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Abstract

The present paper investigates the biases of estimates of change point and change magnitude after
CUSUM test. By assuming that the change point is far from the beginning and the in-control average
run length of samples is large, second order approximations for the biases of both estimates are
obtained by conditioning on detection, and biases of both estimates are very significant. Simulation
studies show the approximations to be quite accurate in the case of detecting an increase in mean
or variance when sampling from a normal distribution. The results demonstrate the fundamental
differences between fixed sample size test and sequential test.
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1. Introduction

A sequence {Xk} of random quantities—e.g., batch sample means or variances—are
observed sequentially. The objectives are to detect the occurrence change point � = k in
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the distribution of Xk , and to estimate the change point � and the change magnitude of the
process mean. We suppose that {Xk} are independent random variables with distribution
function F�0 for k�� and F�1 for k > �, where �0 < 0 < �1, � is called the change point,
and F�0 and F�1 belong to a standard one parameter exponential family. Such a family is
defined by dF�(x) = exp(�x − �(�))dF0(x), � ∈ �, which contains an interval with 0 in
it, and the function � is normalized so that �(0) = �′(0) = 0, �′′(0) = 1, and �′(�) < , =,
or > 0 according to � <, =, or > 0; and we also assume that the distribution F0 is strongly
non-lattice, i.e. lim|�|→∞ sup |E0(exp(i�X1))| < 1.

For quick detection of the change point, Page (1954) proposed the CUSUM procedure
which makes an alarm at N = min{n > 0 : Tn > d}, where Tn is the CUSUM process,
defined as Tn = max(0, Tn−1 + Xn), with T0 = 0, and d is the control limit, a prescribed
constant determining the in-control average run length of samples.

Optimality of the CUSUM procedure has been studied by Lorden (1971) and Moustakides
(1986), while comparison with other procedures can be seen in Pollak and Siegmund (1985),
Roberts (1966) and Srivastava and Wu (1993). The biases of estimates of change-point and
change magnitude was studied by Srivastava and Wu (1999) for detecting a change in the
drift of a Brownian motion process. Ding (2003) constructed a lower confidence bound for
the change point after CUSUM test.

In this paper, we investigate the biases of estimates of change point and change magnitude
after CUSUM test.

It is well known that when �(�0) = �(�1) the maximum likelihood estimator for � is

�̂ = max{n < N : Tn = 0},

i.e. the first zero point of Tn counting backward from the detection time N (Hinkley, 1970,
1971). However, as �1 is usually unknown, we would be interested in estimating �1 and �
simultaneously. A natural way is still to use �̂ as the estimator of � and to estimate �1 by
first estimating �1 = �′(�1) with

�̂1 = TN/(N − �̂),

and then solving the equation �̂1 = �′(�1) for �1 to obtain the estimate of the interested
parameter, �1. In this aspect, Hinkley (1971) considered the biases of �̂ and �̂ in the cases
of fixed and sequential sampling from a normal distribution. For the sequential case, a
simulation study was taken without conditioning on N > �. The results show that negative
bias for �̂ appears mainly due to the false alarm possibility; and positive biases for �̂. He
also pointed out the necessity for further investigation.

It is well known that the maximum likelihood estimator following sequential test overesti-
mates the underlining parameter (Cox, 1952; Siegmund, 1978; Whitehead, 1986;
Woodroofe, 1992). There is no exception here. Conditioning on the change has happened,
we find that the biases are quite substantial for both estimates.

The rest of the paper is organized as follows. In Section 2, we give some notations and
assumptions which will be used throughout the paper. In Section 3, we present the main
results of this paper, while give detailed proofs in Section 5. Applications of these results
are given in Section 4. Finally, some concluding remarks are given in Section 6.
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2. Notations and assumptions

In this section, we introduce some notations that will be used repeatedly, and the basic
assumptions under which the main results of this paper are developed.

Denote

Sn = S0 +
n∑

i=1

Xi and M = sup
0�k<∞

Sn with S0 = 0.

Let

�x =
{

inf{n : Sn > x |S0 = 0} for x > 0,

inf{n : Sn �x |S0 = 0} for x < 0

be the boundary crossing time, Rx = S�x − x be the overshoot at the boundary x, and

�+ = inf
{
n : Sn > 0 |S0 = 0

}
and �− = inf

{
n > 0 : Sn �0 |S0 = 0

}
be the ascending and descending ladder epochs. Define the two-sided boundary crossing
time by

Nx = min
{
n > 0 : Sn �0 or > d |S0 = x

}
for 0�x < d.

Let P �(.) denote the probability measure when the change point is � and P�(.) the
probability when the change occurs at zero and Xi’s have distribution F�. It is well known
that, for �0 < 0 < �1, there exist �̃1 < 0 < �̃0, s.t. �(�1)=�(�̃1) and �(�0)=�(�̃0). Denote
�i = �i − �̃i , �i = �′(�i ) and �̃i = �′(�̃i ) for i = 0, 1.

Under any distribution of P� for ��0, Rx approaches a limiting distribution as x →
∞. Let R∞ denote a random variable whose distribution is this limiting distribution. The
following strong renewal theorem about the overshoot Rx will be used repeatedly (see
Siegmund, 1979; Chang, 1992): For x�0, and y�0, there exist 	 > 0, and �∗ > 0 such
that, uniformly for � ∈ [0, �∗],

P�(Rx < y) = P�(R∞ < y) + O(e−	(x+y))

= 1

E�S�+

∫ y

0
P�(S�+ > z) dz + O(e−	(x+y)). (1)

Using the above result and Wald’s likelihood ratio identity (Siegmund, 1985, p. 13), we
obtain that: For x�0, and y�0, there exist a �∗ > 0 and positive constants C > 0 and
	 > 0 such that, uniformly for � ∈ [0, �∗],

|P�(�−x < ∞)/e−�xE�̃e�R−∞ − 1|�C�e−	x, (2)

where �̃�0 satisfies �(�) = �(�̃) and � = � − �̃.
The moments of R∞ are given by


(k)(�) = E�(R
k∞) = E�(S

k+1
�+ )

(k + 1)E�(S�+)
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for k > 0. For convenience, let 
+(�)=
(1)(�), 
+ =
+(0). Analogously, we define 
−(�)

and 
− upon replacing �+ by �−.
A relation that will be used in this paper is (E0S�−)(E0S�+) = − 1

2 , which holds for any
standard one parameter exponential family (Chang, 1992, p. 716).

The asymptotic biases of both estimates are developed under the following assumption:
(A): Both �0 and �1 approach zero at the same order, and, for some � > 0, |�0|1+�d → ∞.

3. Main results

In this section, we investigate the asymptotic biases of the estimate of change point �̂ and
the estimate of the process mean �̂1 under assumption (A) given in previous section.

3.1. Bias of �̂

For the bias of the estimate of change point, we have the following result.

Theorem 1. Under Condition (A),

E[�̂ − � |N > �] = �0

�̃1(�1 − �0)
2 e�0(
++
−) − p̃0

1

�̃1�1
+ 1

�̃0�0

− �0

�̃0(�1 − �0)
2 e�1(
++
−) + O(1).

When �(�1) = �(�0), then

E[�̂ − � |N > �] = −2

+ + 
−

�0
+ O(1).

Remark. From Theorem 1, we see that if the distribution of Xi is not symmetric under P0,
even in the case �(�1) = �(�0), the bias of �̂ is not negligible for small �, and it is positive
or negative according to 
+ +
− > or < 0. This gives us another typical example to show
the effect of the sequential sampling rule. However, this bias becomes less significant for
larger �’s. Comparisons with simulation results will be given in Section 4.

The proof of the theorem is presented in a series of Lemmas. At first, we write

E[�̂ − � |N > �] = E[�̂ − �; �̂ > � |N > �] − E[� − �̂; �̂ < � |N > �]. (3)

To evaluate the first term on the right-hand side of (3), from the renewal property of Tn

at the zero point, we have

E[�̂ − �; �̂ > �|N > �] = E[�̂ − �; SNT�
�0; �̂ > �|N > �]

= E�1 [NT�; SNT�
�0] + P�1(SNT�

�0)E�(�2), (4)

where �2 is the length from the first zero point to the last zero point of Sn after �.
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The following two lemmas give the second order approximations for the three terms on
the right-hand side of (4) and their proofs can be found in Lemmas 2, 3 and 4 of Ding
(2001).

Lemma 1. Under Condition (A),

P�1(SNT�
�0) = P�1(�−M < ∞) + O(e−�1d) = p̃0 + O(�3

1), (5)

where M is the maximum value of another independent copy of Sn with drift �0 and

p̃0 = C1e(C2/C1)�0�1 , (6)

with

C0 =
∞∫

0

E0(R−x − 
−) dE0(Rx − 
+), C1 = −�0

�1 − �0
e�1(
++
−),

C2 = 1
2
2+ + 1

2 + 
−E0S�+ − 1
2 (
2+ − r1) + 1

2 (
2− − r0) − C0,

and

r1 = E0(S
3
�+)

3E0(S�+)
− 
2+, r0 = E0(S

3
�−)

3E0(S�−)
− 
2−.

Lemma 2. Under Condition (A),

E�1 [NT�; SNT�
�0] = E�1 [�−M ; �−M < ∞] + o(1)

= �0

�̃1(�1 − �0)
2 e�0(
++
−) + O(1). (7)

E�(�2) = − 1

�̃1�1
+ O(1).

Summarizing Lemmas 1–2, we have

Lemma 3. Under Condition (A),

E[�̂ − �; �̂ > � |N > �] = �0

�̃1(�1 − �0)
2 e�0(
++
−) − p̃0

1

�̃1�1
+ O(1).

To evaluate the second term on the right-hand side of (3), we first note that under Condition
(A)

P(T� < x |N > �) → P(M < x);
see Lemma 1 of Ding (2003), and

P�1(SNM
> d) = P�1(�−M = ∞) + O(e−�1d).
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On the other hand, by looking at {Sk} backward in time starting from �, we see that �̂ − �
is actually the maximum point of S′

n = S� − S�−n for 0�n�� with drift �0. In fact, T�̂ = 0
and S�̂ = min0�k ��Sk . Suppose T� = S� − min0�k ��Sk = x. Then, We have

max
0�n��

S′
n = max

0�k ��
(S� − Sk) = x = S� − S�̂.

Let �x denote the maximum point of S′
n with a maximum value of x. Then under Condition

(A), by Wald’s likelihood ratio identity, the second term of on the right-hand side (3) is
equal to

E�0 [�MP�1(�−M = ∞)] + o(1).

From Lemma 3 of Ding (2003), we have

Lemma 4. Under Condition (A),

E[� − �̂; �̂�� |N > �] = − 1

�0�̃0
+ �0

�̃0(�1 − �0)
2 e�1(
++
−) + O(1).

Combining the results of Lemmas 3 and 4, we complete the proof of Theorem 1.

3.2. Bias of �̂1

In this subsection, the second order approximation for the bias of �̂1 is developed, and
the following results is obtained.

Theorem 2. Under Condition (A),

E[�̂1 − �1|N > �] = 1

d

(
2 − �3

1

2�2
0(�1 − �0)

)
+ o

(
1

d

)
.

In particular, when �(�1) = �(�0), we have

E[�̂1 − �1|N > �] = 7

4d
+ o

(
1

d

)
.

As we shall see in the practical situation (Section 4), the bias is quite significant and the
bias correction for the estimate is definitely necessary.

To prove the theorem, we write

E[�̂1|N > �̂] = E

[
TN

N − �̂
; � > �̂|N > �

]
+ E

[
TN

N − �̂
; �� �̂|N > �

]
. (8)

The proof of theorem boils down to evaluate the two terms on the right-hand side of (8).
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Note that conditioning on {�� �̂}, {Tn} for n > �̂ behaves stochastically equivalent to a
random walk {Sn} for n > 0 conditioning on {SN0 > d}. Thus, from Lemma 1, we have

E

[
TN

N − �̂
; � < �̂ |N > �

]
= E�1

[
SN0

N0

∣∣∣∣ SN0 > d

]
P�1(SNT�

�0)

=
(
P�1(�−M < ∞) + O(e−�1d)

)
× E�1

[
SN0

N0

∣∣∣∣ SN0 > d

]
. (9)

From a similar analysis as in Section 3.1, we have

E

[
TN

N − �̂
; � > �̂|N > �

]
= E

[
TN

N − � + � − �̂
; SNT�

> d

]

= E

[
SNM

NM + �M

∣∣∣∣ SNM
> d

]

×
(
P�1(�−M = ∞) + O(e−�1d)

)
, (10)

where �M is as given in the section before Lemma 4.

To approximate E�[SN0
N0

|SN0 > d], we use the following Taylor series expansion for
f (x, y) = x

y
, i.e.,

f (x, y) = x0

y0
+ 1

y0
(x − x0) − x0

y2
0

(y − y0) + x0

y3
0

(y − y0)
2 − 1

y2
0

(x − x0)(y − y0)

− x∗

2y∗4 (y − y0)
3 + 1

y∗3 (y − y0)
2(x − x0), (11)

where |x∗ − x0|� |x − x0| and |y∗ − y0|� |y − y0|.
By letting X= SN0

E[N0|SN0 >d] , Y = N0
E[N0|SN0 >d] , x0 =E[X|SN0 > d] and y0 =E[Y |SN0 > d],

we get

E�1

[
SN0

N0

∣∣∣∣ SN0 > d

]
≈ E[SN0 |SN0 > d]

E[N0|SN0 > d] + E[SN0 |SN0 > d]
(E[N0|SN0 > d])3 Var(N0|SN0 > d)

− 1

(E[N0|SN0 > d])2 Cov(N0, SN0 |SN0 > d). (12)

It will be shown in the Appendix that the error of this approximation is at the order of o( 1
d
).

Approximations for the terms on the right-hand side of (12) will be given in next lemma.

Lemma 6. Under Condition (A),

E[SN0 |SN0 > d] = d + 
+ + o(1). (13)

E�1 [N0|SN0 > d] = d + 
+
�1

− 1

�2
1

+ O

(
1

�1

)
. (14)

Var�1(N0|SN0 > d) = d + 
+
�3

1

�′′(�1) − 2

�4
1

+ O

(
1

�3
1

)
. (15)
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Eq. (13) is given by Siegmund (1985, (10.22)). The proofs of (14) and (15) will be given
in Section 5.

By Cauchy–Schwarz inequality, we have

|Cov(N0, SN0 |SN0 > d)|�(Var(N0|SN0 > d))1/2(Var(SN0 |SN0 > d))1/2.

Since Var(SN0 |SN0 > d) approaches a constant, the last term of (12) is thus bounded by the

order of (
�1

d+
+ )2(
d+
+

�3
1

)1/2 = o(
�1

d+
+ ). Combining the results of Lemma 6, the following

result is obtained after some simplifications.

Lemma 7. Under Condition (A),

E

[
SN0

N0

∣∣∣∣ SN0 > d

]
= �1 + 2

d
+ o

(
1

d

)
.

By similar arguments leading to (12), we have

E

[
SNM

NM + �M

∣∣∣∣ SNM
> d

]
= E[SNM

|SNM
> d]

E[NM + �M |SNM
> d]

+ E[SNM
|SNM

> d]
(E[NM + �M |SNM

> d])3

× Var(NM + �M |SNM
> d) + o

(
1

d

)
. (16)

Again, we shall show in the Appendix that the approximation is indeed at the order of o( 1
d
).

The following lemma gives the corresponding results as in Lemma 6 and its proof will be
given in Section 5.

Lemma 8. Under Condition (A),

E[SNM
|SNM

> d] = d + 
+ + o(1), (17)

E[NM |SNM
> d] = d + 
+

�1
+ 1

�1�0
− 1

�1�1
− �0

�̃1�1(�1 − �0)
+ O

(
1

�1

)
, (18)

E[�M |SNM
> d] = − 1

�̃0�0
+ 1

�̃0�1
+ �0

�̃0�1(�1 − �0)
+ O

(
1

�1

)
, (19)

Var(NM + �M |SNM
> d) = d + 
+

�3
1

�′′(�1) + O

(
1

�4
1

)
. (20)

Combining the results of Lemma 8, we obtain

Lemma 9. Under Condition (A),

E

[
SNM

NM + �M

∣∣∣∣ SNM
> d

]
= �1 + 1

d

(
2 − �2

1

2�2
0

)
+ o

(
1

d

)
.

Summing up the results of Lemmas 7 and 9, we complete the proof of the Theorem 2.
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4. Application

In this section, we demonstrate how to use our results in a practical situation, and conduct
simulation studies to check the accuracy of results given in Section 3.

In the field of quality control, we might be monitoring some characteristic of a manu-
facturing process, and in many practical situations, the quality characteristic process Zk

is assumed to be normally distributed with mean �0 and standard deviation �0, where �0
is the target value and �0 reflects the variation of quality. Any shift from the target value
�0 or increase in the process variation results in poor quality, and we want to detect the
change as soon as possible. To monitor the quality characteristic process, random samples
of size, say m, are usually taken at some regular time interval, and CUSUM charts based
on sample mean Xk = Z̄k or sample variance Xk = s2

k are plotted with the appropriate
control limit(s), respectively. We would like to stop the process for inspection and repair at
the point that the CUSUM chart falls out side of control limit. Since false alarm are often
costly, we therefore assume the in-control average run length (ARL) of samples to be very
large.

In the following, we will apply our results to detect change in the mean or the standard
deviation, respectively. For simplicity, we only consider detecting an increase.

4.1. Detect increase in mean

Without lose of generality, we assume that the observed process Xk = Z̄k comes from a
normal population with mean 0 and standard deviation 1 when the process is in control, and
with mean � and standard deviation 1 when the process is out of control. Then the CUSUM
procedure is defined as making alarm at N = inf{n > 0 : Tn > d}, where Tn is the CUSUM
process Tn = max(0, Tn−1 + Yn), with T0 = 0, and Yn = X̄n − 


2 , and d is the control limit
with reference value 
. Usually, the reference value 
 is the change magnitude which we are
interested in detecting quickly, and serves as a preliminary estimate of �, the true change
magnitude.

In this case,

�(�) = 1

2
�2, �0 = −


2
, �1 = u − 


2
,

�0 = −�̃0 = −


2
, �1 = −�̃1 = u − 


2
,

E0S�+ = −E0S�− = 1√
2
, 
+ = −
− ≈ 0.583,

r0 = r1 = 1

4
and C0 = 1

2

(
1√
2

− 
+
)2

.



K. Ding, Y. Wu / Journal of Statistical Planning and Inference 136 (2006) 1258–1280 1267

Table 1
Comparison of approximated and simulated bias(normal)

�0(d) � Bias (�̂) Bias (�̂)

−0.2 0.2 0 0.1757
(9.96) −0.816(0.28) 0.1755(0.0022)

0.25 −4.5 0.1628
−3.99(0.28) 0.1533(0.0023)

0.30 −6.94 0.1431
−6.05 (0.24) 0.1252(0.0024)

−0.25 0.25 0 0.1975
(8.86) −0.131(0.21) 0.1938(0.0026)

0.30 −2.44 0.1865
−2.47(0.18) 0.1685(0.0026)

0.40 −4.875 0.1498
−3.77(0.16) 0.1463(0.0027)

−0.3 0.3 0 0.2267
(7.72) −0.28(0.14) 0.2096(0.0028)

0.35 −1.47 0.2166
−1.41(0.12) 0.1876(0.0029)

0.4 −2.43 0.2025
−2.44(0.11) 0.1616(0.0029)

Insert the related quantities into Theorem 1 and 2, we have

Corollary 1. Under Condition (A),

E[�̂ − �]|N > �] = 1

2(� − 
/2)2 − 2


2 + O(1), (21)

E[�̂1 − �1|N > �] = 1

d

(
2 − 2(� − 
/2)3

�
2

)
+ o

(
1

d

)
, (22)

when � = 
,

E[�̂ − �]|N > �] = O(1), (23)

E[�̂1 − �1|N > �] = 7

4d
+ o

(
1

d

)
. (24)

Simulation results based on 10,000 replications are presented as follows. We choose
the average in-control run length ARL0 = E�0N = 1000, and � = 100. The control limit
d is determined by using Siegmund’s approximation (Siegmund, 1985 (2.57)). For �0 =
−0.2, −0.25, −0.3, we obtain that d = 9.96, 8.82 and 7.72, respectively. Table 1 presents
the comparisons of simulated and approximated biases for �̂ and �̂1. In each cell, the top
number is the approximation value while the bottom number is the simulated value and its
standard error is given in the parentheses. We can see that the theoretical values are quite
close to simulation values.
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4.2. Detect increase in variance

Without lose of generality, we assume that the observed process Xk=s2
k comes from a pop-

ulation of �2(p) when the process is in control, and from a population of (1+�)2�2(p)(� > 0)
when the process is out of control. Then the CUSUM procedure is defined as making
alarm at N = inf{n > 0 : Tn > d}, where Tn = max(0, Tn−1 + Yn), with T0 = 0, and

Yn = s2
n[(1+�0)

2−1]
2
√

2p(1+�0)
2 ln(1+�0)

−
√

p
2 , and d is the control limit with reference value �0. The

reference value �0 is the relative increase change magnitude we are interested in detecting
quickly, and serves as an preliminary estimate of �, the true relative increase.

In this case, �(�) = −
√

p
2 � − p

2 ln(1 −
√

2
p
�), and

�0 =
√

p

2

(
1 − 2(1 + �0)

2 ln(1 + �0)

(1 + �0)
2 − 1

)
,

�1 =
√

p

2

(
1 − 2(1 + �0)

2 ln(1 + �0)

(1 + �)2[(1 + �0)
2 − 1]

)
,

�0 =
√

p

2

(
(1 + �0)

2 − 1

2(1 + �0)
2 ln(1 + �0)

− 1

)
,

�1 =
√

p

2

(
(1 + �)2[(1 + �0)

2 − 1]
2(1 + �0)

2 ln(1 + �0)
− 1

)
.

For simplicity, we only give results of a special case, i.e. p=2.As it becomes an important
case of detecting a change in the mean of an exponential distribution family, which plays
a critical role in reliability. In this case, S�+ is an exponential random variable, and S�− is
uniformly distributed on (−1, 0) under P0. So, we have that 
+=1, r1=1, 
−=− 1

3 , r0= 1
18

and C0 = 0.
Substituting the above corresponding values into Theorems 1 and 2, the following results

are obtained.

Corollary 2. Under Condition (A), we have

E[�̂ − �|N > �] = �0

�̃1(�1 − �0)
2 e2/3�0 − p̃0

1

�̃1�1

+ 1

�0�̃0
− �0

�̃0(�1 − �0)
2 e2/3�1 + O(1), (25)
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Table 2
Comparison of approximated and simulated bias (exponential)

�0(d) �1 Bias (�̂) Bias (�̂1)

0.2 0.2 3.61 0.2188
(10.083) 3.79(0.304) 0.3372(0.0055)

0.25 −4.27 0.2108
−3.08(0.24) 0.3019(0.0063)

0.3 −7.33 0.1935
−6.08(0.21) 0.2791(0.0070)

0.25 0.25 2.80 0.2659
(8.794) 2.34(0.23) 0.4042(0.0068)

0.3 −1.67 0.2683
−1.17(0.18) 0.3834(0.0074)

0.35 −3.71 0.2660
−3.59(0.17) 0.3662(0.0080)

0.3 0.3 2.26 0.3169
(7.823) 2.05(0.17) 0.4866(0.0087)

0.35 −0.51 0.3281
−0.42(0.15) 0.4522(0.0087)

0.4 −1.93 0.3375
−2.07(0.13) 0.4557(0.0098)

where p̃0 = C1e25/36C1�0�1 , with C1 = − �0
�1−�0

e2/3�1 .

E[�̂1 − �1|N > �] = 1

d

(
1 + (1 + �)4[(1 + �0)

2 − 1]2

(1 + �0)
4[ln(1 + �0)

2]2
− �3

1

2�2
0(�1 − �0)

)

+ o

(
1

d

)
. (26)

In particular when �(�1) = �(�0), i.e. �0 = �,

E[�̂ − �|N > �] = − 4

3�0
+ O(1),

E[�̂1 − �1|N > �] = 1

d

(
3

4
+ [(1 + �0)

2 − 1]2

[ln(1 + �0)
2]2

)
+ o

(
1

d

)
.

Simulation results based on 10,000 replications are reported in Table 2. We choose the
average in-control run length ARL0 = E�0N = 1000, and � = 100. The control limit d is
obtained by (10.17) of Siegmund (1985), i.e.

ARL0 ≈ 1

�0�0
[e−�0(d+
+−
−) − 1 + �0(d + 
+ − 
−)].
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From this formula, we obtain that d = 10.083, 8.794, and 7.823 corresponding to �0 =
0.2, 0.25 and 0.3, respectively. The order of the numbers are arranged the same way as
those in Table 1.

From Table 2, we can draw the following conclusions. First, the approximations for
the bias of �̂ is generally very precise. Second, we see that the bias for �̂1 is very large
and bias correction is definitely required. This is the most important conclusion of this
subsection. Third, approximation for the bias of �̂1 is systemly less than the simulated
bias. This may be due to the following reasons. (1): The expansion of E[�̂1 − �1|N > �]
is very weak. (2): The approximation only uses information contained in the first two
moments of the population distribution, and reflects nothing about the skewness and kurtosis
of the population distribution. Therefore, when the population distribution is skewed, the
approximation cannot be very precise.

5. Proof of lemmas

(i) Proof of Lemma 6. Without notational confusion, we shall omit the subscript � in E�[.]
as well as in the rest of discussions.

To prove (14) of Lemma 6, from Lemma 3 of Ding (2003),

E�1 [N0; SN0 > d] = d + 
+
�1

P�1(SN0 > d) + 1

�1
E0S�− − 1

�̃1
E0S�− + O(1).

Note that under Condition (A),

P�1(SN0 > d) = P�1(�− = ∞) + O(e�1d)

= 1

E�1(�+)
+ O(e�1d) = �1

E0S�+
+ O(�2

1).

By the fact that E0S�+E0S�− = − 1
2 , we have

E[N0|SN0 > d] = d + 
+
�1

− 1

�2
1

+ O

(
1

�1

)
.

To prove (15), we first write

Var(N0|SN0 > d) = E[N2
0 |SN0 > d] − (E[N0|SN0 > d])2.

Note that

E[N2
0 ; SN0 > d] = E[N2

0 ] − E[�2−; �− < ∞] + o(1). (27)
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By Lemma 5 of Ding (2001),

E[N2
0 ] = 1

�2
1

[�′′(�1)EN0 + 2�1E(N0SN0) − ES2
N0

]

= 1

�2
1

[�′′(�1)E[N0|SN0 > d]P�1(SN0 > d)

+ �′′(�1)E�1(�−, �− < ∞)

+ 2�1(d + 
+)E�1 [N0|SN0 > d]P�1(SN0 > d)

+ 2�1E�1(S�−�−, �− < ∞)

− (d + 
+)2P�1(SN0 > d) − E�1(S
2
�− , �− < ∞)] + O

(
1

�2
1

)

=
[

(d + 
+)2

�2
1

+ d + 
+
�3

1

(
−1 + �1

�̃1
+ �′′(�1)

)
− 1

2�4
1

�′′(�1)

]

× P�1(SN0 > d) + O

(
1

�2
1

)
. (28)

On the other hand,

E�1 [�2−; �− < ∞] = E�̃1
(�2−e�1S�− ) = E�̃1

(�2−) + O

(
1

�2
1

)
.

Similar to the above proof, we have

E�̃1
(�2−) = 1

�̃2
1

[2�̃1E�̃1
(S�−�−) − E�̃1

S2
�− + �′′(�̃1)E�̃1

(�−)]

= �′′(�̃1)

�̃3
1

E0(S�−) + O

(
1

�2
1

)
. (29)

From (28) and (29), we have

E[N2
0 |SN0 > d] = (d + 
+)2

�2
1

+ d + 
+
�3

1

(�′′(�1) − 2) − 1

�4
1

+ O

(
1

�3
1

)
,

where in the last equation, we use the fact that �1 =−�̃1 + O(�2
1) and �′′(�̃1)= 1 + O(�1).

Combining the above result with (14) and (15) is proved. �
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(ii) Proof of Lemma 8. By Lemma 2, we have

E[NM ; SNM
> d] = E[NM ] − E[�−M ; �−M < ∞] + o(1)

= 1

�1
[ESNM

− E(M)] − E[�−M ; �−M < ∞] + o(1)

= 1

�1

[
(d + 
+)P�1(SNM

> d) + 1

�0

]
− �0

�̃1(�1 − �0)
2

+ O

(
1

�1

)
.

So we have

E[NM |SNM
> d] = d + 
+

�1
+ 1

�1�0
− 1

�1�1
− �0

�̃1�1(�1 − �0)
+ O

(
1

�1

)
,

where in the last equation we use results of Lemmas 1 and 2, and the fact that �1 = −�̃1 +
O(�2

1). Eq. (18) is proved.
To prove (19), we write

E[�M, SNM
> d] = E[�M ] − E[�M, SNM

< 0]
= E[�M ] − E[�M, �−M < ∞] + O(1).

Combing Lemma 1 and Eqs. (15) and (16) in Lemma 2 of Ding (2003), we complete the
proof of (19).

Since the idea in proving (20) is similar to those used in the proof of (15), some details
are thus omitted.

First, we write

Var(NM+�M |SNM
>d)=E[(NM+�M)2|SNM

> d]−(E[NM+�M |SNM
> d])2,

and

E[(NM + �M)2|SNM
> d] = E[N2

M |SNM
> d] + 2E[NM�M |SNM

> d]
+ E[�2

M |SNM
> d].

It is easy to verify that

E[�2
M |SNM

> d] = O

(
1

�4
0

)
,

and

2E[NM�M |SNM
> d] = 2E[NM |SNM

> d]E[�M |SNM
> d] + O

(
1

�4
1

)

= 2

(
d + 
+

�1

)(
− 1

�̃0�0
+ 1

�̃0�1
+ �0

�̃0�1(�1 − �0)

)

+ O

(
1

�4
1

)

from (18) and (19).
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Next, we note that

E[N2
M ; SNM

> d] = E[N2
M ] − E[N2

M ; SNM
�0],

and

E[N2
M ] = 1

�2
1

(�′′(�1)E[NM ] + 2�1E[NM(SNM
− M)] − E(SNM

− M)2)

= 1

�2
1

(�′′(�1)E[NM ] + 2�1E[NMSNM
] − 2�1E[NMM] − E[S2

NM
]

+ 2E[SNM
M] − E[M2]).

Since

E[NMSNM
] = (d + 
+)E[NM |SNM

> d]P�1(SNM
> d) + E[NMSNM

; SNM
�0]

= (d + 
+)E[NM |SNM
> d]P�1(SNM

> d) + O

(
1

�2
1

)
,

and

E[NMM] = E[ME(NM |M)] = 1

�1
E[M(SNM

− M)] = 1

�1
E[MSNM

] − EM2

= d + 
+
�1

E[M; SNM
> d] − 1

�1
EM2 + O

(
1

�2
1

)
.

While

E[M; SNM
> d] = E(M) − E[M; SNM

< 0]
= − 1

�0
− E[M; �−M < ∞] + O(1);

and

E[M; �−M < ∞] = E[MP �1(�−M < ∞)] = E�0 [Me−�1M ](1 + O(�1)).

By the similar techniques used in proving Lemma 3 of Ding (2003), we have

E�0 [Me−�1M ] =
∞∑

k=2

E�0

[
k−1∑
i=1

S�+
i

e
−�1

∑k−1
i=1 S

�+
i

]
(1 − p)k−1p

=
∞∑

k=2

(k − 1)E�0 [S�+e−�1S�+ ; �+ < ∞]

× (E�0 [e−�1S�+ ; �+ < ∞])k−2p

= p
E�0 [S�+e−�1S�+ ; �+ < ∞]

(1 − E�0 [e−�1S�+ ; �+ < ∞])2

= − �0

(�1 − �0)
2 + O(1),
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where p = P�0(�+ = ∞) and S
(i)
�+ , for i > 0, are iid r.v.s which have the same distribution

function as that of S�+|�+ < ∞ under P�0 . Therefore,

E[M; SNM
> d] = − 1

�0
+ �0

(�1 − �0)
2 + O(1),

E[S2
NM

] = (d + 
+)2P�1(SNM
> d) + O(d),

E[SNM
M] = (d + 
+)E[M; SNM

> d] + O(1)

= (d + 
+)

(
− 1

�0
+ �0

(�1 − �0)
2

)
+ O(1).

Thus, we have

E[N2
M |SNM

> d] = (d + 
+)2

�2
1

+ d + 
+
�3

1

(�′′(�1) + 2(�1 − �0)�1

�1�0

− 2�2
1�0

�̃1�1(�1 − �0)
) + O

(
1

�4
1

)
.

Combining above results, we have

Var(NM + �M |SNM
> d) = E[(NM + �M)2|SNM

> d]
− (E[(NM + �M)|SNM

> d])2

= d + 
+
�3

1

�′′(�1) + O

(
1

�4
1

)
. �

6. Concluding remarks

It should be pointed out that there are still some problems to be solved before these
methods are fully practical. The critical issue is that the bias of the usual estimate is quite
substantial, and the bias correction is definitely necessary. To this end, we propose the
following bias correction method:

First substitute the initial estimation of �̂ into the approximations for the biases of �̂ and
�̂ given in Theorems 1 and 2, respectively, and obtain the estimated biases. Then let

�̃ = �̂/(1 + (est.bias(�̂))/�̂);
and

�̃ = �̂ − (est.bias(�̂)).

This method slightly over-corrects the bias of �̂ to the left and under-corrects the bias of
�̂, but the formula is very simple and easy to be implemented for practical purposes. Details
will be communicated in a future presentation.
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Appendix A. Error checking for (12) and (16)

To show that the remain terms of (12) are at the order of o( 1
d+
 ), we note the fact that con-

ditioning on the event {SN0 > d}, SN0/E[N0|SN0 > d] − E[SN0 |SN0 > d]/E[N0|SN0 > d]
and N0/E[N0|SN0 > d] − 1 converge to 0 in probability. Thus, for the third order terms in

the Taylor expansion, the coefficients of E[( SN0
E[N0|SN0 >d] − E[SN0 |SN0 >d]

E[N0|SN0 >d] )( N0
E[N0|SN0 >d] −

1)2|SN0 > d] converges to 1 in probability; while the coefficient of E[( N0
E[N0|SN0 >d] −

1)3|SN0 > d] is at the order of
E[SN0 |SN0 >d]
E[N0|SN0 >d] = O(�1) in probability. Thus, we only need

to show that

E

[(
SN0

E[N0|SN0 > d] − E[SN0 |SN0 > d]
E[N0|SN0 > d]

)(
N0

E[N0|SN0 > d] − 1

)2
∣∣∣∣∣ SN0 > d

]

= o

(
1

d + 


)
, (A.1)

and

E

[(
N0

E[N0|SN0 > d] − 1

)3
∣∣∣∣∣ SN0 > d

]
= o

(
1

�1(d + 
)

)
. (A.2)

To show (A.2), we first write

E[(N0 − E[N0|SN0 > d])3|SN0 > d]
= E[N3

0 |SN0 > d] − 3E[N0|SN0 > d]E[N2
0 |SN0 > d] + 2(E[N0|SN0 > d])3,

and note that

E[N3
0 ; SN0 > d] = E[N3

0 ] − E[N3
0 ; SN0 �0]

= EN3
0 − E[�3−; �− < ∞] + o(1).

It is easy to check that {(Sn − �n)3 − 3n�′′(�1)(Sn − �n) − n�(3)(�1),In} is a martingale,
where In = �{X1, . . . , Xn}. Thus, we have

E�1 [N3
0 ] = 1

�3
1

[ES3
N0

− 3�1E(N0S
2
N0

) + 3�2
1�

′′(�1)E(N2
0 SN0)

− 3�′′(�1)E(N0SN0) + 3�1�
′′(�1)EN2

0 − �(3)(�1)EN0]
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= 1

�3
1

[(d + 
+)3P(SN0 > d) − 3�1(d + 
+)2E(N0|SN0 > d)P (SN0 > d)

+ 3�1�
′′(�1)EN2

0] + O

(
(d + 
+)2

�3
1

)
+ O

(
1

�6
1

)
.

Combining with the results in Lemma 7, we get

E[(N0 − E[N0|SN0 > d])3|SN0 > d] = 3�′′(�1)
d + 
+

�5
1

+ O

(
(d + 
+)2

�3
1

)

+ O

(
1

�6
1

)
.

So the left-hand side of (A.2) is at the order of

3

(
d + 
+

�1

)−3

�′′(�1)
d + 
+

�5
1

= 1

(d + 
+)2�2
1

�′′(�1) = o

(
1

�1(d + 
)

)
,

(A.2) is proved.
To show (A.1), by Hölder inequality, we have

∣∣∣∣∣E
[(

SN0

E[N0|SN0 > d] − E[SN0 |SN0 > d]
E[N0|SN0 > d]

) (
N0

E[N0|SN0 > d] − 1

)2
∣∣∣∣∣ SN0 > d

]∣∣∣∣∣
�
(

E

[∣∣∣∣ SN0

E[N0|SN0 > d] − E[SN0 |SN0 > d]
E[N0|SN0 > d]

∣∣∣∣
3
∣∣∣∣∣ SN0 > d

])1/3

×
(

E

[∣∣∣∣ N0

E[N0|SN0 > d] − 1

∣∣∣∣
3
∣∣∣∣∣ SN0 > d

])2/3

= 1

E[N0|SN0 > d] (E|Rd − ERd |3)1/3

×
(

E

[∣∣∣∣ N0

E[N0|SN0 > d] − 1

∣∣∣∣
3
∣∣∣∣∣ SN0 > d

])2/3

.

By the previous argument, we know that

E

[∣∣∣∣ N0

E[N0|SN0 > d] − 1

∣∣∣∣
3

|SN0 > d

]
= O(1).

Thus, the left-hand side of (A.1) is at the order of O(
�1

d+
 ), which proves (A.1).
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The proof for (16) is technically similar to the proof of (12), but is much more complicated
in calculation. By the similar argument in proving (12), we know that, to show (16) is
equivalent to show the following two equations.

E

[(
SNM

E[NM + �M |SNM
> d] − E[SNM

|SNM
> d]

E[NM + �M |SNM
> d]

)

×
(

NM + �M

E[NM + �M |SNM
> d] − 1

)2
∣∣∣∣∣ SNM

> d

]
= o

(
1

d + 


)
, (A.3)

and

E

[(
NM + �M

E[NM + �M |SNM
> d] − 1

)3
∣∣∣∣∣ SNM

> d

]
= o

(
1

�1(d + 
)

)
. (A.4)

To prove (A.3), we first write

E[(NM − E[NM |SNM
> d] + �M − E[�M |SNM

> d])3|SNM
> d]

= E[(NM − E[NM |SNM
> d])3|SNM

> d]
+ E[(�M − E[�M |SNM

> d])3|SNM
> d]

+ 3E[(NM − E[NM |SNM
> d])2(�M − E[�M |SNM

> d])|SNM
> d]

+ 3E[(NM − E[NM |SNM
> d])(�M − E[�M |SNM

> d])2|SNM
> d]. (A.5)

Similar to the proof for N0, we can show that the first term on the right-hand side of (A.5)
is equal to

3(d + 
+)

�5
1

�′′(�1) + O

(
1

�6
0

)
.

For the third term on the right-hand side of (A.5), we know that

E[(NM − E[NM |SNM
> d])2(�M − E[�M |SNM

> d])|SNM
> d]

= E[N2
M�M |SNM

> d] − E[N2
M |SNM

> d]E[�M |SNM
> d]

− 2E[NM�M |SNM
> d]E[NM |SNM

> d]
+ 2(E[NM |SNM

> d])2E[�M |SNM
> d]. (A.6)

In the following, we shall prove that (A.6) is at the order of O( 1
�6

0
) .

To evaluate (A.6), with previous obtained results available, we only need to approximate
E[N2

M�M |SNM
> d]. In fact,

E[N2
M�M, SNM

> d] = E[N2
M�M ] − E[N2

M�M, SNM
�0]

= E[N2
M�M ] + O

(
1

�6
0

)
, (A.7)
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and

E[N2
M�M ] = E�0 [�ME�1(N

2
M |M)]

= 1

�2
1

[�′′(�1)E(NM�M) + 2�1E[NM�M(SNM
− M)]

− E[�M(SNM
− M)2]]. (A.8)

From Lemma 8, we have

E(NM�M) = d + 
+
�1

(
− 1

�̃0�0
+ 1

�̃0�1
+ �0

�̃0�1(�1 − �0)

)

× P�1(SNM
> d) + O

(
1

�4
0

)
.

Since

E[NM�M(SNM
− M)] = E[NM�MSNM

] − E[NM�MM]
= (d + 
+)E[NM�M, SNM

> d]

− 1

�1
[E(�MMSNM

− E(�MM2)] + O

(
1

�4
0

)

= (d + 
+)E[NM�M |SNM
> d]P�1(SNM

> d)

− d + 
+
�1

E(�MM|SNM
> d)P�1(SNM

> d)

+ O

(
1

�4
0

)
,

and

E[�M(SNM
− M)2] = E[�MS2

NM
] − 2E[�MSNM

M] + E[�MM2]
= (d + 
+)2E[�M |SNM

> d)P�1(SNM
> d) − 2(d + 
+)E[�MM|SNM

> d)

× P�1(SNM
> d) + O

(
1

�4
0

)
.

Combining above results, we have

E[N2
M�m|SNM

> d] − E[N2
M |SNM

> d]E[�M |SNM
> d]

= d + 
+
�2

1

(
− 4

�̃0�1�
2
0

+ 4

�̃0�1�0�1
+ 4�0

�̃0�̃1�1(�1 − �0)

)

− d + 
+
�2

1

(
2

�0
− 2

�1
− 2�0�1

�̃1�1(�1 − �0)

)

×
(

− 1

�̃0�0
+ 1

�̃0�1
+ �0

�̃0�1(�1 − �0)

)
+ O

(
1

�4
0

)
. (A.9)
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On the other hand, from Lemma 8, we have

E[NM�M |SNM
> d]E[NM |SNM

> d] − (E[NM |SNM
> d])2E[�M |SNM

> d]

= d + 
+
�2

1

(
− 2

�̃0�1�
2
0

+ 2

�̃0�1�0�1
+ 2�0

�̃0�̃1�1(�1 − �0)

)

− d + 
+
�2

1

(
1

�0
− 1

�1
− �0�1

�̃1�1(�1 − �0)

)

×
(

− 1

�̃0�0
+ 1

�̃0�1
+ �0

�̃0�1(�1 − �0)

)
+ O

(
1

�4
0

)
. (A.10)

Combining Lemma 8, (A.9) and (A.10), we have

E[(NM − E[NM |SNM
> d])2(�M − E[�M |SNM

> d])|SNM
> d] = O

(
1

�6
0

)
.

Similarly, we can show that

E[(NM − E[NM |SNM
> d])(�M − E[�M |SNM

> d])2|SNM
> d] = O

(
1

�6
0

)
.

Thus, the right-hand side of (A.5) is at the order of O(
d+
+

�5
1

).

Similar to the proof of (A.2), we can prove (A.4), and complete the proof of (16).
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