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TESTING FOR A CHANGE IN THE PARAMETER VALUES 

AND ORDER OF AN AUTOREGRESSIVE MODEL 


BY RICHARDA. DAVIS,' DAWEI HUANG~ AND YI-CHING YAO 

Colorado State University, Queensland University of Technology 
and Colorado State University 

The problem of testing whether or not a change has occurred in the 
parameter values and order of an autoregressive model is considered. It  is 
shown that if the white noise in the AR model is weakly stationary with 
finite fourth moments, then under the null hypothesis of no changepoint, 
the normalized Gaussian likelihood ratio test statistic converges in distri- 
bution to the Gumbel extreme value distribution. An asymptotically distri- 
bution-free procedure for testing a change of either the coefficients in the 
AR model, the white noise variance or the order is also proposed. The 
asymptotic null distribution of this test is obtained under the assumption 
that the third moment of the noise is zero. The proofs of these results rely 
on Horvhth's extension of Darling-Erdos' result for the maximum of the 
norm of a k-dimensional Ornstein-Uhlenbeck process and an almost sure 
approximation to partial sums of dependent random variables. 

1. Introduction. The problem of detecting a change in the distributional 
structure of an underlying process has been extensively studied in the 
literature of quality control, time series, signal processing and dynamical 
systems. [See, e.g., Bagshaw and Johnson (1977), Basseville and Benveniste 
(1983, 1986), Picard (1985), Siegrnund (1985), Telksnys (1986), Tsay (1988), 
Willsky (1976) and references therein, where various settings and formula- 
tions are considered.] Often, in a fixed sample setting, the primary interest is 
to test that a change has occurred in the level and/or the covariance 
structure of the process, and if a change has been detected, then it would be 
desirable to estimate the location of the changepoint(s1. In a sequential 
setting, the objective is to stop the process and take corrective action as soon 
as possible after a change occurs while keeping the false alarm rate low. 

In this paper, we consider the problem of testing whether or not a change 
has occurred in the parameter values of an autoregressive model. This 
incorporates both possibilities of either a shift in the level of the process or a 
change in the autocovariance structure. 
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To set the problem up, let XI, .  . . ,X ,  be n consecutive observations from 
the model 

where r E ( p ,  nl, {ct} is a fourth-order white noise sequence, that is, for all 
i < j < k I l ,  

(1.2)(ii) 

p3 ,  i f i = j = k ,
(1.2)(iii) E(EiEjEEk)= 

0, otherwise, 

(1.2)(iv) 

and +(z) = 1- +,z - ... -+pzP satisfies the causality condition +(z) # 0 
for all lzl I 1. While we have assumed that p is known, it need not be the 
"true" order of the model (i.e., the largest p for which +p # 0). One possibility 
is to let p be an upper bound on the true order of the model. 

The principal objective of this paper is to study the asymptotic behavior of 
the likelihood ratio statistic in testing H,: r = n (no change has occurred) 
versus HI: r < n (a change has occurred) under the null hypothesis. Here 
likelihood is defined in terms of the Gaussian likelihood based on the ob- 
served data. It is common practice in time series analysis to use the Gaussian 
likelihood for inference-based procedures even though the underlying process 
may not be Gaussian. Of course, if the noise is Gaussian, then the Gaussian 
likelihood is the correct likelihood of the process. 

The asymptotic operating characteristics of the likelihood ratio statistic for 
testing a shift in mean in a sequence of independent normal variates was 
examined by Yao and Davis (1986). Using a result of Darling and Erdos 
(1956), the asymptotic distribution of the likelihood ratio statistic under the 
null hypothesis of no change was derived. By extending the Darling-Erdos 
result, Horviith (1993) considered the likelihood ratio statistic in testing for a 
change in both the mean and variance of normal variates. Using Horviith's 
extension of the Darling-Erdos result, the limit distribution of the likelihood 
ratio, under H,, is derived in Section 2 for the autoregressive model (1.1). By 
taking p = 0, this extends the Yao-Davis distributional result for testing a 
change in the mean in a sequence of independent nonnormal observations. 
(Of course, if the distribution of observations is known up to a location 
change, then a test based on the actual likelihood rather than the Gaussian 
likelihood should be used.) 
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In Section 3, we investigate the null asymptotic behavior of the likelihood 
ratio statistic when the orders of the AR model in (1.1)are permitted to be 
different before and after the changepoint. Also, the case when the white 
noise variance shifts at  the changepoint is considered under some moment 
constraints on ct. Additionally, an asymptotically distribution-free test is 
proposed whose asymptotic null distribution is obtained under the assump- 
tion that the third moment of ct is zero. 

A summary of a simulation study comparing the approximation of the limit 
distribution to the null distribution of the test statistics of Sections 2 and 3 is 
contained in Section 4. Overall, it was found that the limit distribution 
provides a reasonable approximation to the distribution of the test statistics 
for a variety of sample sizes and parameter values of the autoregressive 
model. 

The more lengthy proofs of the results in Sections 2 and 3 are contained in 
the Appendix. 

2. Gaussian likelihood ratio. In this section, we consider the limiting 
behavior of the likelihood ratio statistic for testing whether or not a change 
has occurred in an autoregressive process. Let XI,.  . . ,X,  be n consecutive 
observations from the model (1.1) and (1.2). 

For the present we shall assume that a 2= 1.Extensions to the case when 
a 2is unknown are discussed in Remark 2.3. In testing H,: r = n (no change 
has occurred) versus HI: r = k (a change has occurred at time k), the 
Gaussian likelihood ratio, conditional on the first p observations and after 
taking -2 ln, is given by 

k 
- min C (Xt - $o - OIXt- - . .  -+pXt-p)2 

4 t = p + l  

n 

- min ( X  - a, - ulXt- - ... -opXt-p)2
" t = k + l  

= Q 1 - Q2 - Q3,  

where 
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and 

1 Xk+,  	 xk ... x k - p + 2  

. . . 

1 Xn-1 Xn-2 . . . Xn -p 

Writing E, = (cP+ ,, . .. , E,)' we have under Ho, 

Xn = Mn$ + e n, 
so that, with an obvious notation, 

Q3 = E i E k  - E \ M ~ ( M ; M ~ ) - ~ M ; E ~ .  

Finally, setting Sk= Mi E k ,  Pk= (MA Mk)-' and Pk= (M; Mk)-l, we have 

To study the asymptotic behavior of the likelihood ratio statistic under H,, 
we rescale the time axis and consider the process Q,(t) := A,([nt]) ([s] = 

integer part of s )  on the set t E [O,l]. For the remainder of this discussion we 
assume that sup, E I E , I ~ +  for some 0 < 6 I 1 and the process {X,} is < a 
strongly mixing with a mixing function p(n) satisfying p(n) << n-(l+'X1 + 

for some E > 0 (see Remark 2.1 for sufficient conditions). The asymptotic 
behavior of Q,(t) is essentially governed by that of S[,,, and PI,,]. First note 
that, by the causality assumption and (1.2), S, is the partial sum of n -p 
uncorrelated terms from a p + 1-dimensional weakly stationary strongly 
mixing sequence with covariance matrix Tp + = [ yijli, j= , ,, + l ,  where 

i f i = j =  1 

Y . .  = i f i = l , j > l o r i > l , j = l ,  

E(XiXj), 	 if i > 1,j > 1,  

and p = EXi. Applying Theorem 4 in Kuelbs and Philipp (1980) to the 
sequence 5, = S, - S,-,, there exists a sequence {Z,} of iid Gaussian ran- 
dom vectors, defined on possibly a new probability space, with mean zero and 
covariance matrix rp+ , such that 
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for some A > 0, where Uk= c;=~+ It is immediate that ,Zi. 
(2.3) r;,!(, s[,.]/fi-+d w ( * )  


in DP+ I[o, 11, where W(.) is p + 1-dimensional Brownian motion with covari- 

ance matrix I,+,. 


Turning to P,, the (i,  j )  ( i  > 1 and j > 1) component of P,-' is 
x:=f Xp+ I-i+sXp+ Now, applying Theorem 4 in Kuelbs and Philipp 
(1980) once again to the strongly mixing sequence {Xp + ,- + Xp+ ,-,+-

E(XiXj), s = 1 ,2 , .. .}, which has the same mixing rate as {X,}, we have 
n -P 

C (Xp+ 1-i+sXp+l-j+s -E(xixj))-V(n -p) = O(n1l2-')
(2.4) s =  1 

as n -+ c~ a s . ,  
for some A > 0, where V(t) is Brownian motion with variance 

m 

Var(XiXj) + 2 Cov(X-,X-,, XS-,Xs-,). 
s = l  

Since this argument can be applied to all of the components of P,-l, i t  follows 
easily that  

(2.5) nPLnt1-+ t-lr;:l 

uniformly on [t,, t,], 0 < t, < t, I1.We conclude from (2.3), (2.5), the contin- 
uous mapping theorem and the observation, Pr,tl = Pi - Pr,fl,that  

in D[t,, t,] (I1 . I I  = Euclidean length of a vector). We record this result as the 
following proposition. 

PROPOSITION Let {X,} be a causal AR(p) process satisfying the differ- 2.1. 
ence equations 

Xt = 4o+ 41Xt-1 + "' + 4 p x t - p  + Et, -cC < t < co, 

where {E,} satisfies (1.2) with a 2= 1and sup, E I E , ~ ~ "  for some 0 < 6 I< a 
1. Further assume that {X,} is strongly mixing with mixing function ~ ( n )  << 
n-(1+EX1+4/S)for some E > 0. Then for the transformed and  rescaled likeli- 
hood ratio statistic Q,(t) = A,([nt]), where A,(k) is defined in (2.1), we have 
for 0 < t, < t, < 1, 

in D[ t,, t,], where W(t) is standard p + 1-dimensional Brownian motion. 
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REMARK2.1. There are many sufficient conditions on the distribution of 
the noise in order to ensure that { X , ) is strongly mixing. One such condition 
is for {&,I to be iid with a common distribution function which has a nontrivial 
absolutely continuous component [see Athreya and Pantula (1986a, b)]. Un- 
der this condition, it can be shown, using Theorems 16.0.1 and 16.1.5 in Meyn 
and Tweedie (1993) with V ( x )equal to the quantity defined in (4.4) of Feigin 
and Tweedie (1985), that the mixing function p(n) decays at  a geometric rate. 

REMARK2.2. To test that a change has occurred at time r E [nt,, nt,], it 
is natural to consider the constrained likelihood ratio test 

max A,(k) = max Q,(t) 

k 6 [ n t l ,  ntzl t € [ t l ,  t z l  


(2.7) II W(t) - tW( 1) 11,
-+d max 

t € [ t , ,  t,l t ( 1  - t )  

DeLong (1981) numerically computed the tail probabilities 

I 1  W(t) - tW( 1) 1 1 2
P [  max > b ] ,

t € [ t l , t Z I  t ( l  - t )  

while James, James and Siegrnund (1987) obtained an accurate large devia- 
tion approximation to the tail probabilities. Assuming Gaussian white noise 
with known variance, Picard (1985) proposed the above constrained likeli- 
hood ratio test as well as the weighted likelihood ratio test based on the 
statistic 

I+(k/n) [ +(I)  - +(k/n)I l2 
max An(k) ,

p < k s n  (k/n)(l  - k/n) 

where 4 is a suitably chosen function satisfying a regularity condition at the 
boundaries 0 and 1in order to avoid technical difficulties in the behavior of 
A, at  the boundaries. In practice, however, it is unclear how t,, t2 and 4 
should be chosen when no prior information is available about the location of 
the potential changepoint. This is why we believe that the (exact) likelihood 
ratio test A, = max, ,,,,A,(k) is a natural and useful alternative to 
Picard's tests. It is also clear that compared to the constrained likelihood 
ratio test, A, suffers a slight loss in power if a change has occurred between 
nt, and nt,, and in return, gains a little if a change has occurred near the 
boundaries [cf. Yao and Davis (1986) and James, James and Siegrnund 
(1987)l. While it is true that no test can effectively detect a change occurring 
in close proximity to either of the boundaries, it is possible to detect the 
changepoint even when the smaller of the pre- and postchange sample sizes 
is small compared to the total sample size. Indeed, in the case of independent 
observations, Yao, Huang, and Davis (1994) showed that for each member .i 
in a class of nonparametric estimators, .i - r = O(1) a.s. provided that 
min(r, n - r )  > C In n for some constant C. 
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We now consider the behavior of the (exact) likelihood ratio statistic A,. 
Since the limit process in (2.6) is equal to + m  at  the two boundaries 0 and 1, 
A,  will not converge without renormalization. As in Yao and Davis (1986) 
and HorvAth (1993),we establish a Darling-Erdos-type limit result for A,. 
This is the content of the following theorem whose proof is relegated to the 
Appendix. 

THEOREM Let {X,}be the process defined in  (1.1) such that under Ho  2.2. 
(no  change), { E , }  satisfies (1.2) with sup, E ) & , I ~ +"< for some 0 < 6 5 1, 
and {X,}is strongly mixing with p(n) << n-(l  +E)(1+4/" for some E > 0. Then 
under Ho , 

where A ,  = rnax, ,k , ,  A,(k) is the likelihood ratio statistic, b,(d) = 

( 2  In In n + ( d / 2 ) l n  In In n - In r ( d / 2 ) ) 2 / ( 2In In n )  and a , (d )  = 

J b n ( d ) / ( 2 l n l n  n )  are the normalizing constants and I?(.) is the gamma 
function. 

REMARK2.3. When the white noise variance a 2  is unknown, then the 
likelihood ratio statistic becomes 

1 
- 1 - --- max F 2 A , ( k )  
- n - p  p < k s n  

where e2= ( n  -P)-lQ1. SO a test based on this likelihood ratio statistic is 
equivalent to a test based on 

- a 2  

A n := -̂2  max a- 'A, (k) , 


a p < k s n  

where a large value of A ,  indicates significance. Under H o ,  
rnax, < ,  .,a-'A,(k) is scale invariant and hence has the same distribution 
as A ,  when a 2= 1.Moreover, a2/e2= 1+ O p ( n - 1 / 2 )under Ho so that the 
limit null distribution of ( A ,  - b,)/a, with a 2  unknown is the same as that 
specified in Theorem 2.2. 

3. Extensions. We now consider two extensions of the results of Section 
2. The first allows for the possibility of different orders in the autoregressive 
models before and after the changepoint and the second permits a change in 
the white noise variance before and after the changepoint. 

For the first extension, suppose that the process {X,} follows an A R ( p o )  
model before the change and an AR(p, )  after the change where p,  and p ,  
are known. As remarked in Section 1, we may take p, and p ,  to be upper 
bounds on the true orders of the AR models before and after the change, 
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respectively. If p, > p,, then the limiting null behavior of the likelihood ratio 
statistic will depend on whether or not the values of ... ,4povanish. 
Since this situation is less interesting in practice, we will not pursue this case 
here. Of course, by taking p = max(p,, p,), one could still apply Theorem 2.2 
directly to this case. So assuming that p o  < p,, the likelihood ratio statistic is 
maxp,< An(k), where 

k 

- min C (Xt - 4, - 41Xt-1 - ... -4poXt-po) 
2 

+ t = p o + l  

- min 5 (x,- a, - alX,-, - ... -aplXt-pl)2.
" t = k + l  

Note that the above quantity reduces to the An(k) introduced in Section 2 
when p o  = p ,  = p. The following result is an extension of Proposition 2.1 to 
the case p, < p,. 

PROPOSITION Under the assumptions of Theorem 2.2, if p, < p,, then 3.1. 
under H,, for 0 < t, < t2 < 1,we have 

a- max A n ( k ) + d  max + 

[ n t , l s k s [ n t , l  t I s t s t2  1 - t  


where Wl(t) and W2(t) are two independent Brownian motions of dimensions 
p o  + 1 and p ,  - p,, respectively. [The scale factor a-2 may be replaced by 
6-2= (n - po)/Ql; see Remark 2.3.1 

The proofs of all of the results in this section including the foregoing 
proposition are postponed to the Appendix. 

The limiting behavior of the unconstrained likelihood ratio statistic for the 
case p, < p,  is described in the following proposition. 

PROPOSITION Under the assumptions of Theorem 2.2, if p o  < pl ,  then 3.2. 
under Ho , 

P[(&-Z max An(k) - b,(pl + l ) ) / an (p l  + 1) 5 x 1 e ~ p ( - e - " ' ~ ) ,-+ 

p , < k s n  

where 6 is the estimate of a given in Remark 2.3. 
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We now turn to the problem when the white noise variance is allowed to be 
different before and after the changepoint. In this case the model becomes 

Xt = 4, f 41Xt-1 + "' f d'poXt-po+ Et, t --< 7, 
(3.1) 

= a. + alXt-, + ... +aplXt-pl+ E,, t 2 7 + 1, 

where r E (p l ,  n], {E,, t I7) is fourth-order white noise with mean 0 and 
variance at,{E,, t > 7) is fourth-order white noise with mean 0 and variance 
a: and p o  I p,. After taking -2 ln, the Gaussian likelihood ratio for testing 
r = n versus r = k, conditional on the first p, observations, is given by 

(3.2) A',(k) = ( n  -p,)ln G 2  - (k -p,)ln G$(k) - ( n  - k)ln G:(k), 

where G 2  = Q1/(n -pol ,  Gt(k) = Q2/(k - po), G:(k) = Q3/(n - k), 

Q1 = min C (Xt - 40- 41Xt-1 - ... -4p0Xt-po) 
2 

9 

+ t = p o + l  

k 

Q2 = min C (X, - 4, - 41xt-1- ... -d'poXt-po) 
2 

+ t = p o + l  

and 

Q, = min (X, - a 0  - a l x t - l  - ... - f f p l ~ t - p l ) 2 ~

" t = k + 1  

THEOREM Let {X,) be the process defined in (3.1) such that under Ho, 3.3. 
{X,) and {E,} satisfy the assumptions specified in Theorem 2.2. In addition, 
assume that 

p3 := E(ct3)= 0 and p4 := E(E:) = 3 a 4  (=  3a04) 

[i.e., the first four moments of st match those of a N(0, a 2 )  random variable]. 
Set A', := max{A',(k): (2po + 1) V p,  < k In - p, - 2). 

(a) Ifp,  = p, = p ,  then under Ho,  

~ [ ( h ' ,- b,(p + 2))/a,(p + 2) I x ]  -+ e ~ p ( - 2 e - ' / ~ ) .  

(b) If p, <p,, then under Ho, 

Clearly, Theorem 3.3 applies to the case when {E,) is Gaussian white noise. 
A modified test statistic may be formulated in case p3 = 0, but p4 # 3a4 .  
Using a Taylor series expansion and discarding the asymptotically negligible 
terms, a rough approximation to h',(k) is given by 

Now the limit distribution of this quantity depends on p4/a4 ,  which can be 
eliminated by replacing 2 a by p4 - a4. This leads to the test statistic given 
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by A: = max{A:(k): max(2po + 1, p,) < k In - p1 - 21, where 

A:(k) = 6-2(Ql- Q, - Q,) 

and 6 ,  = Q l / ( n  - P o )  and R ,  is any estimate of pq satisfying R ,  - p4 = 

op(l/&). 

3.4. 
{X,}  and Is,}satisfy the assumptions specified in  Theorem 2.2. Furthermore, 
assume that p3 := E ( E ~ )  

THEOREM Let {X , }  be the process defined in  (3.1) such that under H,, 

= 0. Then, under H,, 

P[(A: - b,(p + 2 ) ) / a , ( p  + 2 )  Ix] + e ~ ~ ( - 2 e - " / ~ )i f p ,  = p l  = p ,  

REMARK3.1. A constrained version of A: is r n a ~ [ , , ~ ,  [ n t 2 1A:(k) with 
0 < t ,  < t ,  < 1. It is not difficult to show that under H o ,this constrained test 
converges in distribution to 

I W ( 0 l 2 I W ( 1 )  - Wit)1 1 2  - w(l )1 1 2 ]
max ( + if P O  = P I  = p ,  

t 1 5 t 5 t z  t 1 - t  

if P O  < P I ,  

where W ( t )is standard p + 2-dimensional Brownian motion and W l ( t )and 
W,(t )  are two independent standard Brownian motions of dimensions p,  + 2 
and p ,  - p,, respectively. 

4. Simulation results. A small simulation study was conducted to com- 
pare the approximation of the limit distribution to the null distribution of 
some of the test statistics discussed in Sections 2 and 3. The three test 
statistics considered were (assuming po = p ,  = p )  

A ( 1 )  = 6-, max A , ( k ) ,
p<ksn 

A(2)  = max A',(k), 
2 p + l < k s n - p - 2  

A ( 3 )  = max A:(k), 
2 p + l < k s n - p - 2  

where A,(k), A',(k) and A?(k) are defined in (2.1), (3.2) and (3.3), respec-
tively, and 6 ,  = Q, / (n  - p )  (see Remark 2.3).The test statistics in (4.1)-(4.3) 
correspond to slightly different situations. The test based on A(1)was derived 
under the assumption of no change in the white noise variance after the 
changepoint, whereas the tests based on A(2) and A(3) permitted a change in 
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the variance after the changepoint. The test statistic A(2) assumes that the 
first four moments of the noise are the same as those of a N(0, a 2 )  random 
variable, while A(1) and A(3) are more distribution-free tests with A(3) only 
requiring a zero third moment. 

For the simulation study we took the noise { E , }  to be iid N(0, I), p, =p,  = 

1, 4, = 0 and used parameter values 4 = -0.9, -0.5,0,0.5,0.9 and sample 
sizes n = 25,50,100,200,500. For each combination, we computed 10,000 
replicates of the statistics A(l), A(2) and A(3). The empirical distributions of 
a l1(h(l)  - b,) and ai1(A(3) - b,), where the normalizing constants a, and 
b, are as specified in Theorems 2.2 and 3.4, respectively, were plotted 
together with the limit distribution exp(- 2e-"I2) for 4, = 0, 4, = 0.5 and 
n = 25,50,100,200,500 (see Figures 1 and 2). From these figures, one 
clearly sees the convergence of the sampling distributions to the limit distri- 
bution as the sample size increases. Also, note that the limit distribution 
provides a reasonably good approximation for all values of x and is particu- 
larly good for values of x > 6. The approximations are slightly better for 
small values of x when the at or 4, is assumed to be known. Tables 1and 2 
provide (empirical) type I errors for the test statistics A(1) and A(3) using a 
cutoff value determined from the limit distribution. In other words, the 

x 
PHI-.5 

FIG.1. Limit approximation to test statistic (4.1). 
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X 
P H I m . 5  

FIG.2. Limit approximation to test statistic (4.3). 

empirical probabilities of ~ [a ; l (A( l )  - b,) > xl- , I  and P[u;'(A(~) - b,) > 
xl- ,I were computed for n = 100, 4, = 0 and 4, = 0,0.5, where xl-, = 

-2 ln( -0.5 ln(1 - a ) )is the 1- a quantile of exp( -2 e P x12). 
We did not include plots of the empirical distribution of a,l(h(2) - b,) 

since the limit approximation tended to be considerably larger than the 
(a:-,)empirical distribution. This is in part due to the fact that &:
 may 

occasionally be very small for small k (large k), resulting in a (negatively) 
large value of In 6: (In a:-,). The approximation did become noticeably 

TABLE1 

Simulated type I errors using tests based on A(1) and 

A(3) with cutoff values x,- ,= -21n( -0.5 In(1 - a ) )  


(here n = 100, 4o = 0, 4, = 0) 


a 


Test Statistic 0.1 0.05 0.01 
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TABLE2 

Simulated type I errors using tests based on A(1) and 

A(3) with cutoffvalues x l - ,  = -2 ln(- 0.5 ln(1 - a) )  


(here n = 100, C$o = 0, 4 ,  = 0.5) 


Test 0.1 0.05 0.01 

Nu 0.103 0.050 0.008 
A(3) 0.107 0.049 0.008 

better as we restricted the values of k from the two ends, 1and n, in the 
computation of h(2). 

Figure 3 compares the empirical distributions of a i1 (h (3 )- b,) for n = 

100, 4, = 0, 4, = -0.9, -0.5,0,0.5,0.9 with the limit distribution. [The 
corresponding plots for A(1) are nearly the same.] Note that the quality of the 
limit approximation is reasonably good except when 4, = 0.9. At first glance, 
it might seem surprising that the two cases 4,  = -0.9 and 4, = 0.9 produce 
such disparate results. However, this phenomenon may be attributable to the 

X 
n-100 

FIG.3. Limit approximation to test statistic (4.3). 
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large variance of jl, the estimate of the mean of the process, when 4, is close 
to 1.[For example, under H,, jl is asymptotically normal with mean p and 
variance (r2/(n(l - Assuming that 4, is known to be 0, the difficulty 
in estimating the mean disappears and the sampling distributions of 
ai1(h(3) - b,), with h(3) properly modified, no longer exhibit this asymme- 
try for different signs of 4, (see Figure 4) . 

It is well known [Hall (1979)l that the maximum of an iid sequence of 
normal random variables converges to the double exponential distribution at 
a very slow rate. Our simulation study, however, shows that for moderate 
sample sizes, the double exponential distribution provides a reasonable ap- 
proximation for the null distributions of the statistics A(1) and A(3). Since 
the test statistics h(1) and A(3) are asymptotically distribution-free, the 
double exponential distribution is a valid limit for a variety of noise distribu- 
tions. In the special case that n = 100, 4, = 0, 4, = 0.5 and the noise is iid 
with a Laplace distribution, we found that the limit distribution is still a 
reasonable approximation to the empirical distribution of al1(A(3) - b,). 

In previous work, Yao and Davis (1986) and Horv6th (1993) considered the 
limiting distribution of the square root of the likelihood ratio rather than the 

X 
PHIO-0, n-100 

FIG.4. Limit approximation to test statistic (4.3), 
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likelihood ratio itself. Using Proposition A.l, it is easy to show that 

~ [ 2  'I2 - 2 p2(ln n) 5 x ]  + exp( -2e-'I2).or (ln n) ~ ( 1 )  

In Figure 5, the empirical quantiles of 2 4 l n  n)h(1)'12 - 2P2(ln n) and 
ail(A(l) - b,) are plotted versus the i/10,000 (i = 1,.. . ,10,000) quantiles 
of the limit distribution e ~ p { - 2 e - * / ~ )  for the case n = 100, 4, = 0 and 
4, = 0.5. From these Q-Q plots, it is clear that the graph corresponding to 
A(1) is surprisingly linear for values less than 15 (the plotted line in Figure 5 
has slope 1and intercept 0). On the other hand, the graph corresponding to 
h(1)'i2 exhibits a strong nonlinear shape. This suggests that the limit 
distribution provides a better overall approximation to the distribution of 
A(1) than for h(1)ll2. While the corresponding Q-Q plots for A(1) were nearly 
linear for all of our simulations, the best fitting line to the Q-Q plot did not 
always have slope near 1 and intercept 0. It  therefore may be possible to 
improve the approximation of the limit distribution by a more judicious 
choice of normalizing constants a, and b,. This will be the subject of future 
study. 
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APPENDIX 

In this Appendix we provide proofs of the main results in Sections 2 and 3. 
We begin with HorvAth's extension of Darling-Erdos' result to random 
vectors. 

A.l [Lemma 2.2 of HorvAth (199311. = 

a n  iid sequence of d-dimensional random vectors with EZ, = 0 and E(Z,Z;) 
= I. If the components of Z, all have finite rth moments for some r > 2, then 

PROPOSITION Let {Z,, t 1 ,2 , .. .) be 

a ( l n  n )  max -
llS, I I  

- pd(ln n )  I x1 + exp(-ePX)
l < k < n  k1/2 

as  n + m, where Sk = C$=, Zj, a ( x )  = (2 In x)l12, pd(x) = 2 In x + 
(d/2)ln2 x - In T(d/2), In, is the kth iterated logarithm and r is the gamma 
function. 

A.2.COROLLARY Under the assumptions of Proposition A.l, 

lls,1I2
max - /Ad(ln n )  I x I + exp( -e-'I2), 

~ s k s n  k 

where Ad(x) = pd(x)/a2(x) and Bd(x) = ( ~ , ( x ) / a ( x ) ) ~ .  Note that Ad(x) 
and Bd(x) may be replaced by 1and 2 In x + d In, x - 2 In r(d/2). 

PROOFOF THEOREM2.2. Since the distribution of aP2A, does not depend 
on a 2 ,  we assume throughout the proof that  a2= 1. The main idea of the 
proof is to show that for all 6 '  > 0, 

lirnsupp[I rnax A,(k) 
n + m  ( 1 - ~ ' ) n < k < n  

rnax (S, - S,)'P,(S, - s,) l/a, > 6'1 + 0 
( 1 - e 1 ) n < k s n  

as F '  + 0, 

and for all F '  > 0, 

(A.3) max S1,PkSk- b, + exp(-e-"I2),
p < k s c 1 n  

rnax (S, - s,)'@,(s, - S,) - b, 
(A.4) ~ [ ( ( l - ~ ' ) n < k < n  

+ exp( -e -x /2), 

where a, = a,(p + 1) and b, = b,(p + 1). 
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Once we establish the validity of (A.lF(A.41, then the remainder of the 
proof is easy to complete. First the strong mixing assumption implies that 
maxp< ,- SkPkSkand ma^(,-.^,, .,..(Sn - sk) 'Pk(sn- S,) are asymp- 
totically independent (for E' < 1/21 and hence from (A.3) and (A.4), 

P[( rnax SkPkSk- bn)/an ~ x , 
p < k < s l n  

( rnax (5, - s,)'P,(s, - S,) - bn)/an 5x1 + e x ~ ( - 2 e - " / ~ ) .  
( 1 - ~ ' ) n < k s n  

Also, by (2.7), 

( rnax A - a + - a .  
& ' n s k < ( l - & ' ) n  

Now appealing to Slutsky's theorem and Theorem 4.2 in Billingsley (1968), 
the conclusion of the theorem is immediate. 

To establish (A.1) observe that 

I rnax An(k) - rnax S;P,S,~ 
p < k < & ' n  p < k s s 1 n  

I'n(k) - S ' k P k S k  I 
-< rnax 

p < k < s t n  a n  

- f d  max as n + a )  
t < ~  1 - I1 

since a n  + 1. This proves (A.1) and (A.2) can be handled in a similar fashion. 
The proof of (A.3) will be broken up into several steps. 

STEP1. For the sequence {U,} given in (2.21, 

as k 4 a a.s. for some A' > 0. 

PROOF.The difference is equal to 

and since by the law of the iterated logarithm, u~TZ,O((k In, k)1/2), we = 

have SkrP-:, = O((k In, k )'I2) from (2.2). Step 1now follows from (A.5) and 
(2.2). 

http:(A.lF(A.41


CHANGEPOINTS IN AR MODELS 

STEP2. We have 

S',PkSk - U&I;;:,U,/k + o as k + wa.s. 

PROOF. From Step 1,it suffices to show that 

However, by (2.4) and the law of the iterated logarithm, rP+,- Pi l /k  = 

O((ln2 k/k)1/2) as k + w and hence, the expression in (A.6) converges to 0 as 
k + w a.s. 

STEP3. For all 8' > 0, as n + w, 

max S I P S  - max s,P,s,]+ I .  
p < k s n  k - p < k s s r n  

PROOF. From the proof of Proposition 2.1, 

rnax S', P, S, +, rnax 
~ ' n s k s n  t ~ [ ~ ' , l ]  t 

Now (A.7) follows from the fact that max,,, ,,,,S'kPkSk= OP(1) and 
m a x p < k ~ ~ t n S k P k S k  +P 

To finish the proof of (A.3), we see that Step 2 implies 

I rnax S,P,S, - rnax qr;21uk/kl 

(A.8) 
M s k s n  M s k s n  

5 SUP IS'kPkSk- UirGIUk/kl + 0 
k r M  

as M + w a.s. Since the random vectors rp-2,/2zksatisfy the assumptions of 
Corollary A.2, it follows that 

P rnax u'krp-:lUk/k - b, /a, Ix + exp( -e-'I2).
[ ( p < k s n  I 

This relation together with (A.7) and (A.8) proves (A.3). 
The argument for (A.4) is similar. One merely follows the same steps above 

but applied to the reverse-time process, which also satisfies the strong mixing 
condition. 

. PROOFOF PROPOSITION3.1. Following the same argument as used in the 
proof of Proposition 2.1, it is not difficult to show that 
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in D[tl, t,], where 

and W*(t) is p,  + 1-dimensional Brownian motion with covariance matrix 

FPl+1 and W,*(t) is the vector consisting of the first p, + 1components of 
W*(t). Note that Fpo+lis the upper left (p,  + 1) x (p,  + 1) submatrix of 

rpl+l.Let ~ ( t )= rLl:',2W*(t), so that ~ ( t )is standard (p l  + 1)-dimensional
Brownian motion and 

where 

It is easily checked that is symmetric and idempotent of rank p, + 1, so 
that there exists an orthogonal matrix U such that 

Let W(t) = U W ( ~ ) ,which remains standard p, + 1-dimensional Brownian 
motion. It  follows that 

where W(t) = [;::I:]and Wl(t) and W2(t) are two independent standard 

Brownian motions of dimensions p, + 1 and p, - p,, respectively. This 
completes the proof. 

PROOFOF PROPOSITION3.2. It suffices to show that under H,, 

P [  max A n ( k )  < max A n ( k )
p l < k s n / 2  n / 2 < k s n  1 j1 
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and 

~ [ ( a - ~max A,(k) - bn(pl  + l )) /a,(pl  + 1) 5 x + exp(-e-"I2).
n / 2 < k s n  1 

However, these relations follow from the proofs of Theorem 2.2 and Proposi-
tion 3.1. 

PROOFOF THEOREM3.3. (a) We shall us the notation already developed in 
Section 2. Furthermore, since 

we may assume, without loss of generality, that  a = 1.Applying the law of 
the iterated logarithm to Uk in (2.2), we have llSk1l2= O(k In2 k) a.s. and 
hence Q2 = ekek + O(ln2k) a.s. Also, since Q, = ELE,  + Op(l) and 

max IQ3 - E \ E k l  = Op(l) ,
p < k s n / 2  

i t  follows that  

and 
1 

(A.11) p < k s n / 2maw I&:(k) - z\z,l = Op(:). 

Let T,,= E \ E ,  - (k - p )  SO that  by the law of the iterated logarithm, 
Tk = 0(4-) a.s. From (A.9)-(A.ll), we conclude that  

($2 - 1= oP[&), 6 ) - 1= ( j a.s. 

and 

max l($f(k) - 11= Op
p < k s n / 2  

A Taylor series expansion yields 

~ , ( k )= ( n  - p ) ( G 2  - 1) - ( k  -p)(&:(k) - 1)- ( n  - k)(&:(k) - 1) 

n - P  k - P  n - k  2 
-- (6" 1l2+ -( ( $ t ( k )  - ly  + -(BF(k) - 1) 

2 2 2 

n - k  
-- ( ($ f (k )  - 1 ) ~ ( 1+ 

3 
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where l ~ 5l 16' - 11, lvO11 I&t(k)- 11 and lqll 1 I&;(k) - 11. Clearly, 

( n  -P) ( i?2  - 1)  - ( k  - p ) ( & t ( k )  - 1)  - ( n  - k ) ( & f ( k )- 1)  

= Q 1 - Q2 - Q 3 ,  

and using the functional central limit theorem, we obtain for every E > 0,  

max I -- ( a 2- 1 + (
n - k  

( k )- 1
.sn<ksn/2 2 

and for every 6 > 0,  

lim lim supP max --
n - P  ( a 2- i f +-n - k  

i l o  -- [krenl  2 2 ( a ? ( k )  1)21 > a ]  = o ,-

1-
 n - P  
(8' - 113(1+ 7 ) ) - 3lim lim SUP.[ max 

msksn/2 3
m - E  + 

--
n - k  ( & ? ( k )- 1)3(l  + T1)-31  > a ]  = 0.  

3 
Also, from (A.101, 

The above results, together with (A.11, imply that for any 6 > 0,  

lim lim supP max A',(k) - max SkPkSk+ 
8 1 0  .,, [lp<ks .sn  p<kren i 

A similar relation holds for maxk2 -.,,A',(k). Thus, to complete the proof of 
(a), it suffices to show that for all - m  < x < a, 

lim lim sup mar pksk+P [[
& L O  n + E  p<kssn 

First note that the sequence d k  := ["*Tk -- S k - l ]T k - l  satisfies the hypotheses of 

Theorem 4 in Kuelbs and Philipp (1980).By virtue of the moment conditions 
on E l ,  



CHANGEPOINTS IN AR MODELS 303 

Therefore, there exists a sequence of iid Gaussian random vectors 

with mean 0 and covariance matrix r such that 

for some h > 0, where 

Following the proof of Theorem 2.2, we have 

and 

Since 

where {W(t)} is a standard ( p  + 2)-dimensional Brownian motion, (A.12) 
follows from Corollary A.2. 

(b) The proof of (b) is similar to the above argument and the proof of 
Proposition 3.2 and hence is omitted. 

PROOFOF THEOREM3.4. We shall outline the proof for the case p, = p1 = p 
only. By strong approximation and the law of the iterated logarithm, it can be 
shown [cf. Lemma 2.4 of Yao and Davis (1986)l that 

max A:(k) = O,(ln, n).
n/ln n s k s n - n / l n  n  

Following the proof of Theorem 3.3, one can establish that for all 8 > 0, 

and 

Ti?
i m  i m u P  max ( - p ( ) - ) - 1 > 8 ] = 0  

m + m  n + ,  m s k $ n / l n n  k - p  

and similar relations hold for k/n near 1,where T,= E\E, - (k - p)g2.The 
theorem follows from these results and Corollary A.2. 
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