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Abstract

We present our efforts at developing an ecological system index using information theory. Specifically, we derive an expression for

Fisher Information based on sampling of the system trajectory as it evolves in the space defined by the state variables of the system,

i.e. its state space. The Fisher Information index, as we have derived it, is a measure of system order, and captures the characteristic

variation in speed and acceleration along the system’s periodic steady-state trajectories. When calculated repeatedly over the system

period, this index tracks steady states and transient behavior. We believe that such an index could be useful in detecting system ‘flips’

associated with a regime change, i.e. determining when systems are in a transient between one steady state and another. We illustrate

the concepts using model ecosystems.

r 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Ecosystems are subject to periodic fluctuations from
abiotic forcing (e.g. diurnal, lunar, seasonal, solar, etc.)
to biotic interactions (e.g. predator–prey, synergistic,
coevolutionary). Despite such forcing, ecosystems gen-
erally maintain a single regime of behavior for a certain
length of time. A regime can be identified by a
characteristic set of values for one or more state
variables that describe the system, and a given dynamic
behavior over this set. Periodic forcing will move the
state variables within the characteristic bounds of
the regime through a variety of mechanisms, but the
system’s dynamic response generally does not undergo
a significant change. However, a system can, as a result
of the differential and complementary contribution of
intrinsic and extrinsic pressures, be pushed out of one
regime of behavior into another. This involves a period

of transient behavior followed by the establishment of a
new regime.
In consideration of the above, there has been much

interest in identifying regimes and regime changes, and
the mechanisms that cause a system to change regime.
Ecosystem resilience as defined by Holling (1973) is one
approach to quantifying the effect of disturbances on
system dynamics (see for example Walker et al., 1999;
Peterson et al., 1998; Gunderson, 2000; Carpenter et al.,
2001). Ecosystem resilience is a measure of the ability of
an ecosystem to maintain function in the presence of
disturbance and change. It is based on the dynamic
systems concept of multiple equilibria or steady states,
and is typically visualized as the ‘size’ of the associated
basins of attraction, i.e. the size of the region in state
space over which the system returns to its previous
steady state. Another concept related to resilience is
buffer capacity, which is the ecosystem’s ability to
reduce the direct influence of external perturbations
(Jørgensen, 1992). When resilience is breeched or buffer
capacity is exceeded, behavior can significantly,
abruptly, and in some cases catastrophically change as
the system moves through the boundary from one basin
of attraction to another. The potential impact of this
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concept is becoming more apparent as an increasing
number of real systems have been found to have the
potential to ‘flip’ between multiple stable dynamic
regimes (Scheffer et al., 2001).
While most work has focused on understanding the

factors or characteristics of ecosystems that contribute
to resilience or buffer capacity, we are interested in
developing means to detect directly when a system
moves from one regime to another. Specifically, we are
interested in developing an index that is sensitive to
transient behavior in ecosystems in the hope of being
able to distinguish ‘typical’ fluctuations from those that
portend a fundamental change in dynamic regime. For
this we use concepts from information theory and
dynamic systems (Cabezas and Faith, 2002).

2. Information theory in ecology

Information theories have played a key role in our
understanding biological systems, and it is not new to
look at ecosystems themselves as information systems
(Nielsen, 2000; Stra&skraba, 1995). For example, Brooks
and Wiley (1986) and Wicken (1987) pointed out the
importance of entropy, thermodynamics, and informa-
tion in evolutionary processes. Although a debate
among them ensues over the approach, they both view
evolution as an information-based process. Ecosystem-
level information has also been incorporated into
thermodynamically oriented metrics such as exergy. As
ecosystems develop, they move further from equili-
brium. One hypothesis is that this results in organisms
with greater genetic information capacity (J /orgensen
and Nielsen, 1998). Therefore, this use of information
combines the internal make-up of individual organisms
with the overall ecosystem’s structural organization.
Our interest here is to apply information theory to
measure ecosystem order, particularly as a way to detect
regime changes through changes in system state
variables.
Several methodologies have been developed to calcu-

late system information from a probability density
function (PDF), e.g. Shannon Information, Gini-Simp-
son Information and Fisher Information. The most
common application of information measures in ecology
has been the use of Shannon Information as a diversity
index. Shannon and Weaver (1949) developed the
following measure concerning signals from a signal to
a receiver:

H ¼ �
X

i

pðyiÞ ln pðyiÞ; ð1Þ

where H is the Shannon Information, pðyÞ is the PDF,
and the sum is taken over all possible values of the
variable y: In this formulation, H measures the degrees
of freedom of the system. Communication systems with

few degrees of freedom have a clear signal transmission
and high information content. In contrast with commu-
nication systems, ecological systems with many degrees
of freedom (i.e. biodiversity) are deemed favorable for
their apparent stability (see McCain (2000) on the
diversity–stability debate). Therefore, the application in
ecology has been to use the Shannon Information as an
index of biodiversity. Ulanowicz (1986, 1997) used a
similar form of the Shannon Information along with
total system throughflow to develop a macroscopic
metric of ecosystem organization called ascendancy.
Gini-Simpson Information has not found its way into
the ecological literature, but it has been used extensively
by mathematicians (Colubi, 1996). The index, which is
scaled between zero and one, is given by

G ¼ 1�
X

i

pðyiÞ
2; ð2Þ

where all the symbols have the previously assigned
interpretation. One way that biological diversity can be
classified is using species evenness, which is a measure of
the relative abundance of each species. Both indices,
Shannon and Gini-Simpson, can be used to assess
species evenness, in which case pi is the normalized
probability (probability density) of finding species i

when sampling an ecosystem. In this manner, the PDF is
a distribution of the abundance of species at a given
time. For example, a system that has ten different
species with pi=[0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1]
yields a Shannon index equal to 2.30 and a Gini-
Simpson index of 0.90. A second system, also with ten
species and a distribution, pi=[0.91 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01], gives H ¼ 0:50 and G ¼ 0:17:
Although both systems have the same number of species
the indices have dropped substantially because of the
uneven distribution in the second case. One feature of
these indices is that they are global properties of the
system in that a different ordering of the same species
probabilities would yield the same level of information.
For an indicator of biodiversity this property is useful
since there is no natural species ordering (there is no
‘central’ species around which others are distributed, for
example). However, in some situations there is a notion
of ordering, and in such cases the probability density
takes on a characteristic local ‘shape’. A primary
example of such a situation is data linked to temporal
dynamics, since time is a naturally ordering variable.
Fisher Information is sensitive to changes in probability
distribution shape since it involves a derivative term,
and is in these terms a local measure. In what follows,
we apply the concept of Fisher Information to time-
series data generated by a dynamic model system. We
calculate Fisher Information over the system’s state
trajectory and show that changes in Fisher Information
track changes in the dynamic regime of the system.
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3. Fisher Information in ecology

Ronald Fisher (1922) developed a statistical measure
of indeterminacy now called Fisher Information. Fisher
Information can be interpreted as a measure of the
ability to estimate a parameter, as the amount of
information that can be extracted from a set of
measurements, and also as a measure of the state
of order of a system or phenomenon (Frieden, 1998).
Fisher Information, I ; for a single measurable variable is
calculated as follows:

I ¼
Z

1

pðeÞ
dpðeÞ
de

� �2
de; ð3Þ

which can be extended to an n-dimensional system. Here
pðeÞ is the probability density as a function of the
deviation, e; from the true value of the variable. The
integration is carried over all possible values of e from
zero to infinity. In the application to follow, epsilon will
be the deviation from a reference state, which is treated
as the ‘true’ state of the system. The information integral
that results will be written in terms of system time, and it
will be a measure of the lack of variability or the order in
the system’s steady-state dynamics.
Frieden (1998) proposes Fisher Information as the

basis for a unifying theory for physics and has used it to
derive many fundamental equations of physics. These
include those describing relativistic quantum physics,
classical electrodynamics, general relativity, and classi-
cal statistical physics to name but a few. (Frieden et al.,
2001) have applied Fisher Information to problems of
population genetics and growth of cancer cells (Gatenby
and Frieden, 2002).
Consider a system variable that has a uniform or

unbiased PDF, which is flat (Fig. 1a). By this we mean

that the probability of the variable taking any particular
value is no greater than for any other value. This lack
of predictability or order results in a system with zero
Fisher Information. A more structured system with low
disorder shows bias to a particular set of states and the
PDF is more steeply sloped about these values (Figs. 1b
and c), in which case Fisher Information increases with
the sharpness of the PDF. For isolated (closed to mass
and energy) physical (non-living) systems, entropy
follows the second law of thermodynamics, increasing
monotonically with time. Conversely, Fisher Informa-
tion decreases with time as entropy (system disorder)
increases. However, Fisher Information is not the
reciprocal of entropy. Further discussion on the topic
is given in Frieden (1998).

3.1. PDF

In order to calculate Fisher Information, it is
necessary to determine a PDF for the system in
question. We assume that (1) the system behavior can
be captured in a continuous dynamic system description
and (2) the system dynamic regime is periodic (this
includes equilibria). We identify a single PDF for each
system that is based on the probability of finding the
system in a given state, i.e. sampling the system’s state
variables from within a particular set of possible values.
The general idea is the following: the more time a system
spends in a specific state, the more likely one is to find it
in that state when sampling. When normalized over the
entire space of possibilities, a PDF over the states of the
system results.
To make the concept concrete, consider a dynamic

system of n state variables whose steady-state trajectory
forms a closed loop in state space with period T : Fig. 2
shows the steady-state trajectory of a prey–predator
system, n ¼ 2: We divide the trajectory into a finite

Fig. 1. Comparison of PDFs: A more uniform distribution, (b) will

have a lower Fisher Information than the steeper PDF (c), whereas a

flat distribution will have zero information (a).
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Fig. 2. Two-dimensional phase space plot of a predator–prey system,

with k sub-segment states. The time spent in a state depends on sub-

segment length, Ds; and the speed of the system over this length.
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number, k; of sub-segments of length Ds: Let the
variable s denote the position of each sub-segment
along the path relative to a fixed initial position, s�:
Because the variable s is indexed relative to s�; if we treat
s� as the ‘true’ or zero position of the system, s is exactly
the deviation from that true position ðe ¼ s � 0 ¼ sÞ:
The periodicity of the system and our indexing scheme
make our choice of s� arbitrary.
An observed position, s, maps to particular values of

the state variables and has a speed along the system path
associated with it, reflecting the rates of change of the
system variables. These rates of change are captured by
the differential equations according to which a model
system evolves, or derived from time-series data in the
case of real systems. The probability of observing
the system at a particular position is thus related to
the amount of time the system state spends in the sub-
segment Ds corresponding to that position. We write
this probability as PðsÞ: For a sub-segment s of finite
length Ds; the average time spent on the segment, Dt; is
given by

Dt ¼
Ds

%vðsÞ
;

where %vðsÞ is the average speed along the path over the
sub-segment. For continuous dynamic systems, in the
limit as Ds-0 we obtain

dt ¼
ds

R0ðsÞ
;

where R0ðsÞ is the speed (scalar) at s (the prime denotes
differentiation with respect to time), dt is now a
differential in time and ds a differential in position.
The time spent on the entire path over one cycle, the
period T ; is simply (here s is used as the variable of
integration and S is the length of the closed path)

T ¼
Z S

0

ds

R0ðsÞ
: ð4Þ

We define the probability density by the relation
PðsÞ ¼ d½cdf ðsÞ� ¼ pðsÞ ds ¼ A ds=R0ðsÞ; where cdf is the
cumulative PDF, pðsÞ is the PDF, A is a normalization
constant, and R0ðsÞ is the speed at s as before. Since the
system must at all times be somewhere on the closed
path, it follows that

cdf ðSÞ ¼ 1 ¼ A

Z S

0

ds

R0ðsÞ
: ð5Þ

Thus, the PDF is given by

pðsÞ ¼
A

R0ðsÞ
¼
1

T

1

R0ðsÞ
: ð6Þ

Because there is a one to one correspondence between
system evolution along the path and time, positions s

along the system path are indexed to time t: Data on
systems normally are collected in the form of time series,
and one would thus like to calculate Fisher Information

over data collected as a function of time. We use the fact
that the speed at s has to be the same at the
corresponding t to write R0ðsÞ ¼ R0ðsðtÞÞ ¼ R0ðtÞ and
ds ¼ R0ðsðtÞÞ dt in the development leading to Eq. (6) to
rewrite the probability density as

pðtÞ ¼
1=R0ðtÞR T

0 dt
¼
1

T

1

R0ðtÞ
: ð7Þ

3.2. Fisher Information from the PDF

Now that a PDF has been determined, the Fisher
Information of a dynamic system in periodic steady
state can be calculated. The Fisher Information integral
in Eq. (3) can be written as an integral in time by using
the aforementioned relationship de ¼ ds ¼ R0ðsðtÞÞ dt;
and by expanding the differential according to the chain
rule to give

I ¼
Z

1

pðtÞ
dpðtÞ
dt

� �2
dt

R0ðtÞ
: ð8Þ

Now, using the expression for pðtÞ of Eq. (7) and the
fact that

dpðtÞ
dt

¼ �
1

T

R00ðtÞ

R0ðtÞ2
;

we find upon simplification

I ¼
1

T

Z T

0

ðR00ðtÞÞ2

ðR0ðtÞÞ4
dt: ð9Þ

This now gives us a scalar form of the Fisher
Information for one-cycle period T : The speed and
acceleration are, respectively, obtained from the n

system state variables yi by

R0ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

dyi

dt

� �2s
; ð10aÞ

R00ðtÞ ¼
1

R0ðtÞ

Xn

i¼1

dyi

dt

d2yi

dt2

" #
: ð10bÞ

Hence, the Fisher Information for a dynamic system
in a periodic steady state, based on the notion of time in
state, reduces to the integral of a ratio of acceleration to
speed along the state-space trajectory. The integral of
Eq. (9) gives a measure of the variation in the amount of
time the system spends in various states along the
steady-state trajectory, or equivalently, a measure of the
variability in the speed along the steady-state trajectory.
Systems that have a high variability in speed along their
trajectories have a high bias toward particular states.
These systems are, therefore, identified as having more
order. Thus, for systems at equilibrium the Fisher
Information is infinite (the period over which one
integrates is arbitrary in this case) since the PDF is an
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infinite impulse of zero width. For systems in which the
system traces a closed path at constant speed we expect
the Fisher Information to be zero since the PDF is flat.
For closed-system trajectories on which the speed is
non-zero and varies, the Fisher Information will take on
values between these two extremes of zero and infinity.
When calculated repeatedly as data on the system state
become available, we expect the Fisher Information to
be constant as long as the system is in a periodic steady
state and the integration is done over an integer multiple
of the system’s natural period of oscillation. If, due to a
change in environmental forcing or the relationships
between system elements, the system enters a transient
period, the variability of the speed along its trajectory,
and thus the Fisher Information, will change. Fisher
Information, as we have derived it, responds to changes
in system regime and transient behavior. This is the core
result of our theory.

4. Illustration—ecosystem models

In order to further investigate and illustrate the utility
of the Fisher Information in determining changes in
system regime, we apply it to two ecosystem models of
increasing complexity: a two-species predator–prey
system and a ten compartment food web.

4.1. Two-species predator–prey model

The two-species Lotka–Volterra-type model equa-
tions describe a simple interaction between a prey
species, y1; and its predator, y2; using four parameters:
ðg1Þ prey growth rate, ðl12Þ prey loss rate due to
predatory feeding, ðg21Þ predator feeding rate, and
ðm2Þ predator mortality rate. Eqs. (11a, b) are standard
and conveniently used adaptations of the Lotka–
Volterra equations. The state of the system is defined
by the population densities, i.e. the mass of a species
for a given ecosystem, of the two species (prey and
predator). We incorporate a logistic density-dependent
term to limit growth of the prey in the absence of
the predator and a function proposed by Holling to
take into account predator satiation, which results
in two additional parameters (k; prey density depen-
dence, and b a predator satiation term.) This results in
the following two ordinary first-order differential
equations describing the dynamics of the population
densities:

dy1

dt
¼ g1 1�

y1

k


 �
y1 � l12y1y2

1

1þ by1

� �
; ð11aÞ

dy2

dt
¼ g21y1y2

1

1þ by1

� �
� m2y2: ð11bÞ

For parameters g1 ¼ m1 ¼ 1; l12 ¼ g21 ¼ 0:01; b ¼
0:005 and k ¼ 625; the model has stable limit cycle
behavior. Fig. 3 shows the system limit cycles for
various values of k ranging from 625 to 800. The Fisher
Information for each limit cycle in Fig. 3, calculated
over one-cycle period using Eq. (9), is plotted in Fig. 4.
Note that computing the Fisher Information requires
the insertion of Eq. (11) into Eq. (10) to calculate the
speed and acceleration. While a change in prey density
dependence does not necessarily result in a change in
Fisher Information for the steady state, the change in
Fisher Information over the range of dependencies is
clearly distinguishable. The Fisher Information curve in
Fig. 4 starts at a relatively high value, then drops, and
finally rises again as k varies from 625 to 800 in steps
of 25. Recall that the Fisher Information of Eq. (9)
measures the variation in the speed along the system
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Fig. 3. Predator–prey response as k varies from 625 to 800 in steps of

25. For the largest limit cycle k ¼ 800; smallest k ¼ 625:

Fig. 4. Fisher Information as k varies from 650 to 800 in steps of 25.

Integration window is set to period of each limit cycle.
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state-space trajectory, which differs from one closed
limit cycle in Fig. 3 to the next. Fig. 5 shows the
probability densities (as given by Eq. (6)) for k ¼ 625;
675 and 800. The PDF for k ¼ 800 has the sharpest and
the highest (relative) peaks, and thus the highest
information of the three cases shown. Although it is
not as obvious, the system has a higher variation in
speed for k ¼ 625 than for k ¼ 675; and thus a higher
information for k ¼ 625 as well. While the level of
information for two regimes can be equal, the variations
that underlie these can be quite different. For example,
the Information level for k ¼ 800 and 625 is nearly the
same but the PDFs are not. The trend shown in Fig. 4,
from high to a minimum and back to high information
as k is varied, is easily explained. Prior to k ¼ 625; the
system steady state is an equilibrium (no cycle), so the
Fisher Information is infinite. As k is increased, we
observe limit cycle behavior and Fisher Information
drops because the speed along the cycle becomes more
uniform. As k is increased further, the system spends
more time in smaller portions of its trajectory (the state
has a high variability in speed) and the Fisher
Information is again high. These model calculations
demonstrate that Fisher Information increases when the
system preferentially exists in fewer states.

4.2. Ten-compartment ecological model

To further examine the response of Fisher Informa-
tion to changes in model ecological systems, we
developed a food web model with ten compartments:
three primary producers, three herbivores, two carni-
vores, an omnivore, and a nutrient compartment
(Fig. 6). The primary producers are limited in growth
by nutrient availability and by grazing from other
compartments. Again, standard Lotka–Volterra-type

equations (without density dependence or satiation
terms) are used to describe the mass balance for the
ten-compartment model

dyi

dt
¼ yi

X9
j¼0

ð�eijbijyjÞ � ai

 !
; i ¼ 1;y; 9; ð12Þ

where yi is the biomass of the ith compartment, ai is the
mortality parameter, bij is the mass flow rate parameter
between compartments i and j; and aij is a two-
dimensional Levi–Civita symbol such that aij ¼ 1 and
eji � 1: Due to mass conservation constraints, bij ¼ bji:
The only exception to Eq. (12) is the first compartment
(i ¼ 0), which is a passive sink for nutrient storage

dy0

dt
¼
X9
j¼1

ajyj � y0
X9
j¼1

ajyj : ð13Þ

There is an implicit and non-limiting flow of energy
through the system. The system is, therefore, open to
energy but closed to mass. The mass closure is expressed
by

X9
i¼0

dyi

dt
¼ 0: ð14Þ

All three primary producers (y1; y2; and y3) are also
subject to a sinusoidal forcing function to represent
seasonal variation in growth due to solar incidence
variation. This forcing is the source of the periodic
behavior for this model. Two forcing function ampli-
tudes were used in evaluating the Fisher Information
response: a strong forcing function with an amplitude of
one-third of nominal; and a weak forcing function with
an amplitude of one-tenth of nominal. The expression

Fig. 5. Probability density as a function of the limit cycle trajectory

length. Note that one is more likely to find the system in a few

particular states.
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Fig. 6. Ten-compartment food web model. Arrows indicate direction

of biomass flows. All mass recycles back to the nutrient pool.
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for the forcing function with an amplitude of one-third
of nominal is

gi ¼ #gi
2

3
þ
1

3
sin

2pt

12
�

p
2

� �� �2
; i ¼ 1; 2; 3; ð15Þ

where gi is the growth rate of one of three plant species
(1, 2, and 3), t is time, and #gi ¼ 0:25; 0:25; 0:26 for i ¼
1; 2, 3, respectively.
After invoking mass conservation constraints there

are 26 parameters in the model. Uncalibrated values for
these parameters have been assigned in such a way that
all the state variables remain non-zero, i.e. all compart-
ments remained viable throughout the simulation (Table
1). This scenario is the baseline case for our work.
We present five cases to show how Fisher Information

responds to gradual changes in the food web dynamics.
For the ten-compartment model, the Fisher Information
calculation proceeds by inserting Eq. (12) into Eq. (10)
to compute the speed and acceleration. Note that
Eq. (13) representing the mass balance for the nutrient
compartment is not directly used in the Fisher Informa-
tion calculation. The reason is that the mass of the
nutrient pool is not normally a measurable variable in
ecological systems. The five cases are meant to illustrate,
using a model, how the Fisher Information responds to
typical stresses and changes impacting ecosystems. In all
cases a qualitatively similar perturbation regime was
applied. The model system is in a stable regime for the
first quarter of the simulation period. During the second
and third quartiles, a linear increase or decrease of the
specified parameter takes effect, and during the last
quarter no further changes occur as the system settles to
a new stable dynamic regime. This change is implemen-
ted through the function fiðtÞ which can represent any
parameter (ai or bi) in the model that needs to be
perturbed. Mathematically, this is defined by

fiðtÞ ¼ f l
i ; 0ptptl ; ð16aÞ

fiðtÞ ¼ f l
i þ

f h
i � f l

i

th � tl
ðt � tlÞ; tlototk; ð16bÞ

fiðtÞ ¼ f h
i ; tkptoN; ð16cÞ

where f l
i is the constant value of the function before the

perturbation starts, f h
i is the constant value of the

function after the perturbation ends, tl is the point in
time when the linear perturbation starts, and th is the
point in time when the perturbation ends. For our
studies here, we arbitrarily chose tl ¼ 250 and th ¼ 750:
Specific values for f l

i and f h
i for the five perturbation

experiments are given in Table 2.
This type of perturbation is meant to mimic a

response to changes in prevailing environmental condi-
tions. Again, our primary interest was not in the model
results per se, but in the response of Fisher Information
to these perturbations. The five cases include increasing
the growth rate of one of the plant species ðy3Þ;
increasing the growth rate of one of the herbivores
ðy5Þ; increasing the growth rate of one of the carnivores
ðy8Þ; decreasing the mortality rate of the top omnivore
ðy9Þ; and increasing the mortality rate of the top
omnivore ðy9Þ:
Table 3 shows the summary results for each perturba-

tion experiment under both the strong and weak
sinusoidal (seasonal) forcing functions. In each experi-
ment, the same compartments were eliminated under
weak and strong forcing functions. All disturbances
resulted in the loss of at least one species. One herbivore,
y4; was eliminated in four of the five experiments. The
Fisher Information integral for four cycles was approxi-
mated numerically by substituting the simulated data
into expressions for the speed and acceleration derived
analytically from the model equations. The procedure
was repeated over data windows of width equivalent to
four-cycle periods in order to obtain Information values
over the entire data set.
In the first case, the uptake rate of the third plant

compartment ðy3Þ increases from 0.26 to 0.35. Figs. 7a
and b show the results of the model simulation under
the strong and weak forcing function conditions. The
gradual increase in the growth rate of y3 results in
an increase of y3; y5 and y8; and the elimination of

Table 1

Model parameters used in the simulation to achieve results in which all compartments coexist

b14 ¼ 0:01 b25 ¼ 0:01 b39 ¼ 0:01 b58 ¼ 0:01 a4 ¼ 0:10 a9 ¼ 0:75
b15 ¼ 0:01 b26 ¼ 0:01 b30 ¼ 0:26 b68 ¼ 0:01 a5 ¼ 0:10
b19 ¼ 0:01 b20 ¼ 0:25 b47 ¼ 0:01 b69 ¼ 0:01 a6 ¼ 0:10
b10 ¼ 0:25 b35 ¼ 0:01 b49 ¼ 0:01 b78 ¼ 0:01 a7 ¼ 0:10
b24 ¼ 0:01 b36 ¼ 0:01 b57 ¼ 0:01 b79 ¼ 0:01 a8 ¼ 0:75

Table 2

Model parameters used in the simulation to achieve results in which all compartments coexist

Simulation 1 Simulation 2 Simulation 3 Simulation 4 Simulation 5

f l
i b30 ¼ 0:26 b25 ¼ 0:01 b68 ¼ 0:01 a9 ¼ 0:75 a9 ¼ 0:75

f h
i b30 ¼ 0:35 b25 ¼ 0:025 b68 ¼ 0:025 a9 ¼ 0:50 a9 ¼ 0:90
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compartments y1; y2 and y4: The level of y7 decreases
sharply (Table 3). Fig. 8 shows the response of the
Fisher Information for the same case, with an integra-
tion window of 48 months (this same window is again
used in all cases, and is four times the period of the
forcing function). All ten states are used in the
calculation. Strictly speaking, the Fisher Information
Theory that we have developed is applicable to systems
in steady cyclic dynamic regimes, and it is not well
defined for transient dynamics. However, for this system
the forcing function provides a constant period cycle at
steady state before and after the disturbance. The
transient then shows up as a smooth transition between
one constant Fisher Information value and another. For
both the strong and weak forcing functions, the Fisher
Information shows a marked drop over the transient.
The Fisher Information under the weak forcing function
is higher and the drop proportionately higher since the

system variation about equilibrium is smaller. While
interpretation of our Fisher Information calculations
around transient regimes is difficult for the aforemen-
tioned reasons, we hypothesize that the Fisher Informa-
tion decreases during the transition between steady
regimes when the transition is dominated by a relatively
disordered regime where many different states of the
system are more or less equally preferred.
In the second case, the uptake rate of the second

herbivore compartment ðy5Þ; increases from 0.01 to
0.025 (Fig. 9). Mass in compartments y1; y2; y4 and y6
goes to zero. This was the only simulation of the five
where four compartments were eliminated. Fig. 10
shows the Fisher Information. The transient is easily
distinguished in the Fisher Information plot. In this
case, the Fisher Information clearly shows the transition
between steady dynamic regimes for both strong and
weak forcing, but it goes through a minimum only for

Table 3

Simulation results before and after perturbations: average system states (unforced equilibria)

y1 y2 y3 y4 y5 y6 y7 y8 y9 y0

Strong forcing function

Initial value 14.59 32.89 13.76 9.16 37.50 11.47 26.03 25.19 11.46 7.93

1. b30 increase 0.00 0.00 58.85 0.00 58.85 7.64 8.52 40.32 8.52 7.30

2. b25 increase 0.00 0.00 57.57 0.00 57.58 0.00 17.43 30.13 17.43 9.85

3. b68 increase 0.00 27.62 45.56 0.00 45.56 0.00 29.44 33.73 1.82 6.25

4. a9 decrease 0.00 51.34 0.00 13.17 38.18 16.16 20.67 20.67 20.67 9.13

5. a9 increase 23.92 8.95 38.24 0.00 47.14 1.95 25.91 35.19 1.95 6.72

Weak forcing function

Initial value 14.64 22.65 29.06 4.01 47.71 6.33 20.97 35.39 6.33 2.92

1. b30 increase 0.00 0.00 61.15 0.00 61.15 6.46 7.39 43.76 7.39 2.69

2. b25 increase 0.00 0.00 60.68 0.00 60.68 0.00 14.31 36.37 14.31 3.63

3. b68 increase 0.00 23.54 49.48 0.00 49.48 0.00 25.52 37.50 1.98 2.49

4. a9 decrease 0.00 53.64 0.00 14.32 39.32 13.86 21.82 21.82 21.82 3.39

5. a9 increase 19.27 4.17 47.33 0.00 51.53 2.12 21.35 39.42 2.11 2.70
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Fig. 7. (a) Food web dynamics of the ten-compartment model with a strong sinusoidal forcing function. The growth parameter of y3 experiences a

linear increase from 0.26 to 0.35 between t ¼ 250 and 750. (b) Same perturbation with a weak sinusoidal forcing function.

B.D. Fath et al. / Journal of Theoretical Biology 222 (2003) 517–530524



0 200 400 600 800 1000
0

1

2

3

4

5

Time, months Time, months

F
is

he
r 

In
fo

rm
at

io
n,

 ×
10

-2

0 200 400 600 800 1000
0

2

4

6

8

10

F
is

he
r 

In
fo

rm
at

io
n

(a) (b)

Fig. 8. Fisher Information (integration window of 48 months) of the ten-compartment model in which the growth parameter of y3 experiences a

linear increase from 0.26 to 0.35 between t ¼ 250 and 750. (a) strong forcing function and (b) weak forcing function.
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Fig. 9. (a) Food web dynamics of the ten-compartment model with a strong sinusoidal forcing function. The uptake from y2 to y5 experiences a

linear increase from 0.01 to 0.025 between t ¼ 250 and 750. (b) Same perturbation with a weak sinusoidal forcing function.
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Fig. 10. Average Fisher Information (over 48 time steps) of the ten-compartment model in which the uptake from y2 to y5 experiences a linear

increase from 0.01 to 0.025 between t ¼ 250 and 750. (a) strong forcing function and (b) weak forcing function.
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the weak forcing function (Fig. 10b). For the strong
forcing function case (Fig. 10a) the transition is orderly
from one regime to another.
In the third case, one carnivore feeding rate, b68;

increases from 0.01 to 0.025 (Fig. 11). Three compart-
ments are eliminated, y1; y4 and y6: Fig. 12 shows the
Fisher Information calculations. Again, the interesting
aspect of this measure is not either the initial or final
value, but the fact that the transient is clearly shown by
the Fisher Information calculations. In both of these
cases, the Fisher Information exhibits a minimum
through the transition between the two steady dynamic
regimes. We again hypothesize that the minimum in
information reflects the temporary loss of order as the
system moves from one steady regime to another.
In the fourth case, the top omnivore mortality rate

decreased from 0.75 to 0.50 (Fig. 13). Note that the
transient is much longer than in the previous cases. This
seems to indicate that changes that occur at the top of
the food chain take longer to propagate through the

model system than changes at the bottom, e.g. primary
producers or plants. Only two compartments were
eliminated in this simulation, plant compartments, y1
and y3: Fig. 14 shows the Fisher Information response,
which again clearly shows that a change in steady regime
has occurred. For the case of strong forcing (Fig. 14a),
the transition between steady regimes is again orderly. A
minimum in the information during the transition is
visible only for the case of weak forcing (Fig. 14b). Note
that the changes in information are not sharp reflecting
a long transition period between steady regimes.
In the fifth and final case, the top omnivore mortality

rate increased from 0.75 to 0.90 (Fig. 15). Only one
carnivore, y4; goes extinct. This transition period is
extremely long and probably spans longer than the 1000
simulated months shown, and the transient does not
appear to have settled out by the end of the simulation.
This can be seen from the Fisher Information plot
(Fig. 16). The case of weak forcing shows a Fisher
Information plot that has not reached a steady dynamic
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Fig. 11. (a) Food web dynamics of the ten-compartment model with a strong sinusoidal forcing function. The uptake from y6 to y8 experiences a

linear increase from 0.01 to 0.025 between t ¼ 250 and 750. (b) Same perturbation with a weak sinusoidal forcing function.
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Fig. 12. Average Fisher Information (over 48 time steps) of the ten-compartment model in which the uptake from y6 to y8 experiences a linear

increase from 0.01 to 0.025 between t ¼ 250 and 750. (a) Strong forcing function and (b) weak forcing function.
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regime by the end of the simulation. In the case of strong
forcing (Fig. 16a), the Fisher Information surprisingly
shows a maximum during the transition. We hypothe-

size that this implies that in moving between the two
steady states, the system falls into a dynamic regime that
gives preference to a small number of states giving high
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Fig. 13. (a) Food web dynamics of the ten-compartment model with a strong sinusoidal forcing function. The top omnivore, y9; mortality rate
decreases from 0.75 to 0.50 between t ¼ 250 and 750. (b) Same perturbation with a weak sinusoidal forcing function.
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Fig. 14. Average Fisher Information (over 48 time steps) of the ten-compartment model in which the mortality rate of the top omnivore, y9;
experiences a decrease from 0.75 to 0.50 between t ¼ 250 and 750. (a) Strong forcing function and (b) weak forcing function.
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Fig. 15. (a) Food web dynamics of the ten-compartment model with a strong sinusoidal forcing function. The top omnivore, y9; mortality rate
increases from 0.75 to 0.90 between t ¼ 250 and 750. (b) Same perturbation with a weak sinusoidal forcing function.
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information, but where the dynamic regime itself is not
stable. Very roughly, this is similar to the situation of a
ball oscillating between two valleys through a relatively
flat hill (Fig. 17). In this mechanical case, depending on
the strength and frequency of the oscillating force
pushing the ball out of the valleys, it is conceivable that
the ball could move in and out of the valleys quickly
while moving slowly over the top of the hill in between.
For such a case, our Fisher Information calculation
would show higher information for the transition over
the hill as the system ‘slows down’.

5. Discussion

The results shown here demonstrate that on these
model-generated data sets for ecological models exhibit-
ing characteristic periodic system behavior, the Fisher
Information form that we have developed provides a
clear signal that the system has undergone a transition
from one steady dynamic regime to another, i.e. the

Fisher Information can be shown to closely track
changes in dynamic regime. Note that although we have
used our knowledge of model dynamics to calculate the
Fisher Information in these examples, a model is not
necessary. We are currently working to apply Fisher
Information using experimentally determined or field
measured time-series data for biological populations
and other abiotic variables. All that our theory requires
for computing the Fisher Information is the time
derivatives of the state variables of the system
(Eq. (10)) which can be obtained from a model
(Eqs. (11) or (12) and Eq. (13)) or from experimental
or field data in the form of time series. Computation of
the Fisher Information does not depend on knowledge
of system structure, feedbacks or causality. In this sense,
the Fisher Information gives us a ‘black box’ approach
to the generation of signals from data. However,
subsequent application certainly will require situation-
specific interpretation and intimate knowledge of the
dynamics of the system on which the measure is applied
in order to determine the direction and potential extent
of change, and what must be done to stem or reverse
detected changes if so desired. This work offers a means
of detecting when associated system changes in dynamic
regime are in the process of occurring, but it does not
shed light on the factors that contribute to system
resilience or buffer capacity.
In addition to this theoretical interest, there are

ecological reasons for proposing the use of Fisher
Information in the manner discussed here. Ecosystems
have observable, measurable properties, and one sign of
an underlying system organization is a characteristic
manner in which measurable properties or state
variables vary. This may be due to homeostatic
mechanisms, as observed in many ecosystems. For
example, Liebig’s Law of the Minimum and Shelford’s
Laws of Tolerance set upper and lower resource
constraints on the effects of environmental variables
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Fig. 16. Average Fisher Information (over 48 time steps) of the ten-compartment model in which the mortality rate of the top omnivore, y9;
experiences an increase from 0.75 to 0.90 between t ¼ 250 and 750. (a) Strong forcing function and (b) weak forcing function.
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Fig. 17. Illustrative example of a ball oscillating between two valleys

through a relatively flat hill under gravitational attraction. For some

combinations of ball mass and specific strength and frequency of the

force pushing the ball out of the valleys, the ball can spend a large

amount of time transitioning over the hill.
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upon organisms. Given a set of time-series data for these
state variables in an ecological system, whether model-
generated or field measured, the Fisher Information
gives an overall measure of the consistency of varia-
bility, and therefore, of the consistency of the system
organization that generated the data. An ecological
system in a stable periodic regime has a characteristic
variability and a characteristic Fisher Information. This
system, if experiencing a perturbation, will typically
show a change in the variability of its measurable
variables and a corresponding change in Fisher
Information. This change in Fisher Information is
reflective of transient behavior, which may represent a
change in the dynamic regime of the system or a change
in the organization between system elements. Although
not directly measured, we hypothesize that it may be
possible to infer the system resilience or buffer capacity
by the change in Fisher Information. A persistent
organization is especially important for human exploita-
tion of ecosystems, as it is a source of predictable future
behavior in the presence of disturbances.
When the system is moving from one steady regime to

another, there seem to be two prototypical behaviors for
the Fisher Information (Figs. 8, 10, 12, 14 and 16)
during the transition: (1) a loss of information and (2) a
gain of information. The typical loss of information
behavior is illustrated by Fig. 8b, and the typical gain of
information behavior is shown in Fig. 16a. As already
discussed, we hypothesize that the information loss is
due to the system moving through a disordered regime
during the transient where there is no preference for any
particular set of states. We have also hypothesized that
the gain in information is due to the system moving
through an ordered regime during the transient where a
particular set of states is preferred, although the regime
itself is not stable. The latter was illustrated with an
example of a ball moving between valleys (Fig. 17). It is
important to note that the actual transition between
one steady regime and another can occur through a
combination of these two prototypical behaviors.
Hence, we see that in many cases (Figs. 8a, b, 10b,
12a, b and 14b) there is a small rise in the Fisher
Information followed by a drop during the transition as
the system settles to a new steady regime. We suspect
that these are cases where the system first moves through
an ordered regime (information rise) followed by a
disordered regime (information loss). In some of these
cases (Fig. 12a), the information gain and the informa-
tion loss appear to be approximately equal. There are
still other cases where the transition is smooth (Figs. 10a
and 14a), with perhaps a small rise followed by a drop.
We suspect that these are cases where the order in the
transition regime is lower than that of the initial
regime but higher than that of the final regime.
Hence, the seemingly complex behavior exhibited by
the Fisher Information in these examples may be due to

combinations of a few prototypical behaviors. Recall,
however, that the theory developed here is strictly
applicable to steady cyclic dynamic regimes, not
transient behavior. Thus, the discussion above represents
our hypothesis and an opportunity for further research.
There are still many questions that remain to be

addressed. For example, what is the effect of noise on
the Fisher Information calculation? Because estimation
of speed and acceleration from real data is sensitive to
noise, we expect this to be an important issue.
Furthermore, the results shown use a fixed integration
window for the Fisher Information, which is then
moved (in time) a single window width at a time to
generate a Fisher Information versus time plot. This is
appropriate here since the characteristic period of
the system is known. However, in other systems, if the
period changes or is otherwise not known, or when the
system steady state is not periodic, alternative methods
may be needed. A more significant challenge which
currently being researched is developing a Fisher
Information concept that is valid for transient as well
as steady state behavior. Although here we limit our
discussion to the presentation of this new methodology
and to the utility of it as an indicator of regime change,
further work may also shed light on a biophysical
interpretation of the quantitative level of the observed
Fisher Information. These questions and others provide
directions for future research.
The overarching goal is to link Fisher Information to

concepts such as ecosystem resilience, ecological buffer
capacity, and ultimately, sustainability. In order to link
Fisher Information to sustainability, we must: (1) be
able to identify the direction of system change at the
onset of transient behavior; (2) be aware of the existence
of different system regimes; and (3) understand the
nature of the system organization that gives rise to any
new regime that becomes established and whether or not
it can sustain ecosystem function. While we are currently
far from having this knowledge, Fisher Information
offers a powerful and theoretically sound approach to
investigate transient behavior and changes in dynamic
regime, a fundamental understanding of which is
necessary to gauge the long-term persistence of sustain-
able ecosystem function.

6. Conclusion

We present a new application of Fisher Information
in conjunction with the dynamics of ecological systems.
The Fisher Information that we have developed is a
measure of the state of order or organization, as
compared to Shannon and Gini-Simpson Information.
Shannon and Gini-Simpson Information are appropri-
ate as biodiversity indices, whereas, the Fisher index
is adept at revealing changes in system order which
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generally correspond to changes in dynamic regime. A
derivation is provided which gives a probability density
function for the chance of observing a dynamical system
in any one of its accessible states. The resulting Fisher
Information expression is given in terms of ratios of
speed and acceleration of the system over its state-space
trajectory. The application of the Fisher Index to two
examples is given: a two-species predator–prey model
and a ten-compartment food web model. Fisher
Information closely tracks changes in regime for these
model systems.
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