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At the heart of a new product sales-forecasting model for consumer packaged goods is a multiple-event
timing process. Even after controlling for the effects of time-varying marketing mix covariates, this timing

process is not a stationary one, which means the standard interpurchase time models developed within the
marketing literature are not suitable for new products.
In this paper, we develop a dynamic changepoint model that captures the underlying evolution of the buying

behavior associated with the new product. This extends the basic changepoint framework, as used by a number
of statisticians, by allowing the changepoint process itself to evolve over time. Additionally, this model nests a
number of the standard multiple-event timing models considered in the marketing literature.
In our empirical analysis, we show that the dynamic changepoint model accurately tracks (and forecasts) the

total sales curve as well as its trial and repeat components and other managerial diagnostics (e.g., percent of
triers repeating).
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1. Introduction
For many new products, it is difficult to get an accu-
rate read on their long-term potential based on only
a few initial weeks of postlaunch (or test-market)
sales data. Common problems include the following
types of issues: (1) Significant promotional activity
can artificially skew the initial sales levels, (2) early
buyers may not exhibit typical purchasing rates, and
(3) repeat-purchasing patterns may be hard to sort out
from the voluminous amounts of first purchase (or
trial) data (Ayal 1975, Lipstein 1961, Morgan 1979). It
is therefore essential for practitioners to rely on for-
mal models of new product sales to tease apart and
understand each of these underlying components to
create a valid sales forecast.
At the heart of a new product sales-forecasting

model is a multiple-event timing process. For many
behavioral processes besides new product sales fore-
casting, researchers need to capture a series of
interpurchase cycles while accommodating customer
heterogeneity. In addition, they need to filter out the
influences that exogenous factors, such as promo-

tional activities, may exert within and across these
multiple purchase cycles.
One of the best-known contributions in this gen-

eral area is a highly regarded paper by Gupta (1991),
which carefully laid out a general framework to cap-
ture the effects of time-varying explanatory variables
in a multiple-event timing model. We will review
some of the key technical aspects of Gupta’s paper
later, but for the moment we want to call attention
to his main empirical result. In applying a broad set
of models to scanner panel data for regular ground
coffee, Gupta observed that the most appropriate
specification was a model that featured an Erlang-2
interpurchase process with gamma-distributed pur-
chase rates (to account for customer heterogeneity),
while also allowing for time-varying covariates such
as price and promotion.
Let us consider the case of a new juice product,

with the masked name of “Kiwi Bubbles,” which
underwent a year-long test in two of IRI’s Behav-
iorScan test markets prior to its national launch. Data
on the purchasing of this new product were col-
lected from 2,799 panelists. We fit Gupta’s Erlang-
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Figure 1 Sales Tracking Performance of Erlang-2/Gamma,
Covariates Model
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2/gamma, covariates model to the first 6 months
of purchasing data and then generate a forecast of
purchasing behavior for the remaining 6 months of
the test market. As shown in Figure 1, this model
does a fine job of tracking sales within the 26-week
calibration period, but it quickly (and significantly)
veers away from the actual sales pattern in a hold-
out forecasting period. This substantial overprediction
(the Week-52 forecast is 23% higher than the actual
cumulative sales level) suggests that the interpurchase
times tend to be lengthening (slowing down) as buy-
ers gain more experience with the new product. This
bias is quite typical of what we have observed for
numerous new products and will motivate much of
the model development that follows in the next sec-
tion.
Beyond this poor forecast, the Erlang-2/gamma,

covariates model is even more troubling from a diag-
nostic perspective. One of the commonly used man-
agerial benchmarks for a new product is “percent
triers repeating” (Clarke 1984, Rangan and Bell 1994),
which provides a useful indication of how well the
product has been accepted by its base of initial triers.
In Figure 2, we see that the actual and predicted
curves diverge quite drastically even in the middle
of the calibration period. This means that the model

Figure 2 Tracking of Percent Triers Repeating by Erlang-2/Gamma,
Covariates Model
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is clearly not capturing the underlying purchase-to-
purchase dynamics, even though the aggregate sales-
tracking plot appears to behave acceptably well over
the calibration period.
The main problem here is that the multiple-event

timing process is not a stationary one. As customers
move from one stage of purchasing to the next, there
appears to be a shift occurring—in particular, early
buyers are slowing down or dropping out completely.
To be fair to Gupta (1991), he made no claims that his
stationary models were suitable for new products and
he conducted no empirical testing in this regard. How-
ever, this points out the need for such a model—one
that builds upon the basic template laid out in Gupta’s
paper, while allowing for the kinds of dynamics that
typically occur in the new product setting.
Over the years, many researchers have dealt with

some of these dynamics by developing separate mod-
els for trial and repeat behavior. The basic belief is
that these two stages are behaviorally distinct, and
that there is little or no “carryover” from the trial
process that might improve (or otherwise affect) the
performance of the repeat model. Therefore, while the
trial-repeat decompositional approach has a long his-
tory in marketing (e.g., Blattberg and Golanty 1978,
Eskin 1973, Fourt and Woodlock 1960, Parfitt and
Collins 1968, Pringle et al. 1982), it may suffer from
three potential shortcomings:
• Separation of stages. Does the evolution of buy-

ing patterns begin and end with the transition from
the trial purchase to first repeat? Some buyers may
continue their initial buying pattern through several
“retrial” cycles before settling into a steady-state pat-
tern (e.g., Aaker 1971). Other buyers may go through
several evolutionary states (i.e., buying rates). In gen-
eral, the repeat-buying component may be highly
nonstationary, so a simple trial-repeat decomposition
may be inadequate.
• “Dependence” between stages. As noted earlier,

most traditional trial-repeat models do not allow any
individual-level information about the first purchase
process to come into play in the repeat model. As we
transition from trial to repeat, the only piece of infor-
mation we effectively retain about each person is that
they made a trial purchase; we do not knowwhen they
made that purchase. However, it is known that early
triers tend to be heavy category buyers (Morgan 1979,
Taylor 1977); given “acceptance” of the new prod-
uct, we could therefore expect them to have a higher
repeat-buying rate than the later triers (who tend to
be light category buyers). This failure to formulate a
multiple-event timing model by first conditioning on
the individual-level latent traits is known to result in
biased inferences (Gupta and Morrison 1991).
• Parsimony. An integrated model requires fewer

parameters than separate staged models, and may
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therefore offer clearer, more interpretable diagnostic
properties. Our most general model requires only four
parameters (not including covariate effects), yet will
be able to track and forecast the overall sales data
extremely well. Furthermore, we will show that our
model is also very effective at capturing each of the
critical components (i.e., trial, first repeat, additional
repeat), even though we do not develop an explicit,
separate model for each of them.
A general class of models that can allow for some

of these purchase dynamics is known as changepoint
models. While they have not been very prevalent in
the field of marketing, a number of statisticians have
developed models that begin to allow for the type of
ongoing evolution that may characterize new prod-
uct sales patterns as shown and discussed above.
These models are centered around an enduring, but
stochastic, renewal process that lets the observation
units (i.e., customers) change their parameters (buy-
ing rates) at random points over time.
We adopt this basic framework, and also extend it

in a novel way to accommodate an important distin-
guishing aspect of the new product purchase process.
We allow for the possibility that the changepoint pro-
cess itself may evolve over time—hence, the name
dynamic changepoint model. Specifically, our intuition
and empirical observations suggest that changepoint
occurrences (i.e., changes in buying rates) will be
quite common in the early phase of a particular cus-
tomer’s relationship with the new product, but these
changes will occur much less frequently after the
buyer has gained considerable experience with the
product. In fact, the changepoint process may at some
stage terminate completely, which would leave each
buyer with a permanent, steady-state (but still hetero-
geneous) purchasing rate. This steady-state scenario
would be entirely consistent with the work of Gupta
(1991), as well as that of many other researchers
(Ehrenberg 1988; Jain and Vilcassim 1991, 1994;
Morrison and Schmittlein 1988) who have shown the
robustness and widespread nature of stationary (but
heterogeneous) models for the purchasing of estab-
lished products.
In the next section we introduce the general struc-

ture of a changepoint process as it applies to the
case of new product purchasing. We then discuss the
notion of a dynamic changepoint process and develop
the general form of our model, which includes sev-
eral relevant nested versions such as the models ana-
lyzed by Gupta (1991), as well as traditional (static)
changepoint models. This is followed by an empir-
ical analysis in which we examine the fit and fore-
casting performance of the proposed model for two
datasets with different repeat-purchasing characteris-
tics. We conclude with a discussion of several issues
that arise from this work and identify several areas
worthy of follow-up research.

2. Model Development
Our goal is to develop a model of new product buy-
ing behavior that incorporates the effects of marketing
mix variables and nonstationarity in buying rates at
the individual consumer level. We obtain estimates
of the model parameters using data collected in a
test market environment, then generate an overall
sales forecast as well as related managerial diagnos-
tics for the new product. These data come from a con-
sumer panel in which we track the purchasing of each
panelist for the duration of the test market.
We expect to observe some nonstationarity in the

underlying buying rates (after controlling for the tem-
porary effects of marketing mix variables). The buy-
ing rate reflects the consumer’s preference for the new
product, and we would expect there to be some insta-
bility in preferences as the consumer gains experience
with it. For example, initial enthusiasm may dimin-
ish and the consumer will return to substitute prod-
ucts purchased before the launch of the new product;
this would be reflected by a change to a lower value
of the buying-rate parameter. This change might be
extreme; i.e., the consumer drops the product from
future consideration after the first purchase. Alterna-
tively, the consumer may go through several “retrial”
stages before deciding whether and how the product
fits in with his regular purchasing habits.
As consumers gain more experience with the prod-

uct, we would expect their preferences (and therefore
their underlying buying rates) to stabilize to some
extent. Consequently, a desired feature of the model
is that it can capture the evolution towards a station-
ary repeat-buying process as the product moves from
being “new” to “established.”
It should be noted that preference changes need not

be the only driver of changes in the underlying buy-
ing rates; external “shocks” to the market, perhaps
due to word-of-mouth influences or other unmea-
sured covariate effects, can also lead to the occurrence
of changepoints in the purchase sequence. However,
it is not our goal to identify the specific drivers of
each of the changepoints, but simply to capture these
changes to make more accurate sales forecasts.
Before we formally develop our model of new

product buying behavior, let us further explore
the notion of nonstationarity. Suppose we have
a sequence of observations y1�y2� � � � � yN ordered
in time, with each observation being independent
with density f �yn � �n	. If the sequence of observa-
tions is viewed as being stationary, we assume that
�n = � ∀n. If �n �= � ∀n, we say that the sequence is
nonstationary.
According to the general changepoint model (e.g.,

Barry and Hartigan 1993, Henderson and Matthews
1993, Pievatolo and Rotondi 2000, Stephens 1994), this
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nonstationarity is modeled by postulating that the
sequence can be partitioned into q+1 contiguous sets,

�y1� � � � � yw1
� �yw1+1� � � � � yw2
� � � � � �ywq+1� � � � � yN 
�

Within each block, we assume �n = �wi
for wi−1 <

n≤wi, with changes in the parameter values occur-
ring at w1�w2� � � � �wq , which are called changepoints.
Within the marketing literature, the logic of change-

point models has been combined with traditional
finite mixture methods to allow changes in segment
membership over time (e.g., Böckenholt and Dillon
1997, Poulsen 1990). This set of models typically
falls under the heading of hidden Markov models
(MacDonald and Zucchini 1997), which can viewed
as a specific subclass of changepoint process models.
A hidden Markov model (HMM) is a discrete-time
finite-state Markov model in which st , the state of
the system at time t = 1�2� � � � � is not directly observ-
able. Rather, we observe yt , which is linked to st by
the stationary density f �yt � st	. In many cases, includ-
ing the model developed in this paper, we have a
continuous-time process and/or there are an infinite
number of possible latent states, in which case we
look beyond the standard HMM framework to more
general changepoint process models.
The standard changepoint problem is one of infer-

ence: Given a single data sequence, the objective is
to identify the number �q	 and location �w1� � � � �wq	
of the changepoints, along with the values of the
�w1� � � � ��wq

. This differs from our modeling prob-
lem in two ways. First, given our interest in forecast-
ing, we are not interested in identifying the precise
times/instances of the changepoints in the observed
data sequence. Rather, we need to determine whether
there is any systematic structure in the pattern of
the changepoints and then use this knowledge to
create a forecast of the data sequence beyond yN .
Second, we are not modeling a single aggregate
data sequence; rather, we have a separate sequence
of observations for each panelist, which means we
must explicitly capture the cross-sectional hetero-
geneity in the parameters, as well as the temporal
variation.
We will deal with this second point by assum-

ing that the �wi
are distributed across the population

according to some heterogeneity distribution. The first
point can be accommodated within the framework
of a product partition model (Barry and Hartigan
1992, Howard 1965). In particular, we assume that the
partition of the sequence y1�y2� � � � � yN is randomly
selected according to a product partition distribu-
tion. Instead of assuming a constant probability of
a changepoint occurring at each yn, which leads
to a geometric distribution for the length of the
blocks within a given partition (e.g., Barry and

Hartigan 1993, Howard 1965, Yao 1984), we will
allow these probabilities to follow a flexible structure
that, for example, allows the probability of change
in the underlying stochastic process to decrease as
the consumer gains more experience with the new
product. Forecasts can then be generated conditional
on a given partition of future observations, and
these forecasts can then be weighted and combined
according to the probability of observing such a
partition.
During the period �0� tc�, where 0 corresponds to

the launch date of the new product and tc is the cen-
soring point that corresponds to the end of the model
calibration period, we observe a consumer making
K = J + 1 purchases of the new product at times
t0� t1� � � � � tJ . (By convention, j = 0 corresponds to the
trial purchase. We refer to j as the depth-of-repeat
level.) We need to specify a model for the set of K =
J + 1 interpurchase times t0� t1 − t0� � � � � tJ − tJ−1 and
the censored observation tc − tJ .
Let the underlying interpurchase times follow an

exponential baseline distribution with marketing mix
covariate effects incorporated using the standard pro-
portional hazards framework:

h�tj��j	 = �je
x�tj 	�′

≡ �jA�tj 	�

where x�t	 is the vector of marketing covariates at
time t and � the effects of these covariates.
By definition, the survivor function is given by

S�tj � tj−1��j	 = exp
[
−
∫ tj

tj−1
h�u��j	 du

]

= exp
[
−�j

(∫ tj

0
A�u	du−

∫ tj−1

0
A�u	du

)]
�

Assuming the time-varying covariates remain con-
stant within each unit of time (e.g., a week in our
empirical application),

∫ t

0
A�u	du = �t≥1

Int�t	∑
i=1

A�i	+ �t− Int�t	�A�Int�t	+ 1	

≡ B�t	�

where �t≥1 = 1 if t ≥ 1, 0 otherwise. The survivor func-
tion of the with-covariates interpurchase time distri-
bution is therefore

S�tj � tj−1��j	= exp�−�jB�tj� tj−1	�� (1)

where B�tj� tj−1	 = B�tj 	 − B�tj−1	. Because B�tj� tj−1	
captures the effects of the covariates between tj−1
and tj , the survivor function is not just a function of
the covariate values at tj ; it is a function of the covari-
ate values for every time period (e.g., week) since the
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last transaction. It follows that the pdf of the with-
covariates interpurchase time distribution is

f �tj � tj−1��j	 = h�tj��j	S�tj � tj−1��j	
= �jA�!j	exp�−�jB�tj� tj−1	�� (2)

where !j is the time period (e.g., week) in which the
jth repeat purchase occurred, defined as

!j =
{
tj if tj is integer
Int�tj 	+ 1 otherwise�

Following the standard discrete changepoint for-
mulation, in which we assume that the �j can change
immediately after the occurrence of the event of inter-
est (i.e., the jth repeat purchase),1 there are 2K possible
partitions of this sequence of observations. Let there
be q ≤ K changepoints, and let w = �wi
, i = 1� � � � � q,
be the set of changepoints, where wi corresponds
to the depth-of-repeat level (i.e., repeat-purchase
number) associated with the purchase occasion that
immediately precedes a change in the buying-rate
parameter. (If a change occurs immediately after the
trial purchase, we have w1 = 0.) Let "j be the proba-
bility that there is a change in a consumer’s under-
lying buying rate following his jth repeat purchase.
The probability of the partition w is therefore

P�w	= ∏
j∈w

"j
∏

j∈I−w
�1−"j	� (3)

where I= �0�1� � � � � J 
.
The standard assumption of product partition mod-

els is that "j = " ∀j . However, in the case of a new
product, we expect that the probability of a consumer
revising his preferences following a purchase (with
the corresponding change in the underlying buying
rate) will decrease as he gains more experience with
the new product (i.e., makes additional purchases). To
accommodate this, we assume that

"j = 1−$�1− e−%�j+1		� j = 0�1�2� � � � � (4)

where &�$ ∈ �0�1� and % ≥ 0. This parametric expres-
sion is motivated by equivalent expressions used in
other papers (Eskin 1973, Fader and Hardie 2001,
Kalwani and Silk 1980) to capture the evolution of
repeat-buying patterns over time.
The relationship between "j and j is illustrated in

Figure 3 for three sets of values of $ and %. We note
that as j increases, "j tends to 1 − $. Therefore, if
$ = 1, the probability of a change tends to zero as a
consumer moves to higher depth-of-repeat levels; in

1 One behavioral “story” consistent with this is to assume that con-
sumption immediately follows purchase and that preference revi-
sions would immediately follow consumption.

other words, the model evolves to a stationary process
that would be consistent with the stabilization

✲
✛ wk1 ✲✛ wk2 ✲✛ wk3 ✲✛ wk4 ✲✛ wk5 ✲✛ wk6 ✲

× × ×
0 t0 t1 t2 6

of consumer preferences. On the other hand, if $ < 1,
"j > 0 ∀j , which means that individual consumer pref-
erences will not stabilize; in other words, there is
long-term nonstationarity in the marketplace. This
general specification for "j results in what we call the
dynamic changepoint model. If %→
, then "j is inde-
pendent of j and equals 1−$ ∀j , and we call this the
static changepoint model.
We incorporate heterogeneity in buying rates by

allowing them to be distributed across the population
according to a gamma distribution with shape param-
eter r and scale parameter ):

g��	= )r�r−1e−)�

+�r	
�

When a change in the underlying buying rate
occurs, the consumer draws a new value of his buy-
ing rate, independent of his previous one, from the
same gamma distribution of purchase rates described
above. This principle of independent sampling from
a given mixing distribution was first raised in
Howard’s “dynamic inference” model (Howard 1965)
and was used by Sabavala and Morrison (1981) in
their model of media exposure. More recently, it has
been used by Barry and Hartigan (1992) and Yao
(1984), among others, in Bayesian analyses of the
changepoint problem.
To illustrate and convey the intuition of the pro-

posed model, let us consider the following scenario
of a consumer who makes three purchases of the new
product in the first 6 weeks of it being on the market:
trial at t0, first repeat at t1, and second repeat at t2.
Given t0, t1, t2, we do not know whether the consumer
ever revised his preferences and, if he did, how many
times and at which points in time. For this consumer,

Figure 3 Probability of Change in Buying Rate by Depth of Repeat
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Table 1 Possible Partitions of Three Purchases

Changepoint Occurs After
No. of

Partition Trial 1st Repeat 2nd Repeat Changepoints

(i) 0
(ii) � 1
(iii) � 1
(iv) � 1
(v) � � 2
(vi) � � 2
(vii) � � 2
(viii) � � � 3

the number of changepoints could have ranged from
zero to three. The set of eight possible partitions of
this purchase sequence is given in Table 1.
Let us first assume that the consumer never revised

his preferences in �0�6� (i.e., the first partition). Given
the constant underlying buying rate � (i.e., before
we consider cross-sectional heterogeneity), the con-
ditional likelihood function for this consumer is the
product of the density and survivor functions; that is,

L����	 = f �t0 � 0��	f �t1 � t0��	f �t2 � t1��	S�6 � t2��	
= �3A�2	A�4	A�6	exp�−�B�6�0	��

The corresponding unconditional likelihood function
is obtained by accounting for heterogeneity in the
underlying buying rate �:

L�r�)��	 =
∫ 


0
L����	

)r�r−1e−)�

+�r	
d�

= +�r + 3	A�2	A�4	A�6	
+�r	

·
(

1
)+B�6�0	

)3( )

)+B�6�0	

)r

� (5)

This likelihood function is identical to the exp/gamma,
covariates model from Gupta (1991).
Alternatively, suppose that the consumer revised

his preferences following his second (first repeat) pur-
chase (i.e., partition (iii) in Table 1, above). This parti-
tion is defined by w= �1
. Let the purchasing rate �a
reflect the consumer’s initial preference for the new
product, and �b reflect the consumer’s revised prefer-
ence following his first repeat purchase. Conditional
on �a and �b, the likelihood function for this con-
sumer is therefore

L��a��b��	

= f �t0 � 0��a	f �t1 � t0��a	f �t2 � t1��b	S�6 � t2��b	
= �2aA�2	A�4	exp�−�aB�t1�0	��bA�6	exp�−�bB�6� t1	��
We note that the change in buying rate results in a
new value being drawn from the same underlying

gamma distribution. The unconditional likelihood
function is obtained by accounting for heterogeneity
in �a and �b:

L�r�)��	

=
∫ 


0

∫ 


0
L��a��b��	

)r�r−1a e−)�a

+�r	

)r�r−1b e−)�b

+�r	
d�a d�b

= +�r + 2	A�2	A�4	
+�r	

(
1

)+B�t1�0	

)2( )

)+B�t1�0	

)r

· +�r + 1	A�6	
+�r	

(
1

)+B�6� t1	

)(
)

)+B�6� t1	

)r

� (6)

Given the partition probability distribution defined
by (3) and (4), the probability of observing the first
partition with corresponding likelihood function (5) is
�1−"0	�1−"1	�1−"2	, while the probability of observ-
ing the third partition with likelihood function (6) is
�1− "0	"1�1− "2	. The overall likelihood function for
this consumer is computed by taking the weighted
average of the likelihood function associated with
each of the possible partitions, where the weights are
the partition probabilities.
More generally, let Th = �t0� t1� � � � � tJ 
 be the set of

times at which consumer h, �h= 1� � � � �H	, makes his
K purchases of the new product in the period �0� tc�.
For convenience, we suppress the household subscript
for t0� � � � � tJ .
The exact nature of the likelihood function for con-

sumer h depends on whether K = 0 or K > 0.
(i) If no purchase of the new product is observed

(i.e., K = 0), this is because the consumer has not
yet had the opportunity or need to make a trial pur-
chase. Therefore, the likelihood function for a con-
sumer making no purchases is

L�Th	=
(

)

)+B�tc�0	

)r

� (7)

which is simply the with-covariates survivor func-
tion (i.e., the probability that no purchase occurred in
�0� tc�) mixed with the gamma distribution.
(ii) When K > 0, the possibility of there being

changepoints in the sequence of interpurchase times
emerges. As we cannot tell exactly when (or if)
changes in the buying rates take place, we first for-
mulate the likelihood function conditional on a given
partition w with n≤K changepoints.

(a) For the case of no changepoints �n = 0	,
we have

L�Th �w	 =
{ J∏
j=0

A�!j	

}
+�r + J + 1	

+�r	

·
(

1
)+B�tc�0	

)J+1( )

)+B�tc�0	

)r

� (8)

(This is Gupta’s 1991 exp/gamma, covariates model.)
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(b) For n> 0 changepoints, we have

L�Th �w	

=
{ J∏
j=0

A�!j	

} n∏
i=1

{
+�r +wi −wi−1	

+�r	

·
(

1
)+B�twi

� twi−1	

)wi−wi−1( )

)+B�twi
� twi−1	

)r}

·
{
+�r + J −wn	

+�r	

(
1

)+B�tc� twn
	

)J−wn

·
(

)

)+B�tc� twn
	

)r}
� (9)

Recalling the partition probability distribution
defined by (3) and (4), the likelihood function for
consumer h with K > 0 is simply the weighted
average of the partition-specific likelihoods:

L�Th	=
∑
s

L�Th �ws	P �ws	� (10)

where the summation is over the possible partitions
indexed by s = 1�2� � � � �2K . (For K = 0, the likelihood
function is given by (7).) The overall sample log-
likelihood function is given by

LL=
H∑
h=1
ln�L�Th	�� (11)

Equations (3), (4), and (7)–(11) define the model
as fitted to a given dataset. Maximum likelihood
estimates of the model parameters �r�)�$�%��	 are
obtained by maximizing the log-likelihood function
given in (11). Standard numerical optimization
methods are employed, using the MATLAB program-
ming language, to obtain the parameter estimates.
When we observe a large number of repeat purchases
for the new product, the evaluation of the model
log-likelihood function can become computationally
complex given the need to evaluate each of the 2K

possible partitions of the purchase sequence. A dis-
cussion of this issue and the examination of a recom-
mended approach for minimizing computation time
can be found in the appendix.

2.1. Properties of the Model
In its most general form, the model requires the esti-
mation of 4 + p parameters, where p is the number
of marketing covariates. It is a very flexible
model that can capture many patterns of buying
behavior. Examples of such buying phenomena
include:
• “Traditional” stationary buying behavior. If "j = 0

∀j (i.e., %→
 and $ = 1), we have the exp/gamma,
covariates model considered by Gupta (1991). With
the additional constraint that � = 0, we have

the two-parameter exponential-gamma model of
stationary repeat-buying behavior that is the timing
counterpart of the NBD counting model (Gupta and
Morrison 1991). The estimates of r and ) would equal
to those obtained by fitting the NBD model to the
data.
• The transition from a “new” to “established” product.

If $ = 1 and % is finite, then "j → 0 as j increases; that
is, the probability of seeing a change in the underly-
ing buying rate tends to zero as a consumer moves to
higher depth-of-repeat levels. This means that the ini-
tial nonstationary buying process evolves to a station-
ary process as the product becomes more established
(i.e., when most buyers have made a large number
of repeat purchases). Therefore, the model is consis-
tent with the notion of nonstationary buying behavior
during the early stages of a new product’s life and
stationary buying behavior—as characterized by the
NBD model—once it has become established in the
marketplace.
• Long-term nonstationarity in repeat buying. When

$ < 1, the probability of there being a change in the
underlying buying rate will always be nonzero, which
means that the repeat buying process is always non-
stationary. If %→
, "j is a constant 1−$. For finite %,
"j → 1 − $ as j increases; that is, the probability of
a change in the underlying buying rate tends to the
constant 1−$ as a consumer moves to higher depth-
of-repeat levels. Such a model can easily capture the
“leakage” of repeat buyers phenomena observed by
East and Hammond (1996). If the underlying gamma
distribution has an effective mode at zero (r ≤ 1),
an ongoing low level of changes will see some con-
sumers drawing a very small value of � (which yields
an almost zero probability of making a repeat pur-
chase in the foreseeable future) on a given change,
thereby “dropping out” of the market for the product
of interest. Other researchers (e.g., Schmittlein et al.
1987) have proposed NBD-based models that include
a “death” process. However our model is far more
flexible, allowing for other forms of nonstationarity
(e.g., “speeding up” and “slowing down” of latent
purchase rates) beyond a simple “death” process.

2.2. Generating Sales Forecasts
To evaluate the tracking performance of the pro-
posed model, or to use the model for forecasting sales
beyond the model calibration period, it is necessary to
generate sales numbers (i.e., counts) from this timing
model. We are interested in a number of sales-related
measures for the new product: (i) the cumulative trial
sales by time t, T �t	; (ii) the cumulative repeat sales
by time t, R�t	; (iii) the total sales by time t, S�t	,
which is by definition equal to T �t	+R�t	; and (iv) the
depth-of-repeat components of repeat sales. Defining
Rj�t	 as the number of consumers who have made
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at least j repeat purchases of the new product by
time t, we have R�t	=∑


j=1Rj�t	. Our goal is to gener-
ate these numbers over the time interval �0� tf �, where
tf denotes the end of the forecast period.
While we have a simple closed-form expression for

expected cumulative trial sales,

E�T �t	�=H ·
[
1−

(
)

)+B�t�0	

)r]
�

it is not possible to write out a closed-form expression
for R�t	, and consequently S�t	. We therefore propose
a simulation-based approach to computing the sales
numbers.
Let the nonzero elements of the vector Nh denote

the times at which consumer h made his trial, first
repeat, etc. purchases (if any at all). For a given indi-
vidual, we simulate the elements of Nh in the follow-
ing manner. We start by drawing a value of � from
the gamma distribution. Using this value of � and
the actual values of the covariates, we simulate an
interpurchase time off the exponential-with-covariates
interpurchase time distribution. This gives us the con-
sumer’s simulated value of t0, the time of his trial pur-
chase. If t0 > tf , the consumer is deemed to have made
zero purchases of the new product by time tf and the
procedure moves on to the next consumer. If t0 ≤ tf ,
we record the time of this purchase �Nh�0	 = t0	 and
then draw a uniform random number to determine
whether or not this purchase occasion corresponds to
a changepoint: With probability 1− "0 the consumer
retains his value of � and with probability "0 he
obtains a new value from the underlying gamma dis-
tribution. Another exponential-with-covariates inter-
purchase time is then simulated and added to t0 to
give us the consumer’s simulated value of t1, the time
of his first repeat purchase. If t1 > tf , the consumer is
deemed to have made only a trial purchase by time tf
and the procedure moves on to the next consumer. If
t1 ≤ tf , we record the time of this first repeat purchase
�Nh�1	= t1	, and the whole process continues for this
consumer until tj > tf , at which time the procedure
moves to the next consumer.
Once we have simulated Nh for all individuals, we

can compute total sales and its components in the
following manner:

T �t	=
H∑
h=1

I�0<Nh�0	≤ t
�

Rj�t	=
H∑
h=1

I�0<Nh�j	≤ t
�

R�t	=

∑
j=1

Rj�t	�

S�t	= T �t	+R�t	�

where I�·
 is an indicator function that equals one if
the logical condition is true, and zero otherwise.
We repeat this simulation, say 100 times, and take

the average of the run-specific S�t	, T �t	, etc. This
simulation-based approach is used in the following
empirical analysis.

2.3. Extension to the Basic Model
As with numerous other stochastic models of buyer
behavior, our model is based on the assumption that
individual consumer interpurchase times can be char-
acterized by the exponential distribution. Two poten-
tially troubling characteristics of this distribution are
that it is memoryless (i.e., there is no influence of time
since the last purchase) and that the mode of the dis-
tribution is at zero (which means that the next pur-
chase is most likely to occur immediately after the
last one). Consequently, a number of researchers have
proposed that the Erlang-2 distribution be used to
model interpurchase times, as it allows for a more reg-
ular purchase process (Chatfield and Goodhardt 1973,
Herniter 1971, Jeuland et al. 1980). We therefore con-
sider the case of Erlang-2-distributed interpurchase
times as an extension to the basic model.
Using Gupta’s (1991) approach to incorporating the

effects of time-varying covariates into the Erlang-2
distribution, the survivor function and pdf of the
with-covariates interpurchase time distribution are
given by

S�tj � tj−1��j	= exp�−�jB�tj� tj−1	��1+�jB�tj� tj−1	��

f �tj � tj−1��j	= �2j A�!j	B�tj� tj−1	exp�−�jB�tj� tj−1	��
This results in new expressions for the partition-
specific likelihood functions:
• For a consumer making no purchases in the cal-

ibration period �0� tc�:

L�Th	=
(

)

)+B�tc�0	

)r[
1+ rB�tc�0	

)+B�tc�0	

]
� (12)

• For K > 0 purchases with no changepoints
�n= 0	, we have

L�Th �w	 =
{ J∏
j=0

A�!j	B�tj� tj−1	
}

·
{
+�r + 2�J + 1		

+�r	

(
)

)+B�tc�0	

)r

·
(

1
)+B�tc�0	

)2�J+1	

·
[
1+ �r + 2�J + 1		B�tc� tJ 	

)+B�tc�0	

]}
� (13)

(This is Gupta’s 1991 Erlang-2/gamma, covariates
model.)
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• For n> 0 changepoints, we have

L�Th �w	 =
{ J∏
j=0
A�!j	B�tj�tj−1	

}

·
n∏
i=1

{
+�r+2�wi−wi−1		

+�r	

(
)

)+B�twi
�twi−1	

)r

·
(

1
)+B�twi

�twi−1	

)2�wi−wi−1	}

·
{
+�r+2�J−wn		

+�r	

(
)

)+B�tc�twn
	

)r

·
(

1
)+B�tc�twn

	

)2�J−wn	

·
[
1+ �r+2�J−wn		B�tc�tJ 	

)+B�tc�twn
	

]}
� (14)

Equations (12)–(14) replace Equations (7)–(9),
respectively. Consequently, Equations (3), (4), and
(10)–(14) define the model as fitted to a given dataset
when we assume the underlying interpurchase times
follow the Erlang-2 distribution.
We explore the value of this extension in the fol-

lowing empirical analysis.

3. Empirical Analysis
We now examine the performance of the dynamic
changepoint model (and its nested variants), using
test market data for two new products that were
tested using IRI’s BehaviorScan service prior to
national launch. The first new product is “Kiwi
Bubbles,” a masked name for a shelf-stable juice
drink, aimed primarily at children, which is sold as a
multipack of several single-serve containers. The sec-
ond new product is “Four Seasons Biscuits,” a masked
name for a snack product.
Focusing first on the Kiwi Bubbles dataset, we

begin by discussing the fit of the dynamic change-
point model and its variants in the calibration period.
We then examine the out-of-sample forecasting per-
formance of these models. This is followed by an
exploration of the impact of the length of the model
calibration period on model forecasting. To fur-
ther illustrate and emphasize the performance of
the dynamic changepoint model, we report the key
results obtained from performing a similar analysis
using the Four Seasons Biscuits dataset.

3.1. Model Fit
Prior to its national launch, the Kiwi Bubbles product
underwent a year-long test conducted in two of IRI’s
BehaviorScan test markets. We use panel data drawn
from 2,799 panelists in the two markets. (As is typi-
cally the case with new product launch data, we have

detailed purchasing information and marketing mix
covariates only for the test brand.)
Using data for the 267 panelists who tried the new

product by the end of Week 26, we wish to forecast
the purchasing behavior of the whole panel (i.e., 2,799
panelists) to the end of the year (Week 52). That is,
we fit the model specification to the first 6 months
of purchasing data and generate sales forecasts for
the whole year. We have information on the market-
ing activity over the 52 weeks the new product was
in the test market; this comprises a standard market-
level scanner data measure of promotional activity
(i.e., %ACV with any merchandising) and a measure
of coupon activity. (The coupon variable is an aggre-
gate measure of coupon activity, generated by IRI for
modeling purposes, that reflects the face value and
circulation of the coupon along with standard decays
in the redemption rate.)
As noted above, the dynamic changepoint model

developed in this paper nests a number of simpler
models. First, we can vary the nature of the change-
point process. Setting % → 
 results in the static
changepoint model in which the probability of there
being a change in the underlying buying rate is not
allowed to evolve as consumers gain experience with
the product. Additionally, setting $ to 1.0 “turns off”
the changepoint process and assumes that the under-
lying buying rates are stationary. This corresponds
to the with-covariates models developed in Gupta
(1991). Second, we can remove the covariate effects,
which is equivalent to setting � to zero. Finally, we
can replace the assumption of the underlying expo-
nential distribution with the Erlang-2 distribution. We
therefore have 12 different models’ specifications to
consider. We fit these 12 models to the first 6 months
of purchasing data for the Kiwi Bubbles new product.
The results are summarized in Table 2.
Looking at the model log-likelihoods, we immedi-

ately observe that the fit of the exponential model
specifications strictly dominates their Erlang-2 coun-
terparts. While this is contrary to the findings of
Gupta (1991), this result is consistent with recent work
on the modeling of trial purchasing for new grocery
products, which finds strong support for the exponen-
tial distribution (Fader et al. 2003, Hardie et al. 1998).
Within the set of six exponential models, we

observe that the inclusion of covariates results in a
significant improvement in calibration-period model
fit; however, the improvement in fit is less when
we allow for more nonstationarity in the underly-
ing buying rates: 5LL = 79�4 for the no-changepoint
specification (Model 1 versus Model 4), 5LL = 47�9
for the static changepoint specification (Model 2
versus Model 5), and 5LL = 45�4 for the dynamic
changepoint specification (Model 3 versus Model 6).
For both the with- and without-covariates cases, the
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Table 2 Model Estimation Results for the Kiwi Bubbles Dataset

Model Baseline Covariates Changepoint LL # Parameters r � � � Coupon Promotion

1 Exponential N None −3�812�40 2 0�079 71�375 (1) �
	

2 Exponential N Static −3�779�19 3 0�049 26�797 0�750 �
	

3 Exponential N Dynamic −3�771�98 4 0�047 24�057 0�851 1�144
4 Exponential Y None −3�733�00 4 0�076 138�239 (1) �
	 5�182 0�014
5 Exponential Y Static −3�731�28 5 0�066 97�661 0�912 �
	 5�059 0�012
6 Exponential Y Dynamic −3�726�56 6 0�061 80�228 0�966 1�367 5�204 0�012
7 Erlang-2 N None −3�973�44 2 0�095 33�094 (1) �
	

8 Erlang-2 N Static −3�797�52 3 0�044 7�243 0�637 �
	

9 Erlang-2 N Dynamic −3�783�96 4 0�044 6�937 0�812 0�836
10 Erlang-2 Y None −3�824�23 4 0�091 74�370 (1) �
	 2�401∗ 0�019
11 Erlang-2 Y Static −3�760�54 5 0�051 17�086 0�707 �
	 3�180∗∗ 0�010
12 Erlang-2 Y Dynamic −3�747�86 6 0�050 15�872 0�867 0�910 3�428∗∗ 0�010

Note. All parameter estimates are significantly different from 0 at p < 0�001, except those marked with ∗ �p < 0�05	 and ∗∗ �p < 0�01	.

dynamic changepoint specification provides a signifi-
cant improvement in fit over its no-changepoint coun-
terpart. Compared to the Gupta (1991) exp/gamma,
covariates specification (Model 4), our dynamic
changepoint specification (Model 6) represents a sig-
nificant improvement in calibration-period model fit
(p= 0�0016 using the likelihood ratio test).
We also note that the dynamic changepoint model

provides a significant improvement in fit over the
static changepoint model, both in the case of the
with-covariates specification (p= 0�002 using the like-
lihood ratio test) and the without-covariates specifica-
tion (p < 0�001 using the likelihood ratio test).
Substituting the estimates of $ and % in (3) yields

the implied probabilities of a change in the underly-
ing buying rate as a function of depth-of-repeat level
(i.e., experience with the product). These are plotted
in Figure 4. For the dynamic changepoint specifica-
tion (Model 6), we see that there is a 28% chance
that a consumer will change his purchase rate follow-
ing his trial purchase; this is entirely consistent with
the widely held view that trial purchases are different
from repeat purchases and that trial rates are a poor
predictor of repeat buying. There is a 10% chance that

Figure 4 Estimated Probability of Change in Buying Rate by Depth
of Repeat
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he will revise his buying rate following his first repeat
purchase. This implies that there is a 65% chance that
a consumer will not have revised his buying rate after
two purchases of the new product. By the time three
repeat purchases have been made, the change proba-
bility has effectively reached its asymptotic value of
1−$ = 3�5%.

3.2. Forecasting Performance
While the dynamic changepoint specification
(Model 6) offers a statistically significant improve-
ment in fit over both the static changepoint speci-
fication (Model 5) and the stationary specification
(Model 4), the improvement in model fit is relatively
small given the amount of data. However, it is
dangerous to assess a forecasting model in terms of
calibration-period fit, as the absence of a positive
link between a model’s calibration (in-sample) fit and
out-of-sample forecasting performance is well known
(Armstrong 2001).
We assess the forecasting performance of each

model specification using several standard measures.
First, we index the year-end (cumulative) sales fore-
cast against actual Week 52 cumulative total sales
(Wk52 Index); indices greater than 100 represent an
overforecast. We also consider MAPE (mean absolute
percentage error) computed over the 26-week fore-
cast horizon. We compute MAPE for total sales
(MAPE-Tot) as well as for the trial (MAPE-TR), first
repeat (MAPE-FR), and additional repeat (MAPE-AR)
components of total sales. (We focus on this decom-
position because managers are interested in the
breakdown of total sales into these components—see,
for example, Clarke 1984.) These results are summa-
rized in Table 3.
The dominance of the dynamic changepoint spec-

ification (Model 6) is now very clear, driven largely
by its excellent performance in forecasting both of the
repeat-sales components. Its forecasting performance
is illustrated in Figure 5; observe that the model-based
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Table 3 Model Forecasting Performance Results for the Kiwi Bubbles
Dataset

Model Wk52 Index MAPE-Tot MAPE-TR MAPE-FR MAPE-AR

1 130�7 17�0 6.2 34�4 23�2
2 96�0 2�7 1.9 23�6 16�9
3 93�2 5�6 2.0 3�1 13�9
4 112�7 5�4 2.1 22�2 7�1
5 104�9 2�5 2.0 21�7 5�0
6 104�7 2�6 2.0 4�1 4�3
7 148�5 28�5 9.5 44�8 41�7
8 86�8 8�9 1.9 19�2 32�6
9 86�5 10�0 2.2 5�8 25�2
10 123�3 13�6 2.5 32�3 18�6
11 91�6 4�7 1.9 22�0 21�3
12 91�8 6�5 1.9 5�1 13�8

predictions provide an accurate tracking of both the
total sales curve and its trial and repeat components.
At year’s end, this is only a 5% error in the overall
sales forecast.
Even though the level of additional repeat sales is

relatively low at the end of the calibration period, it is
evident that additional repeat will quickly bypass the
other sales components, and will comprise the lion’s
share of total sales in the period following Week 52.
The ability of our model to accurately track and fore-
cast this key component is, perhaps, the strongest
indicator of its validity and usefulness.
Two other widely monitored measures of new

product performance are “percent triers repeating”
and “repeats per repeater” (Clarke 1984, Rangan and
Bell 1994). At any point in time t, percent triers
repeating is computed as R1�t	/T �t	, while repeats
per repeater is computed as R�t	/R1�t	. In Figures 6
and 7 we compare the actual development of these
two measures with the predictions derived from the
dynamic changepoint specification (Model 6) and
the basic exponential-gamma, covariates specification
(Model 4).
Comparing the tracks for Models 4 and 6 further

illustrates performance of our dynamic changepoint

Figure 5 Predicted Sales
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Figure 6 Tracking Percent Triers Repeating
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specification. To reinforce this, it is useful to con-
trast Model 6 with the performance of the Erlang-2/
gamma, covariates specification (Model 10), both in
terms of overall sales (Figure 1 versus Figure 5) and
percent triers repeating (Figure 2 versus Figure 6). It
is clearly important that a model incorporates a mech-
anism for accommodating changes in the underlying
buying rates, reflecting, among other things, prefer-
ence changes as the consumer gains more experience
with the new product.

3.3. Exploring Sensitivity to
Calibration-Period Length

In the analysis presented above, we have used a
6-month calibration period, as this is the point at
which these forecasts are typically made in practice.
However, given the costs of testing (and the oppor-
tunity costs of waiting too long), a manager con-
ducting a test market often wants to know: “How
many weeks are needed for an accurate forecast?” To
explore the impact of the length of the model cali-
bration period on forecasting performance, we recali-
brated the dynamic changepoint process model (i.e.,
Model 6) using two shorter calibration periods: (i) the
first 12 weeks of purchasing data, and (ii) the first

Figure 7 Tracking Repeats per Repeater
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Table 4 Model Estimation Results by Length of Calibration Period

Length (wk) LL (calib) LL (26 wk) r � � � Coupon Promotion

12 −2�387�34 −3�734�05 0�067 86�573 1�000 2�353 5�779 0�009
20 −3�343�71 −3�729�17 0�071 97�682 1�000 1�747 4�965 0�011
26 −3�726�56 −3�726�56 0�061 80�228 0�966 1�367 5�204 0�012

20 weeks of purchasing data. The model estimation
results are reported in Table 4, along with the results
associated with a 26-week calibration period (taken
from Table 2). To facilitate the comparison across
calibration period lengths, we applied the 12- and
20-week parameter estimates to the first 26 weeks of
purchasing data and computed the associated value
of the log-likelihood function, LL (26 wk).
We observe that even between 20 and 26 weeks,

there is movement in the values of the parameter
estimates and this is reflected in the almost 3-point
difference in the associated value of the 26-week log-
likelihood function. From a managerial perspective,
the impact of calibration-period length (i.e., length
of the test market) is of greater interest. The fore-
casting performance measures associated with the
three calibration periods are therefore reported in
Table 5.
We observe that while shortening the calibration

period does not adversely impact our ability to track
and forecast trial purchasing, it has a noticeable neg-
ative impact on the repeat-purchasing aspect of the
model which leads to error in the total sales forecast.
For the case of Kiwi Bubbles we can say that using
a model calibration period shorter than the standard
26 weeks has a substantial impact on forecast quality,
but we are not in a position to generalize.
Just as Fader et al. (2003) have explored the sen-

sitivity of trial forecast accuracy to the length of
model calibration period across a number of datasets
from different product categories, there is a need to
examine the impact of calibration period length on
our forecasts of the repeat-purchase component of
new product sales. Clearly, any conclusions about
calibration-period length will be dependent, in part,
on the average interpurchase time, which will vary
from category to category. Researchers examining this
issue in the future should therefore try to select
datasets from categories that vary systematically on
such a measure.

Table 5 Model Forecasting Performance Results by Length of
Calibration Period

Length (wk) Wk52 Index MAPE-Tot MAPE-TR MAPE-FR MAPE-AR

12 137�5 18�7 2�1 20�6 39�8
20 127�3 14�8 3�3 15�5 27�5
26 104�7 2�6 2�0 4�1 4�3

3.4. Additional Analysis of Model Performance
To further illustrate and emphasize the properties of
the dynamic changepoint model, we briefly present
the empirical results obtained from a similar analy-
sis performed using the Four Seasons Biscuits dataset.
Prior to its national launch, this snack product under-
went a year-long test conducted in two of IRI’s Behav-
iorScan markets, comprising a total of 3,953 panelists.
However, the available data on repeat purchasing
are much sparser than for Kiwi Bubbles, and thus
this dataset represents a much tougher test for the
dynamic changepoint model. First, the new product
reached a relatively small number of triers by the end
of Week 26 (148, compared to 267 for Kiwi Bubbles);
second, the level of repeat purchasing per trier is
much lower (1.06 repeats/trier over the 52 weeks, ver-
sus 1.79 repeats/trier for Kiwi Bubbles). The combina-
tion of these two factors leads to a dataset with only
77 repeat purchases in the calibration period (com-
pared to 295 for Kiwi Bubbles). The marketing covari-
ates provided with the dataset include the coupon
and merchandising variables used in the Kiwi Bub-
bles analysis, along with a measure of TV advertising
(GRPs transformed using a standard exponentially
smoothed “stock” variable, e.g., Broadbent 1984 to
account for carryover effects), and a “Week 1” dummy
variable suggested by the firm commissioning the test
to accommodate unusual marketing activity during
the launch week.
Limiting ourselves to the exponential model spec-

ifications, we fit each of the six models to the first
26 weeks of purchasing data; the results are summa-
rized in Table 6.
Once again, we observe the dominance of the

dynamic changepoint specification (Model 6). In
terms of forecast accuracy, the Week 52 index is 94.5.
In terms of forecast period MAPE (computed over
Weeks 27–52), the values for trial, first repeat, and
additional repeat are 7.2, 9.8, and 15.5, respectively.
Some of the errors in these sales components actu-
ally cancel out, yielding a total sales MAPE of only
2.9. In contrast to the case of Kiwi Bubbles, there
is greater error in the repeat-sales component; this
should come as no great surprise given the smaller
number of repeat purchases per trier in the model
calibration period (77/148= 0�52 for Four Seasons Bis-
cuits versus 295/267= 1�10 for Kiwi Bubbles).
It is interesting to compare the nature of the

dynamic changepoint process between these two
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Table 6 Model Estimation Results for the Four Seasons Biscuits Dataset

Model Covariates Changepoint LL # Parameters r � � � Any Merch Dummy TV Coupon

1 N None −1�864�89 2 0�049 160�900 (1) �
	

2 N Static −1�846�47 3 0�018 25�770 0�527 �
	

3 N Dynamic −1�839�73 4 0�017 23�576 1�000 0�494
4 Y None −1�827�41 6 0�049 329�611 (1) �
	 0�014 0�913∗∗ 0�004ns 4�668
5 Y Static −1�825�80 7 0�027 104�648 0�669 �
	 0�013 0�433ns 0�002ns 2�910†

6 Y Dynamic −1�819�98 8 0�023 68�693 1�000 0�623 0�013 0�231ns 0�002ns 2�352ns

Note. All parameter estimates are significantly different from 0 at p < 0�001, except those marked with ns (not significant), † �p < 0�10	, and ∗∗ �p < 0�01	.

datasets. Substituting the two sets of estimates of
$ and % in (3) yields the implied probabilities of a
change in the underlying buying rate as a function of
depth-of-repeat level, which are plotted in Figure 8.
We observe a greater level of nonstationarity in the
purchasing of Four Seasons Biscuits. There is a 54%
chance that a consumer will change his purchase rate
following his trial purchase and a 29% chance that he
will revise his buying rate following his first repeat
purchase. This implies that there is only a 33% chance
that a consumer will not have revised his buying rate
after two purchases of the new product (compared to
65% for Kiwi Bubbles). However, the parameter esti-
mates suggest that the underlying purchasing evolves
toward a stationary process � �$ = 1�0	, with a minus-
cule chance of a changepoint occurring anytime after
the sixth repeat purchase.

4. Conclusions
While certain “hot” topics come and go in the field
of marketing research, there has always been inter-
est (shared by academics and practitioners alike) in
the issue of forecasting new product sales. One char-
acteristic of new product purchasing is the existence
of nonstationarity in the buying process, even after
we have controlled for the effects of time-varying
marketing-mix covariates.

Figure 8 Estimated Probability of Change in Buying Rate by Depth
of Repeat
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Recognizing that existing approaches for handling
these dynamics suffer from several shortcomings,
we have proposed a dynamic changepoint model
that captures the underlying evolution of the buying
behavior associated with the new product. This model
extends the basic changepoint framework, as used by
a number of statisticians, by allowing the changepoint
process itself to evolve over time. Additionally, this
model nests a number of the standard multiple-event
timing models that have previously been considered
in the marketing literature. In our empirical analy-
sis, we showed that the dynamic changepoint model
accurately tracks (and forecasts) the total sales curve
as well as its trial and repeat components and other
managerial diagnostics (e.g., percent triers repeating).
Beyond the context discussed so far in the paper

(i.e., two new grocery products), it is worth discussing
other relevant applications/extensions for the general
type of methodology presented here. First, it is impor-
tant to emphasize that the behavioral “story” behind
our model is by no means limited to the grocery
products setting. A similar pattern will likely emerge
for other types of products and services (although
the specific parameters that characterize the various
components of the model will likely vary from one
context to another). Likewise, the model might apply
nicely to new consumers who are first encountering
an existing product/service. For instance, as people
first gain broadband access to the Internet and learn
about various Web sites, their behavior over time
should conform to the basic set of assumptions out-
lined here; this would be a very promising area for
future investigation.
As we run the model over multiple products/

services, it will be instructive to look for “meta-
patterns” in the resulting model parameters. Our
empirical analysis revealed one particular type of
nonstationary behavior, but it would be useful to cat-
alogue different forms of nonstationarity (and covari-
ate effects) and begin to associate them with product
characteristics or other external measures. Many
firms (e.g., ACNielsen BASES) attempt to database
hundreds or thousands of products using simple
sales summaries to enable early forecasts for future
launches. Such a process can be greatly enhanced by
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using the parameters from a complete (and behav-
iorally plausible) model rather than relying strictly on
summary statistics (such as repeats per repeater and
the other measures we discussed earlier). As our field
continues to make rapid advances with hierarchical
Bayes methods, this task should become a workable
possibility, even for practitioners, in the near future.
Reflecting on the assumptions underlying this

model, the least appealing one is that when a change
in the underlying buying rate occurs, the consumer’s
new buying rate is independent of his previous one.
A more plausible mechanism for modeling the evolu-
tion in the buying rate would be to assume that �wi+1
equals �wi

modified by a random component (e.g.,
Chernoff and Zacks 1964, Moe and Fader 2003). How-
ever, such a mechanism is considerably more complex
from a computational perspective and we leave the
examination of this as an area of future research. It
is worth noting that if this random shock was linked
to the specific store environment in which each pur-
chase of the new product occurred, we could accom-
modate Anderson and Simester’s (2003) observation
that deeper promotions increase repeat rates among
first-time customers.
One potentially important limitation of the model

developed in this paper is that it does not consider
distribution build. A unique characteristic of con-
trolled test market services such as BehaviorScan is
the fact that they ensure complete retail distribution
for the product of interest. In using this model in
other test market settings, it would be desirable to
modify the underlying formulation to accommodate
the fact that retail distribution should be treated as a
bottleneck that can prevent the trial and repeat pur-
chasing of the product. (It is therefore inappropriate
to simply treat distribution in the same way as other
marketing covariates such as feature and display
activity.) Having made such a modification, it would
be natural to consider using the model for tracking
a new product’s rollout across geographic regions.
In such an application, we should also account for
the endogeneity of distribution (e.g., Bronnenberg and
Mela 2003, Elberse and Eliashberg 2003).
Another potentially important limitation of our

model is the absence of any competitive effects.
It is interesting to think about how new product
entry can affect—and be affected by—existing mar-
ket structures. (See Bronnenberg et al. 2000 for a
recent review of this literature.) Also, we may desire
additional diagnostic measures that provide insight
into the source of volume for the new product (e.g.,
Chatterjee and Ramaswamy 1996). However, beyond
these past approaches—mostly post hoc economet-
ric models that were not intended for forecasting
purposes—that other researchers have employed, we
are intrigued by an extension of our product-specific

stochastic model to one that can simultaneously deal
with the sales patterns and marketing activities of
competitors.
Beyond the simple case of expressing the mea-

sures of marketing activity relative to competition,
one approach would be to build on a competing
hazards framework. Alternatively, a dynamic discrete
choice model could be used to model product choice
given incidence, with a nonstationary timing process
being used to model category purchasing. So, while
we view our integrated model as offering a reason-
ably accurate and managerially useful picture of the
trial-repeat process for a given new product, we see
it as just one step towards the creation of a “Holy
Grail” model that builds in competition and other
category-level phenomena to be able to anticipate the
complete set of market dynamics that surround a new
product launch. However, we must realize that when
the forecasting of new product sales is the modeling
objective, the competitive dimension may increase the
range/magnitude of potential errors, since we need to
condition the sales forecasts on forecasts of compet-
itive actions (e.g., Alsem et al. 1989, Danaher 1994).
(The quality of these forecasts depends on the qual-
ity of the manager’s judgements concerning future
competitive activity.) The ultimate performance of the
model speaks for itself: The ability of our “noncom-
petitive” model to forecast sales (and related manage-
rial diagnostics) so accurately suggests that adding
competitive effects may do little to improve pure sales
forecasting accuracy.
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Appendix: Issues in Parameter Estimation
At first glance, the task of maximizing the likelihood func-
tion given in (11) appears to be a straightforward numerical
optimization problem. However, looking closely at (10), we
note that each evaluation of the likelihood function involves
the evaluation of 2K partition-specific likelihood functions
for each consumer, where K is the number of purchases
made by the consumer. For relatively long model calibration
periods (e.g., 52 weeks) and/or categories with high aver-
age purchase frequencies, it is not uncommon to observe
consumers with 15 or more repeat purchases. For a con-
sumer making 15 purchases, the likelihood functions associ-
ated with each of the 215 = 32�786 separate changepoint pat-
terns have to be evaluated. For average-sized panels, each
evaluation of the overall likelihood function (11) therefore
involves millions of computations, and the overall compu-
tation time associated with maximizing the likelihood func-
tion may become impractical.
One approach to minimizing computation time is to limit

the number of possible changepoints for each consumer
toM . If the number of purchases made by a consumer �K	 is
less than M , all the possible changepoint sets for that num-
ber of purchases are evaluated. However, for a consumer
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making K >M purchases, the number of changepoint sets
with M or fewer changes in the latent purchase rate is

M∑
i=0

(
K

i

)
�

It is important to note that we are not placing a limit on
when the changepoints occur (i.e., their location); rather, we
are limiting how many in total can occur. For example, if
M = 2, the changepoints could occur immediately after trial
and first repeat, trial and second repeat, first repeat and fifth
repeat, and so on; or only once, after trial, or third repeat,
and so on; or there could be no changepoints at all.
When this limit is placed on the number of changepoints,

the summation in (10) is no longer over all possible parti-
tions of the observed purchase sequence but over all par-
titions with q ≤M changepoints. Consequently, the P�ws	
terms for each of the allowable partitions must be rescaled
so that they sum to one. More specifically, let � be the set
of partitions �ws	 such that �ws� ≤M . Equation (10) becomes

L�Th	=
∑

s∈� L�Th �ws	P �ws	∑
s∈� P�ws	

�

Let us say M = 4. For a consumer making 15 purchases
in the calibration period, each evaluation of the likelihood
function would see us evaluating 1,941, instead of 32,786,
separate partition-specific likelihood functions. The com-
putational savings are even more apparent for those con-
sumers with a larger number of purchases. For a consumer
making 20 purchases in the calibration period, setting M
to 4 would reduce the number of partition-specific likeli-
hood functions evaluated from 220 = 1�048�576 to 6,196—a
99.4% reduction in the number of evaluations.
Our experience to date shows that for relatively small

values of M , this truncation in the number of possible
changepoints has an inconsequential effect on the param-
eter estimates. To illustrate, we reestimated Model 6 (the
dynamic changepoint model with an exponential baseline)
on the Kiwi Bubbles dataset, varying the maximum number
of (latent) changepoints in the given purchase sequence �M	
from 1 to 4. For each set of parameter estimates, we com-
pute the value of the log-likelihood function with no con-
straints placed on the maximum number of renewals. These
results are reported in Table A, along with the results for
the case where no limit is placed on the number of possi-
ble changepoints and the case where no changepoints are
allowed (i.e., Model 4); the parameters for these two cases
are taken from Table 2.
We observe that limiting the number of changepoint

opportunities for each consumer to four yields effectively
the same parameter estimates as those obtained when no

Table A Calibration Results

M LL r � � � Coupon Promotion

0 −3�733�00 0.076 138�239 (1) �
	 5.182 0.014
1 −3�730�47 0.056 67�021 0.843 2.086 4.990 0.010
2 −3�728�04 0.057 65�722 0.893 1.450 5.098 0.010
3 −3�726�61 0.060 77�202 0.953 1.383 5.181 0.011
4 −3�726�56 0.061 79�952 0.964 1.369 5.202 0.011
No limit −3�726�56 0.061 80�228 0.966 1.367 5.204 0.012

limit is placed on the number of possible changepoints, with
no difference in the resulting value of the log-likelihood
function. (At the margin, we could probably get away with
limiting the maximum number of changepoints to three.)
It is interesting to note, however, that at least two change-
points seem to be required, indicating the need to accom-
modate the underlying nonstationarity in buying rates for
a new product.
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