation results obtained, Section III
presents an empirical examination of the integrated
nature of a measure of US inflation. Section IV
concludes.

II. Monte Carlo Analysis

The familiar DF �� statistic tests for the presence of
a unit root via examination of the null hypothesis
H0 :�¼ 0 in the following model:1

�yt ¼ �þ �yt�1 þ �t t ¼ 1, . . . ,T ð1Þ

The rank-based DF test proposed by Granger
and Hallman (1991) simply involves replacing yt
with rt, where rt is the rank of yt in y0, . . . , yT.
Testing of the unit root hypothesis is then achieved
via examination of the null hypothesis H0 :�*¼ 0
in the model below:

�rt ¼ ��
þ ��rt�1 þ ��t t ¼ 1, . . . ,T ð2Þ

This test will be denoted here as �r. The �r test is
of interest as in addition to possessing greater
power than �� test (see Granger and Hallman 1991,
p. 219), the use of ranked data might be expected
to result in robust inference. To explore possible
robustness to breaks under the null, Monte Carlo
experimentation is employed using the following
data generation process (DGP):

yt ¼ �stð�Þ þ "t t ¼ 1, . . . ,T ð3Þ

"t ¼ "t�1 þ �t ð4Þ

�t � i:i:d: Nð0, �2
t Þ ð5Þ

stð�Þ ¼
0 for t � �T

1 for t > �T
� 2 ð0, 1Þ

�
ð6Þ

�2
t ¼

�2
1 for t � �T

�2
2 for t > �T

� 2 ð0, 1Þ

(
ð7Þ

The error series {�t} is generated using the RNDNS
procedure in the Gauss programming language.
All experiments are performed over 10 000 replica-
tions using a sample size of 100 observations with
"0¼ 0. The use of a sample of T¼ 100 follows
the seminal analysis of Leybourne et al. (1998).2

Denoting the break fraction as �, breaks in level
and/or variance can be imposed after observation
�T via selection of appropriate values of � and
{�1, �2}. In the present paper, previous research
examining break in variance is followed with �1¼ 1
imposed, and the break in variance set according
to the ratio of the post- and pre-break standard
deviations (	¼ �2/�1). Four sets of experimental
designs are considered using alternative combina-
tions of the design parameters {�, 	}. The first set
of experiments relate to changes in level only (� 6¼ 0,
	¼ 1), while the second set considers breaks in
variance only (�¼ 0, 	 6¼ 1). Although the perform-
ance of the �� test in these circumstances has been
considered previously in the literature, the properties
of the �r test have not been examined. The final two
sets of experiments examine the impact of simulta-
neous changes in level and variance (� 6¼ 0, 	 6¼ 1)
upon the �� and �r tests. Despite the empirical
relevance of simultaneous changes in level and vola-
tility (see Busetti and Taylor (2003) for discussion
of this phenomenon), the literature has yet to con-
sider the properties of either test in such circum-
stances. The two sets of experiments for joint
breaks differ according to the size of the breaks
considered. For all experiments, empirical rejection
frequencies are reported at the 5% nominal level
of significance. To the extent that these rejection
frequencies differ substantially from 0.05, size distor-
tion is present.

Level breaks

The properties of the �� and �r tests in the presence
of breaks in level only are examined by imposing
(� 6¼ 0, 	¼ 1) in the above simulation DGP. The
results obtained using the values �¼ {0.5, 1, 4, 8}
are presented graphically in Figs 1–4.3 The results
show that the size distortion of the tests depends

1 In this paper the DF test is considered when an intercept is included in the testing equation, as this specification is available
for the rank-based test.
2 Results for a single representative sample size are reported in the interests of brevity. Further similar results for alternative
sample sizes are available from the author upon request.
3 It was found that the absolute value of the break in level is of importance, with increasing and decreasing breaks of the
same magnitude found to have the same impact upon rejection frequencies.
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upon the size of the break imposed. While Fig. 1

shows little evidence of spurious rejection by either

test in the presence of a small break (�¼ 0.5), the

largest break (�¼ 8) leads to substantial false rejec-

tion of the null. The results also show that the ��
suffers greater size distortion than the rank-based

�r test, and that this distortion is maximized when

the break in level occurs after the first observation

in the sample period. Both of these issues are illus-

trated by the maximum rejection frequencies for

the two tests, these being 39.2% for �� and 9.6%
for �r when �¼ 8 and �T¼ 1.

Variance breaks

The properties of the �� and �r tests in the presence
of variance breaks of differing sizes are presented in
Figs 5–8. The sizes of breaks considered are given
by 	¼ {0.25, 0.5, 2, 4}. While the first two values
impose decreasing breaks in variance �2

2<�2
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,
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Fig. 1. Empirical sizes of the sl and sr tests (a¼ 0.5, d¼ 1).
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Fig. 2. Empirical sizes of the sl and sr tests (a¼ 1, d¼ 1).
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the latter two impose increasing breaks �2
2>�2

1

� �
.

From inspection of Figs 5–8 it is apparent that

decreasing and increasing breaks have very different

effects. Considering decreasing breaks, the findings

of Kim et al. (2002) are replicated with dramatic

size distortion observed for the �� test for breaks

early in the sample period. Again, the extent of

distortion depends upon the magnitude of the

break and its position. Under the current experi-

mental design, size distortion of the �� test is

maximized when 	¼ 0.25 and �T¼ 14, the observed

rejection frequency being 42.9%. The results for

the �r test show a similar pattern is followed in

the presence of decreasing breaks in variance,

albeit to a much lesser extent, with the corre-

sponding maximum rejection frequency for this

test being 15.76% when 	¼ 0.25 and �T¼ 20.

Turning the results for increasing breaks in vari-

ance (	>1), breaks early in the sample period

now generate undersizing, this again being more

apparent for the larger breaks considered. However,

this undersizing becomes oversizing as the break-

point is imposed later in the sample period.

Interestingly, it can be seen that the �r test suffers
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Fig. 3. Empirical sizes of the sl and sr tests (a¼ 4, d¼ 1).
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Fig. 4. Empirical sizes of the sl and sr tests (a¼ 8, d¼ 1).
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greater size distortion than the �� for these later
breaks.

Level and variance breaks I

In Figs 9–12 empirical rejection frequencies are
reported for simultaneous breaks in level and
variance when the sizes of the breaks are related
according to �¼ 2	, where 	¼ {0.25, 0.5, 2, 4}. In
Figs 9 and 10 breaks in level are imposed jointly

with decreasing breaks in variance. From inspection

of these graphs, the timing of the break is again

crucial with distortion greater for breaks relatively

early in the sample period. Under these circum-

stances, the �r test is more robust than the �� test

with less distortion apparent. As an example of this,

the maximum rejection frequencies of the two tests

are 43.2% (��) and 15.6% (�r), these occurring under

the more extreme joint break of (�, 	)¼ (0.5, 0.25).

These figures and the overall pattern of results in
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Fig. 5. Empirical sizes of the sl and sr tests (a¼ 0, d¼ 0.25).
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Fig. 6. Empirical sizes of the sl and sr tests (a¼ 0, d¼ 0.5).
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Figs 9 and 10 are very similar to those obtained

under breaks in variance alone, suggesting the

variance break to have a greater impact than the

break in level.

Turning to the results containing decreasing

breaks in variance presented in Figs 11 and 12, the

findings are again very similar to those presented

previously for breaks in variance alone. In particular,

early breaks are found to cause undersizing while

later breaks result in oversizing. Interestingly, the �r

test again exhibits greater oversizing than the �� test
although the extent of oversizing is substantially
smaller than that reported for the �� test in the
presence of decreasing breaks in variance.

Level and variance breaks II

To allow further analysis of the impact of joint
breaks in level and variance, Figs 13–16 present
empirical rejection frequencies when the sizes of
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Fig. 7. Empirical sizes of the sl and sr tests (a¼ 0, d¼ 2).
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Fig. 8. Empirical sizes of the sl and sr tests (a¼ 0, d¼ 4).
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the breaks are related according to �¼ 2/	, where
	¼ {0.25, 0.5, 2, 4}. This allows increasing breaks
in variance to be matched with smaller breaks in
level, while decreasing breaks in variance are asso-
ciated with larger breaks in level, thereby reversing
the above analysis of joint breaks. Considering the
results in Figs 13 and 14, it can be seen that despite
the presence of a break in level, similar results are
above the design considering increasing breaks in

variance in isolation. However, when the decreasing
breaks in variance presented in Figs 15 and 16 are
considered, very different results are obtained. In
particular it can be seen that the previously obtained
findings for level breaks are exacerbated, with the ��
test suffering severe size distortion. Indeed, for the
most extreme case considered with (�, 	)¼ (8, 0.25),
the �� test has an empirical rejection frequency of
98.6% when �T¼ 1. In contrast, the �r test is more

0.000

0.050

0.100

0.150

0.200

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Breakpoint

E
m

pi
ric

al
 s

iz
e

tau(mu) tau(r)

Fig. 10. Empirical sizes of the sl and sr tests (a¼ 1, d¼ 0.5).
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Fig. 9. Empirical sizes of the sl and sr tests (a¼ 0.5, d¼ 0.25).
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robust with a maximum rejection frequency of 11.7%
observed.

III. Empirical Analysis of US Inflation

To provide an empirical illustration of the above
simulation results, the integrated nature of a measure

of US inflation is examined. The data employed

are seasonally adjusted monthly observations on the

producer price index for the period January 1967

to December 1996 giving a total of 360 observations.4

Denoting natural logarithm of this series as pt,

the inflation series �pt is analysed. This series

has been selected as the results of Busetti and

Taylor (2003) show that it possesses a clear break,

4 The precise series used is the producer price index of finished goods excluding food.
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Fig. 11. Empirical sizes of the sl and sr tests (a¼ 4, d¼ 2).
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Fig. 12. Empirical sizes of the sl and sr tests (a¼ 8, d¼ 4).
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but overwhelming rejects the null of stationarity

when subject to break-robust stationarity tests.

Alternatively expressed, the series appears to possess

a unit root when the distortionary effects of level

and variance breaks are allowed for. To examine

whether the unit root hypothesis can be rejected for

�pt, the above �� and �r tests are employed in their

augmented forms, using 12 lags to overcome the

potential problem of serial correlation. The critical

values to employ for these tests are presented

in Table 1. The reported critical values are

obtained from Monte Carlo experimentation for

the augmented tests for the current sample size.5

The calculated statistics obtained are �2.89 for the

�� test and �2.11 for the �r test. Comparing these

values to the critical values in Table 1, the unit

root hypothesis is rejected when the familiar �� test

is applied, but the null cannot be rejected under

5 The reported critical values result from 50 000 replications of a standard unit root data generation process and application
of the described augmented unit root tests.
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Fig. 13. Empirical sizes of the sl and sr tests (a¼ 0.5, d¼ 4).
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application of the �r test, not even at the 10% level.
Indeed, the simulation experimentation employed
to calculate the critical values shows the rank-based
test to have a p-value of 20.3%.

IV. Conclusion

In this study the size properties of the Dickey-Fuller
(1979) and rank-based Dickey-Fuller tests have

been examined in the presence of structural changes
in both level and variance. The existing literature
on the behaviour of the Dickey-Fuller test has been
extended by considering the finite-sample distri-
bution of the test in the empirically relevant situation
when breaks in level and variance occur simulta-
neously. In addition, results have been presented
for the previously unconsidered rank-based test.
The simulation findings obtained show the applica-
tion of the proposed rank-based method of Granger
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Fig. 16. Empirical sizes of the sl and sr tests (a¼ 8, d¼ 0.25).
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and Hallman (1991) results in a substantially more
robust test in the presence of breaks under the null.
To illustrate the differing properties of the two
tests, an empirical analysis of the integrated nature
of US inflation was undertaken. The findings
obtained showed the unit root to be rejected by the
Dickey-Fuller test, but not the rank-based Dickey-
Fuller test. These results support the conclusions
drawn from the simulation analysis as the series
examined was found to possess a unit root by
Busetti and Taylor (2003) when subject to break-
robust stationarity tests. In summary, the findings
obtained in the present analysis show the use of a
simple ranking procedure to increase the robustness
of the simple Dickey-Fuller test. Combined with its
known greater power, the results of the present study
suggest this easily applied test may be of interest
to applied researchers in economics and finance.
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