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Abstract

This paper concerns with robust estimation of linear regression models with structural change
of unknown location under possibly contaminated distributions both for the regressors and for
the perturbance term. Existing estimators will be ine+cient in this context. Furthermore, they
may protect against outlying Yt , but cannot cope with leverage points, namely outliers in the
factor space, which could have large in-uence on the .t. As a result, these estimators could
not discriminate between outlier observations and structural break points, misplacing the shift
location. This fact can be of special importance in practice. Therefore, it may be advisable to
consider robust estimators under possible leverage points in a structural change context. Thus,
we propose the �-estimator, introduced by Yohai and Zamar (J. Am. Stat. Assoc. 83 (1988)
406) in the standard context of no change. This type of estimator is qualitatively robust, with
the best possible breakdown-point and highly e+cient under normal errors. The asymptotic dis-
tribution of the break location estimator is obtained both for .xed magnitude of shift and for
shift with magnitude converging to zero as the sample size increases. The analysis is carried out
in the framework of general NED dependence conditions for the data. Monte Carlo experiments
illustrates the performance of our estimators in .nite samples.
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1. Introduction

In this paper we consider the problem of estimating a regression model with struc-
tural change under possibly contaminated distribution for both the regressors and the
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perturbance term. Models with structural breaks are often encountered to specify eco-
nomic time series data. It is a classic result that estimates of regression parameters
corresponding to a model with a structural change with neglected breaks, are no longer
consistent. There is a number of economic applications considering the existence of
structural breaks. Empirical results suggest that, in many areas, allowing for structural
breaks has changed conclusions about related inferences. For example, in macroeco-
nomics, it is well known the innovative papers of Perron (1989, 1990) and Rappoport
and Reichlin (1989), which independently suggested as a plausible model for a wide
variety of economic variables stationarity around a time trend with a break, rejecting
the unit root hypothesis previously supported by Nelson and Plosser (1982). Since the
work of Friedman and Mieselman (1963), other of the traditional empirical problems
in macroeconomics has been whether money has a strong and stable link to aggregate
output. Feldstein and Stock (1994) study the stability in money–output regressions for
three monetary aggregates, the monetary base, Ml and M2. The structural change in the
international trade has been analyzed by Ben-David and Papell (1997), in particular,
in the export-GDP and import-GDP ratios. In .nancial time series, the consideration
of structural breaks is also of particular importance. A key part of numerous empirical
models is about the magnitude of the impact that a structural change may have on the
conclusions, because researchers have failed to take into account a possibly signi.cant
time break. As example, Corbae and Ouliaris (1991) and Perron and Vogelsan (1992)
introduce this question in the long rung Purchasing Power Parity and they prevent
that allowing for structural breaks reverses conclusions about unit roots in this context.
This is an important issue recently emerging. Garcia and Perron (1996) analyze this
same problem in real interest rates using the Markov switching model. Bekaert and
Gray (1998) incorporate the possibility of jumps in their empirical model of exchange
rates. Reyes (1999) examines the relationship between .rm size and time-varying be-
tas for UK stocks. A survey of empirical applications of the structural change problem
in economics is given by Stock (1997) and Maddala and Kim (1998), among others.
For further references on parameter instability and breaks, the reader is referred to the
reviews and bibliographies by Hackl and Westlund (1989, 1991), Krishnaiah and Miao
(1988), KrJamer and Sonnberger (1986), Stock (1997) and CsJorgo and HorvKath (1997),
to mention only a few.
While structural change problems are related with consistency and valid inferences,

as mentioned earlier, robust estimation methods are mainly concerned with both safety
and e+ciency under possibly contaminated distributions. 1 The .rst is an speci.cation
issue and the second is basically an estimation problem. The consideration of robust
estimators in the usual context (of no structural change) is motivated by the usual poor
behavior resulting from the use of classical estimators, even under slight violations

1 Contamination can be outlined as any possible deviation from the assumed parametric model, under
which classical procedures lay oL being optimal. Belonging to this set, we can consider two standard situa-
tions: the occurrence of outliers, the most dangerous type of deviation which could yield a (non-protected)
classical estimator to break down, spoiling the estimate completely (the breakdown point is a related concept),
or a thick-tailed distribution, under which, classical LS estimators could result highly ine+cient (correspond-
ing variance is determined by the in3uence function). Indeed, the .rst situation may be generated by the
second one. For de.nitions see, e.g. Hampel et al. (1986).
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of the strict model assumptions. In the structural change context, when estimating a
shift point, robust methods become particularly relevant. The fact is that estimators
which are not protected against deviations from the model distribution and/or outlying
observations can produce disastrous eLects on the estimates, in such a way that they
will not be able to discriminate between an outlying observation and a structural break
point. This aspect will be illustrated by an example, in Remark 1.
Classical estimators of structural change models include the maximum likelihood

estimation by Hinkley (1970), Bhattacharya (1987) and Yao (1987) for the i.i.d. case
and Picard (1985) for a Gaussian autoregressive process, among others. Bai (1994)
and Bai and Perron (1998) estimate the unknown change point by least squares (LS),
assuming, respectively, a linear process for the error term and strong mixing depen-
dence conditions for the data. Delgado and Hidalgo (2000) estimate the location of
a structural change in a nonlinear model. Robust methods have been also considered.
Bai (1995, 1998) proposes to use the least absolute deviations (LAD) estimator, which
has good properties in terms of robustness but is highly ine+cient under normality.
Fiteni (2002) proposes an M-estimator, which constitutes a compromise between the
e+ciency of LS and the robustness of LAD. However, the consideration of regression
models with random carriers is crucial when inspecting economic data and above pro-
posals for robust estimation fail to have a high breakdown point under leverage. In this
context, we recommend the �-estimators, which protect against outlying observations
both, for the dependent variable (OY axis) and for the random carriers (OX axis).
This type of estimator was .rst developed by Yohai and Zamar (1988) for estimating
continuous regression models assuming i.i.d. observations. We generalize their results
for a structural change model under general NED-dependence conditions for the data.

Remark 1. As in Hampel et al. (1986), we illustrate, by an example, the advantage
of using a robust estimation procedure in a structural change context. In particular, we
contemplate the possible impact of a single outlier observation on the shift estimator
when using nonprotected estimators in practice. The considered model is Yt=�t+�Xt+
Ut; t¿ 1. Regressor and error are i.i.d. N(0; 0:1) and mutually independent. Then, we
generate a .rst sample of size n = 30, with � = 1 and �t = 1 + I(t ¿ 15), where I(·)
represents the indicator function. The data is shown in Table 1 and Fig. 1, provided
in the appendix.
Next, we generate two other samples by replacing the observation corresponding

to t = 22, i.e., P = (2:84; 22; 0:08), .rst by P1 = (−0:80; 22; 0:08) and secondly by
P2 = (0; 22; 2:0), outliers in the OY and OX axis, respectively. For these three samples
and considering unknown the break location, we estimate the above model by using
four estimation methods: LS, LAD, Huber and �-estimator, the latter proposed in this
paper. Fig. 2, in the appendix, shows the results.
As expected, with the .rst sample, in absence of outliers, all the estimators locate

the break in the true break point position. Moreover, we obtain a similar .tting pattern
in all cases. With the second sample, in the presence of an outlying Yt , the (nonrobust)
LS estimator is the only one which spoils the estimation, in such a way that locates
the break at t=22, the time corresponding to the outlier observation. LAD and Huber
estimators share this same behavior when considering the third sample, in the presence
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Table 1
Data corresponding to the original (no contaminated) sample

Time Y X Time Y X Time Y X

1 1.03 −0.30 11 0.83 −0.14 21 2.08 −0.27
2 0.67 −0.21 12 1.45 −0.00 22 2.84 0.08
3 0.17 −0.16 13 0.87 0.43 23 3.17 0.54
4 1.27 0.06 14 0.98 0.17 24 1.24 −0.41
5 0.87 −0.06 15 1.47 0.08 25 2.50 0.45
6 1.59 0.33 16 1.57 −0.14 26 2.41 0.30
7 1.43 −0.04 17 1.39 −0.28 27 1.34 −0.43
8 0.98 −0.08 18 2.31 0.26 28 1.07 −0.48
9 0.57 −0.04 19 1.89 0.20 29 2.30 0.32
10 1.06 0.07 20 2.18 0.17 30 2.47 −0.37

Fig. 1. Data corresponding to the original (no contaminated) sample.
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Fig. 2. Scatter plot, .tting curve (solid line) and break location estimate (vertical dotted line) for three
samples: no contaminated with outline OY axis and with outlying OX axis.



I. Fiteni / Journal of Econometrics 119 (2004) 19–44 23

of a leverage point (P2). This is the consequence of their lack of robustness in this
context. On the contrary, �-estimator, the only one which prevents against observations
of this nature, carries on locating the shift point at the true break position.

In this paper, we provide a suitably robust estimator of a possibly contaminated
model with a structural break. Contamination may be present in both the regression
carriers and the perturbance term. As in the standard context of no change, existing
nonprotected procedures may spoil the estimate completely. As a consequence, in fact,
they could mistake an outlier observation for a structural break in this context.
The rest of the paper is organized as follows. Section 2 outlines the procedure for

obtaining the �-estimator in a regression model with structural change and provides
the set of su+cient assumptions for justifying the asymptotic properties of the cor-
responding estimators. The model allows for general forms of serial dependence. In
Section 3, rates of convergence and limiting distributions of the estimators will be
obtained both for .xed and for shrinking magnitude of shift. The latter is essential for
the derivation of feasible con.dence intervals for the break point location, provided
that only in this case the asymptotic distribution will be pivotal. Section 4 reports
a Monte Carlo experiment which illustrates the estimator performance in .nite sam-
ple situations. Appendixes of proofs and tables are provided in Sections 5 and 6,
respectively.

2. Model and assumptions

Let {Zt = (Yt; Xt)}nt=1 be a sample of Z , a R×Rp-valued stochastic process de.ned
on the probability space (-;F; P), such that

Yt = X ′
t �10I(t6 [n�0]) + X ′

t �20I(t ¿ [n�0]) + Ut; t = 1; : : : ; n (1)

a linear model with a simple shift, where [ ·] represents the nearest integer function and
{Ut}nt=1 is the sequence of perturbances. De.ne the parameters vector �0=(�′

10; �
′
20; �0)′,

where �j0 ∈� ⊂ Rp, for j=1; 2, with �10 �= �20, and �0 ∈� ⊂ (0; 1) is the shift point
location, which is also unknown.
The focus of this paper is to estimate, using the proposal of the �-estimators, a

linear regression model under the maintained hypothesis that there exists a shift with
unknown location and size � = �10 − �20 �= 0. Eq. (1) allows all the regression para-
meters to switch between regimes, but the results generalize to the case where only a
subset of parameters change at a given time point. The diLerence is only an issue of
e+ciency, because a partial structural change model consists on incorporating additional
null restrictions about some components of �.
To outline the estimator, we make use of the following two de.nitions:

De�nition 1 (Huber, 1981): Given {vt}nt=1, a sample of a random variable v, the
M-estimator of scale (or M-scale), denoted by sn(v), is such that n−1∑n

t=1 �(vt=sn(v))=
b, for a given function � :R → R and b = E�[�(v)], where � represents the standard
normal distribution.
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S-estimators, provided by Rousseauw and Yohai (1984), are de.ned by the mini-
mization of the residuals M-scale. They showed that these estimators may have a high
breakdown point, but their loss of e+ciency under normality is sizable. To solve this,
Yohai and Zamar (1988) propose the �-estimators of the regression coe+cients as the
minimizers of the residuals �-scale, de.ned below. They guarantee simultaneously the
best possible breakdown point and e+ciency at the normal model.

De�nition 2 (Yohai and Zamar, 1986): Consider two real functions �1 and �2 and
let sn be the M-estimator of scale based on �1. Then, given a sample {vt}nt=1 of a
random variable v, the �-estimator of scale (or �-scale), denoted by �n, is such that
�2n(v) = s2n(v)n

−1∑n
t=1 �2(vt=sn(v)).

Particular functions �1 and �2 will determine the type of estimator. For �2(u) = u2,
we obtain the least-squares estimator and if we consider �1 = �2, then �n =

√
bsn,

corresponding to the S-estimator. As mentioned before, the �-estimator is more robust
than the .rst under possible contaminated distributions and more e+cient than the
second at a Gaussian model.
Next, given model (1), we de.ne the �-estimator �̂n of the parameters vector �0 as

follows:

�̂n = argmin
�∈�2×�

Vn(�); (2)

such that,

Vn(�) =V1n(�1; �) +V2n(�2; �); (3)

V1n(�1; �) = s2n(�)
1
n

[n�]∑
t=1

�2

(
rt(�1)
sn(�)

)
and

V2n(�2; �) = s2n(�)
1
n

n∑
t=[n�]+1

�2

(
rt(�2)
sn(�)

)
; (4)

where rt(�) = Yt − X ′
t � is the residual function and, for j=1; 2; Vjn(�j; �) represents

the residuals �-scale, pre-[n�] and post-[n�], respectively. Finally, sn(�) denotes the
corresponding M-scale, such that

1
n

[n�]∑
t=1

�1

(
rt(�1)
sn(�)

)
+

1
n

n∑
t=[n�]+1

�1

(
rt(�2)
sn(�)

)
= b (5)

with b= E�[�1(v)].
As a matter of notation, we let {Ij

t ; j = 1; 2} denote a particular time partition,
such that I1

t = I (t6 [n�]) and I2
t = I (t ¿ [n�]). For any integer j, the function

�j :R→ R is such that  j(z) = 9�j(z)=9z;  ̃ j(z) = z j(z);
˜̇ j(z) = z ̇ j(z);

˜̃̇
 = z2 ̇ j(z)

and �̃j(z) = 2�j(z) −  ̃ j(z). Let ‖ · ‖ denote the Euclidean norm of a vector or a
matrix and ‖ · ‖r the Lr norm of a random q-vector (i.e., ‖X ‖r =(

∑q
i=1 E|Xi|r)1=r). The

symbol “→p” represents convergence in probability, “→d” convergence in distribution
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and “⇒” weak convergence in the space D[0; 1] under the Skorokhod metric (see, e.g.
Pollard, 1984).
Assuming that the objective function is twice diLerentiable, we can de.ne, for each �,

the partial regression parameter estimators, pre-[n�] and post-[n�], from the .rst-order
conditions (Proposition A.1 in the appendix will be used). Thus, the estimator �̂n,
outlined by Eq. (2), can be derived in two steps. First, for each possible partition
�∈�; �̂n(�) = (�̂′

1n(�); �̂
′
2n(�))

′ is obtained as

n∑
t=1

(
Wn(�̂n(�); �) 1

(
rt(�̂jn(�))

sn(�̂n(�); �)

)
+  2

(
rt(�̂jn(�))

sn(�̂n(�); �)

))
XtI

j
t = 0;

j = 1; 2 (6)

with Wn(�) de.ned by (A.3). In a second step, the estimator �̂n will be derived as a
global minimizer of the objective function, such that �̂n=argmin�∈�{V1n(�̂1n(�); �)+
V2n(�̂2n(�); �)}. The �-estimator of the regression parameters will be �̂n = �̂n(�̂n) and
the size of the jump is estimated by �̂n = �̂1n − �̂2n.
Next, we outline the temporal dependence structure we assume in our model, the

‘Near Epoch Dependence’ (NED), which constitutes a plausible alternative to the
widespread mixing process. It is well known that the strong restrictions needed to
ensure processes are mixing threaten to limit the usefulness of the mixing concept
(see, e.g., Davidson 1994, Chapter 14). Only speci.c aspects of mixing, encapsulated
in the concept of a mixingale, are required for main limit results to hold. And the key
factor of a NED process consists on making use of this fact: although it may not be
mixing, it will be ‘approximately’ mixing in the sense of being well approximated by
the near epoch of a mixing process, permitting the application of limit theorems, of
which the mixingale property is the most important. It includes linear processes, strong
mixing processes and many other dependent structures as special cases. This concept
was introduced by Ibramigov (1962), and has been formalized in diLerent ways by
Billingsley (1968), McLeish (1975a, b), Bierens (1981), Andrews (1988), Wooldridge
and White (1988), Hansen (1991) and PJotscher and Prucha (1991), among others. This
is de.ned below:

De�nition 3. Let {Vt}∞−∞ be a strong mixing sequence, possibly vector-valued, on a
probability space (-;G; P) and, de.ne Gt+m

t−m = ((Vt−m; : : : ; Vt+m), such that {Gt+m
t−m}∞m=0

is an increasing sequence of (-sub.elds of G. For r¿ 0, a sequence of integrable
random vectors {Wt}∞−∞ is said to be Lr-NED of size −q0 on the strong mixing base
{Vt} of size −q1 if there exists a sequence of nonnegative constants {dt}∞1 and a
nonnegative sequence {vm}∞0 , such that vm → 0 as m → 0, and,

(i) for r = 0; Pr(‖Wt − E[Wt |Gt+m
t−m]‖¿*)6dtvm ∀*¿ 0,

(ii) for r ¿ 0; ‖Wt − E[Wt |Gt+m
t−m]‖r6dtvm,

hold for all t¿ 1 and m¿ 0. Besides, vm = O(m−q) for all q¿q0 and {�m}m¿0, the
sequence of the strong mixing number of {Vt}, is such that �m=O(m−q) for all q¿q1.



26 I. Fiteni / Journal of Econometrics 119 (2004) 19–44

Finally, the following set of assumptions outlines the setup under which the asymp-
totic properties of estimators will be derived.

A.1 Assumptions on �1 and �2.
A.1.1. For j=1; 2, let �j :R→ R be a function that satis.es the following properties:

(i) �j(0) = 0. (ii) �j(−u) = �j(u). (iii) 06 u6 v implies that �j(u)6 �j(v).
(iv) �j is even and twice continuously diLerentiable. (v) Given aj =sup �j(u),
then 0¡aj ¡∞. (vi) There exists a constant m such that �j(u) is constant
for |u|¿m. (vii) If �j(u)¡aj and 06 u¡v, then �j(u)¡�j(v).

A.1.2. Let b= E�[�1(u)], then (b=a1) = 0:5 holds for a1 de.ned by A1.1-(v).
A1.3. �2 satis.es that 2�2(u)−  2(u)u¿ 0.
A2. Model assumptions.

Given (-; s)∈�×[h1; h2]; 0¡h1; h2 ¡∞, de.ne the sequences {/jt(-; s)}t6n,
for j = 1; 2, where /jt(-; s) =  j(s−1(Ut + -′Xt))Xt , for each t. Let /jt =
/jt(0p; (0); ∀t6 n, where 0p is a p-vector of zeroes and (0 is such that
limn→∞ n−1∑n

t=1 E[�1(Ut=(0)] = b, with b de.ned by A1.2. The subscript t
of these sequences indicates the dependency on the data {Zt} and - could be
dependent on n, in which case it will be denoted by -n. The index j = 1; 2
will be used throughout.

A2.1. � ⊂ Rp is a compact and convex set.
A2.2. �0 ∈�, provided that � has closure in (0; 1).
A2.3. (i) {Zt = (Yt; X ′

t )
′}t6n is a random vector with domain in Z , L0-NED on a

strong mixing base {wt : t = : : : ; 0; 1; : : :} with constant dt = 1, where Z is a
Borel subset of Rp+1 de.ned on the probability space (-;F; P). Let Fn =
n−1∑n

1 F(Zt), such that {Fn}n¿1 is tight on Z . (ii) Xt is L2-bounded and
such that limn→∞ n−1∑n−1

t=1

∑n−t
m=1 ‖XtX ′

t+m‖¡∞.
A2.4. For some r ¿ 2; {/jt}t6n is a random vector sequence of mean zero, L2-NED

of size − 1
2 on a strong mixing base {wjt : t = : : : ; 0; 1; : : :} of size −r=(r − 2),

with constants djt = 1 and supt6n E‖/jt‖r ¡∞.
A2.5. (i) supt6n|E[sups¿0 j(s−1Ut)|Fx

t ]|=0, where Fx
t =((−∞; : : : ; Xt). (ii) ∀(-; s)

∈�×[h1; h2]; /jt(-; s) is Borel measurable in Zt , such that /̇jt(-; s)=9/jt(-; s)=
9-′, continuous in (Zt; -; s)∈Z×�×[h1; h2] by A1.1-(iv), satis.es that supt6n E
[sup-∈�‖/̇jt(-; (0)‖1+*]¡∞, for some *¿ 0.

A2.6. There exists a b0 such that, for all b¿b0, the smallest eigenvalues of the posi-
tive matrices b−1∑[n�0]+b

t=[n�0]+1 /̇jt(-; (0) and b−1∑[n�0]
t=[n�0]−b /̇jt(-; (0) are bounded

away from zero uniformly in -∈�.
A2.7. De.ne M (-) = limn→∞ n−1∑n

t=1 E[W0/̇1t(-; (0) + /̇2t(-; (0)] = W0M1(-) +
M2(-), where, for j=1; 2; Mj(-)=limn→∞ n−1∑n

t=1 E[/̇jt(-; (0)] is a positive
de.nite matrix ∀-∈� and W0 = limn→∞ (

∑n
t=1 E[�̃2(Ut=(0)]=

∑n
t=1 E[ ̃ 1(Ut=

(0)]). The limn→∞ n−1 ∑[n�]
t=1 E[/̇jt(-; (0)] exists uniformly in (-; �)∈� × �

and equals �Mj(-); ∀(-; �)∈�×�. Finally, let M =M (0p).
A2.8. Let {qt(-; s) = q(s−1(Ut + -′Xt))}t6n be a sequence de.ned for a general

function q(·; ·); ∀(-; s)∈� × [h1; h2]; 0¡h1; h2 ¡∞. Then, for the particu-

lar cases of q(·) = �j(·);  ̃ j(·); ˜̃̇ j(·), it holds that limn→∞ n−1∑[n�]
t=1 E[qt(-; s)]
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exists uniformly in (-; s; �)∈� × [h1; h2] × � and equals �Hq(-; s), such
that limn→∞ n−1 ∑n

t=1 E[qt(-; s)] = Hq(-; s)¡∞. Similarly, for the functions

q(·) =  j(·); ˜̇ j(·), we assume that limn→∞ n−1∑[n�]
t=1 E[qt(-; (0)Xt] = �HX

q (-),
uniformly in (-; �)∈�×�, such that HX

q (-)=limn→∞ n−1∑n
t=1 E[qt(-; (0)Xt],

.nite ∀-∈�. Finally, limn→∞ n−1∑n
t=1 E[sup-∈�;s∈[h1;h2]|qt(-; s)|1+*]¡∞

holds for all above mentioned function.
A2.9. Given S12 = limn→∞ n−1∑n

t=1

∑n
s=1 E[/1t/′2s], de.ne S = limn→∞ var[n−1=2∑n

t=1 W0/1t+/2t]=W 2
0 S1+S2+2W0S12, where, for j=1; 2; Sj=limn→∞ var[n−1=2∑n

t=1 /jt] is a .nite and positive p × p matrix. ∀�∈ (0; 1) it holds that
limn→∞ var[n−1=2∑[n�]

t=1 /jt] = �Sj.
A2.10. Let �n → 0 with n‖�n‖2 → ∞.

Assumption A1 is standard in the �-estimator context and guarantees robustness and
e+ciency under Gaussianity. Thus, we obtain a estimation procedure which assures
simultaneously stability under any possible type of contamination and high relative
e+ciency with respect to LS when the latter is optimal. In particular, condition A1.l
determines the functional form of �j, for j=1; 2, diLerentiable, symmetric, bounded and
monotone increasing. A1.2. is a restrictive assumption on �1, under which the highest
breakdown point is guaranteed (Yohai and Zamar 1988, Theorem 3.1). As it will be
explained in Remark 2 (Section 3), e+ciency under normality is obtained by A1.3, a
requirement imposed on �2. Moreover, this assumption will imply that Wn(�), de.ned
by (A.3), is nonnegative. As a consequence, the �-estimator of regression parameters,
in (6), can be viewed as an M-estimator with an adaptive  -function, let  n(u) =
Wn(�) 1(u) +  2(u), a weighted average of  1 and  2 with weights depending on the
data. A similar result is obtained by Yohai and Zamar (1988) in the standard context
of no change.
Conditions in A2 will permit the development of an asymptotic theory for the model

estimators. In particular, the assumption of a bounded parameter set in A2.1 and A2.2
is restrictive, although it may not be of any practical signi.cance. A2.3 and A2.4
establish the weak temporal dependence structure in this speci.c robust regression
context. It is noteworthy that a suitable transformation of a NED process will also
inherit a NED structure dependence (see, e.g., Davidson 1994, Chapter 17). Therefore,
under smoothness conditions on �j, as imposed by A1.1, we may base (and state)
the NED property on the temporal behavior of regressors and/or the perturbance term
allowing to establish the dependence conditions in more primitive terms. For example,
a model either with independent regressors and a linear process for the error term or
with both regressors and perturbance term following an asymptotic dependence structure
of a strong mixing process, pertain to the class of processes considered here. Note
that condition A2.5-(i) is quite restrictive, although it is also required in the standard
context of no change. For i.i.d. observations, it would imply a symmetric distribution
for the error term. Assumption A2.5-(ii) is imposed given that the break point is
estimated by a global searching of a minimizer for the objective function. On the other
hand, its identi.cation will be guarantee under A2.6, assuming that there exist enough
observations near it. Assumptions A2.7–A2.9 are standard requirements for obtaining
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asymptotic covariance stationarity for the estimated parameters. However, they rule
out models with lagged-dependent variables as regressors when associated coe+cients
are subject to change, which can be especially interesting in dynamic models. But in
this case, the conditions could be weaken and the results of theorems surely hold (for
interested readers, a detailed discussion is given by Fiteni 2002, Remark 4). Finally,
the reason for A2.10 is that with a .xed break, its location estimator will have an
asymptotic distribution which depends upon nuisance parameters, and thus not useful
for related inferences. By letting �n tend towards zero, a simpler asymptotic pivotal
distribution will be found, as it can be seen in the next section.

3. Asymptotic properties of the estimators

In this section, we provide the asymptotic behavior of �-estimators in a structural
change regression model, de.ned by (2)–(4). First, we consider the corresponding rates
of convergence, in Theorem 1, which will allow us to derive the asymptotic distribution
of the estimators, our main result provided by Theorem 2.

Theorem 1. Under Al and A2.1–A2.8, it holds that (�̂jn−�j0)=Op(n−1=2), for j=1; 2
and (�̂n − �0) = Op(n−1‖�‖−2).

It is convenient to remark that the rate of convergence corresponding to the regression
coe+cients estimators are, as usual, n−1=2, as if the true break location were known.
The break point estimator converges to the true break point, at a rate depending on �,
the size of the jump. This dependence allows us to incorporate two standard settings
about �: .xed and asymptotically decreasing (at a rate given by A2.10). For the latter,
it will be denoted by �n. Therefore, the rate of convergence corresponding to �̂n will
be Op(n−1) when the break is constant and Op(n−1‖�n‖−2) when a local change.
This result is well known for any other estimation procedure. The �-estimator of the
break fraction remains consistent, in any case, even when the shift is asymptotically
decreasing with the sample size, by A2.10. Given the above rates of convergence, we
are in the position to prove the limiting distribution of the model estimators, in the
next theorem.

Theorem 2. Under Al and A2.1–A2.9, it holds that,
(i) [√

n(�̂1n − �10)
√
n(�̂2n − �20)

]
d→M−1S1=2

[
�−1=2
0 Zp 0p×p

0p×p (1− �0)−1Zp

]
; (7)

where Zp represents the p-dimensional standard Gaussian vector and 0p×p is a
(p× p)-matrix of zeroes.

(ii) Assuming A2.10,

(�′nM�n)2

�′nS�n
n(�̂n − �0) ⇒ argmax

w
{W (w)− 1

2 |w|}; (8)
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where W (·) represents an independent two-sided standard Brownian motion de-
�ned in R.

(iii) Assuming � constant,

n(�̂n − �0) ⇒ argmax
w

{�′W ∗(w)− 1
2 �′M (�)�|w|}; (9)

where W ∗(·) represents a process de�ned in Z, the integer set, such that,

W ∗(w) =




0; w = 0

s0n

−1∑
t=w

/t (0p; s0n); w =−1;−2; : : :

s0n

w∑
t=1

/t (0p; s0n); w = 1; 2; : : :




(10)

with s0n de�ned by n−1∑n
t=1 �1(Ut=s0n) = b.

(iv) The distribution of
√
n((�̂1n − �10)′; (�̂2n − �20)′)′ and that of n(�̂n − �0) are

asymptotically independent for the two cases of �.

Again, the estimated regression parameters have a standard limiting distribution, as if
the shift point location were known. As usual, the limiting distribution of the break date
estimator depends upon nuisance parameters when considering constant the jump size.
The di+culty is due to the Op(n−1) rate of convergence. Only when setting an asymp-
totic framework where the magnitude of the shift converges to zero, we reduce the rate
of convergence and a pivotal limiting distribution is found. As pointed by Bai (1994),
when the sample size increases, because �n converges to zero, more observations in a
neighborhood of the true shift point are needed to discern the shift point so that the
Central Limit Theorem eventually applies (though the size of the neighborhood will
increase at a rate ‖�n‖−2, much slower than the sample size). This is why a Brownian
motion is embedded in the limiting process. In particular, it is characterized by W (w),
a two-sided Brownian motion, given by W (w) =W1(−w)I(w¡ 0) +W2(w)I(w¿ 0),
with W1(w) and W2(w) representing two independent standard Brownian processes.
The speci.c distribution function of argmaxw{W (w)− |w|=2} is given by

F(t) =
1
2
+

1√
2�

√
te−1=st +

3
2
et�

(
−3
2

√
t
)
−
(
1
2
t +

5
2

)
�
(
−1
2

√
t
)

(11)

for t ¿ 0, we can see, e.g., in Bai (1994) or Fiteni (2002).
Finally, considering part (i) of Theorem 2, we derive, in the next corollary, the

asymptotic distribution of �-estimator corresponding to the jump size.

Corollary 1. Under A1 and A2,
√
n(�̂n − �) d→ (�0(1− �0))−1=2M−1S1=2Zp:

In the next section, we focus on the implementation in practice of this type of es-
timator by means of simulation experiments. For this study, a particular �-estimator
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based on the bisquare family of  -functions, will be used. This is described
below.

Remark 2. As we can see in Theorem 3.1 by Yohai and Zamar (1988), the high
breakdown-point property depends only on �1. Therefore, �2 will be chosen so that we
obtain high e+ciency under Gaussianity. We consider a particular �-estimator corre-
sponding to the bisquare family of  -functions, which satis.es the required conditions
A1. This is de.ned as follows:

 B;c(u) =

{
u(1− u2

c2 )
2 for |u|¡c;

0 for |u|¿ c

for a given constant c. The corresponding �-function will be

�B;c(u) =




u2

2 (1− u2

c2 +
u4

3c4 ) for |u|¡c;

c2

6 for |u|¿ c:

Condition A1.1 holds for any value of c. If we take �1 =�B;c1 , such that c1 =1:56 and
b=E�[�B;c1 (u)] = 0:203, A1.2 will be satis.ed and the corresponding �-estimator will
have a breakdown point equals 0.5. Requirement A1.3 also holds, given that

2�B;c(u)− u B;c(u) =




u4

c2 (1− 2
3

u2

3c2 ) for |u|¡c;

c2

3 for |u|¿ c

and �2 = �B;c2 , with c2 = 6:08, such that E�[ ̇ 0(u)]2=E�[ 2
0 (u)] = 0:95. The resulting

estimator will have simultaneously maximum breakdown point and a relative e+ciency
of 0.95 at the normal model.

4. Monte Carlo experiment

This simulation study focuses on the relative .nite sample performance of robust
estimators of structural change models under diLerent distributional scenarios for the
regressors. As illustrated in Remark 1, the behavior of existing estimators of a structural
break may be altered by the presence of outliers in the regressors space. Now, we con-
template the possibility of regressors distributions with thick tails (see
footnote 1). Under outlying observations, nonprotected estimators could spoil the esti-
mates, misplacing the break location. Under thick-tailed distributions, they will be also
ine+cient, as will be illustrated below.
Again, four estimators will be considered: (a) the LS estimator is the most e+cient

under Gaussian distributions, but it gets the lowest breakdown point under any type
of contamination. (b) the LAD estimator is the most robust under contaminated dis-
tributions for the perturbance term, but it is highly ine+cient under Gaussianity and
its breakdown point equals zero under leverage. (c) the Huber estimator is a particular
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M-estimator with a related  -function given by  (u)=cumin{|u|=c; 1}=|u|, for a suitable
constant c. It sets up an intermediate solution between LAD and LS estimators, more
e+cient than the .rst and more robust than the second, but only against symmetric
heavy-tailed error distributions, because its breakdown point equals zero when the
carriers are also contaminated. Lastly, (d) the �-estimator is qualitatively robust, with
maximum breakdown point under contaminated distributions for both the regressors
and the error term, and highly e+cient under Gaussianity.
These four estimators will be compared in the following simulation study. Data are

generated according to the model:

Yt = 1 + Xt + I(t=n¿ 0:5) + Ut; t = 1; : : : ; n (12)

such that �0=(�′
10; �

′
20; �0)′=(1; 1; 2; 1; 0:5)′; Ut ∼ N(0; 1) and Xt ∼ i:i:d:F(X ). Our goal

is to illustrate the potential gain of using �-estimators in the presence of leverage. Then,
we generate model (12) under diLerent distributional scenarios F : standard normal,
double exponential, t3; t5 and two mixed normal distributions, such that F(X ) = (1 −
*)�(X )+ *�((X ), with (=3 and *=0:1 and 0.25, which will be denoted by N90 and
N75, respectively. The regressor is standardized for comparative purposes, in order to
get a variance equals one for all the cases.
Under each of above distributions F and from 2000 repetitions, we estimate bias

and mean square error (MSE) corresponding to LS, LAD, Huber and �-estimators of
�0. The computed Huber estimator is scale-invariant, considering the median absolute
deviation (MAD) as the scale estimator and the constant c = 1:345, according to the
minimax version (see Huber, 1981). The computed �-estimator belongs to the family
of bisquare functions, with the constant c1 and c2 de.ned as in Remark 2.

Programs are written in FORTRAN90, Double Precision and IMSL routines were
used for generating random numbers. We have applied the algorithm designs proposed
by Koenker and D’Orey (1987) for the LAD estimation, Huber and Dutter (1974) and
Huber (1977) for the Huber estimator and Yohai and Zamar (1988) for the �-estimator.
All of them have been adapted for this structural change estimation context. For inter-
ested readers, programs will be provided under request.
Tables 2 and 3, in the last section, show the results. In Table 2, we present bias

and MSE for the break location estimator, which are as expected. Under all (but the
Gaussian) distributions F , the �-estimator appears to be the most e+cient in terms of
MSE and for all n. At the normal model, however, the LS estimator obtains estimates
with the lowest spread. In fact, it provides the maximum likelihood estimation in this
case. Simulation evidence also con.rms that ine+cient results will be provided by
the LAD estimator in this context. It yields the largest spread estimates under all the
distributional scenarios and for any sample size. Lastly, the Huber estimator produces
an intermediate solution, in terms of e+ciency, between LS and LAD, for all n and
any of the distributional scenario we have considered for the regressor term.
Estimated bias and MSE corresponding to the regression coe+cient estimators pre-

and post-break are reported in Table 3 (only t5 and double exponential distributional
scenarios are shown in order to save space; remaining cases are similar and available
under request). As expected, their behavior is similar to that of the break location
estimator for each regressor distribution. The �-estimator arises as the most e+cient for
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Table 2
Break estimator

Point estimation n = 50 n = 100

Model Estimators Bias MSE Bias MSE

LS −0.369 1.301 0.159 1.230
MAD −0.030 1.941 0.113 2.255

N(0; 1) Huber −0.328 1.672 0.269 1.515
�-est. −1.350 2.152 0.030 1.366

LS 0.169 2.337 −0.235 1.589
MAD 0.068 3.005 −0.220 2.255

1
2 exp(−|x|) Huber 0.069 2.466 −0.175 1.515

�-est. −0.183 2.275 −0.090 1.366

LS 0.385 2.416 −0.621 1.686
MAD −0.540 2.999 −0.513 2.327

t3 Huber 0.163 2.525 −0.538 1.834
�-est. −0.640 2.277 −0.574 1.544

LS 0.257 2.312 −0.196 1.567
t5 MAD −0.248 2.957 −0.012 2.269

Huber −0.286 2.355 −0.192 1.629
�-est. −0.366 2.125 −0.072 1.447

LS −0.112 2.363 −0.501 1.556
MAD −0.390 2.995 −0.165 2.176

N90 Huber 0.188 2.409 −0.113 1.613
�-est. −0.128 2.189 −0.401 1.463

LS −0.086 2.371 −0.617 1.519
MAD −0.040 2.981 −0.302 2.159

N75 Huber 0.125 2.446 −0.175 1.575
�-est. −0.128 2.188 −0.361 1.468

Bias and mean squared error (MSE) for LAD, Huber and �-estimators (2000 replications). Model:
Yt = 1 + Xt + I(t=n¿ �0) + Ut , with t = 1; : : : ; n, where Ut ∼ N(0; 1) and Xt ∼ F(X ), such that
F = N(0; 1); 12 exp(−|x|); t3; t5; N90 and N75. Bold indicates the lowest MSE. Values must be divided by
103.

every de.ned thick-tailed distribution and the LAD estimates performs comparatively
rather badly. For each estimation procedure, considered distributional scenarios give
estimates with similar spread, which becomes narrower when increasing the sample
size.
We conclude noting that the consideration of robust estimators for structural change

models can be of special usefulness in practice if we suspect the presence of outliers in
the data or, more generally, possibly thick-tailed distributions for either the regressors
or the perturbance term. Using protected estimators in this context, we could gain in
terms of e+ciency and furthermore we can prevent the risk of confusing between an
outlier or a structural break point.
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Table 3
Coe+cient regression estimators

Point estimation n = 50 n = 100

Model Estimator Bias MSE Bias MSE

e−|x|=2
LS Intercept pre-break −5.699 8.781 −4.341 3.518

Intercept post-break 7.015 9.255 4.196 3.365
Slope pre-break 0.424 11.33 0.057 4.027
Slope post-break −1.050 12.72 0.615 4.371

LAD Intercept pre-break −5.947 11.90 −4.793 5.551
Intercept post-break 6.984 12.53 4.952 5.303
Slope pre-break −1.164 15.67 0.260 5.866
Slope post-break −0.622 16.99 0.589 6.258

Huber Intercept pre-break −6.152 9.685 −4.497 3.552
Intercept post-break 6.457 9.912 4.452 3.676
Slope pre-break 0.009 11.82 0.191 3.858
Slope post-break −0.904 14.78 0.464 4.622

�-est. Intercept pre-break −5.273 8.794 −4.244 3.349
Intercept post-break 5.097 8.241 3.767 3.195
Slope pre-break 0.586 12.02 0.361 3.517
Slope post-break −0.540 11.24 0.691 3.820

t3
LS Intercept pre-break −6.310 9.391 −4.864 3.928

Intercept post-break 7.292 9.443 2.994 3.409
Slope pre-break 0.138 17.90 0.002 5.126
Slope post-break −1.434 16.90 0.642 4.548

LAD Intercept pre-break −7.178 13.06 −5.603 5.893
Intercept post-break 7.117 12.92 3.404 5.406
Slope pre-break −0.266 22.51 −0.252 7.899
Slope post-break −1.536 21.19 0.847 7.220

Huber Intercept pre-break −6.572 9.703 −4.972 4.249
Intercept post-break 7.229 9.884 3.189 3.718
Slope pre-break 0.176 18.42 0.044 5.417
Slope post-break −1.386 16.97 0.737 4.970

�-est. Intercept pre-break −5.964 8.582 −4.413 3.703
Intercept post-break 5.582 8.621 2.541 3.388
Slope pre-break 0.842 15.06 0.054 4.921
Slope post-break −1.049 13.51 0.980 4.543

Bias and mean squared error (MSE) for LAD, Huber and �-estimators (2000 replications). Model:
Yt = 1 + Xt + I(t=n¿ �0) + Ut , with t = 1; : : : ; n, where Ut ∼ N(0; 1) and Xt ∼ F(X ), such
that F = N(0; 1); 12 exp(−|x|); t3; t5; N90 and N75. Bold indicates the lowest MSE. Values must be divided
by 103.
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Appendix A.

We shall consider the case of �6 �0, without loss of generality because of symmetry.
Limits are taken as n, the sample size, increases to in.nity. For notational convenience,
we establish that [n�] = k, [n�0] = k0 and

∑j
t=i will be denoted by

∑j
i . Also, two

alternative sample partitions will be used: the .rst, {Ij
t ; j = 1; 2}, already de.ned in

Section 2, and the second, {I ht ; h = 1; 2; 3}, with I 1t = I1
t , I 2t = I (k ¡ t6 k0) and

I 3t = I (t ¿ k0), such that I 2t + I 3t =I2
t . Finally, we establish eh =E[I ht ], for h=1; 2; 3,

and then, e1 = �, e2 = �0 − � and e3 = 1− �0. The subscript n of the estimators will
be omitted.

Proposition A.1. Let the function Vn(�) be de�ned by (4) and (5). Then, for j=1; 2,

9Vn(�)
9�j

=−sn(�)
1
n

n∑
t=1

(
Wn(�) 1

(
rt(�j)
sn(�)

)
+  2

(
rt(�j)
sn(�)

))
XtI

j
t (A.1)

and

92Vn(�)
9�j9�′

j
=

1
n

n∑
t=1

(
Wn(�) ˙ 1

(
rt(�j)
sn(�)

)
+ ˙ 2

(
rt(�j)
sn(�)

))
XtX ′

t I
j
t +Wjn(�); (A.2)

where

Wn(�) =D−1
n (�)

1
n

2∑
j=1

n∑
t=1

�̃2

(
rt(�j)
sn(�)

)
I

j
t ;

Wjn(�) = ṡjn(�);̃′jn(�) + ;jn(�)ṡ′jn(�) + ṡjn(�);̃n(�)ṡ′jn(�) (A.3)

with

;jn(�) =
1
n

n∑
t=1

<n

(
rt(�j)
sn(�)

)
XtI

j
t ; ;̃jn(�) =

1
n

n∑
t=1

<̃n

(
rt(�j)
sn(�)

)
XtI

j
t ;

Dn(�) =
1
n

2∑
j=1

n∑
t=1

 ̃ 1

(
rt(�j)
sn(�)

)
I

j
t ;
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;̃n(�) =
1
n

2∑
j=1

n∑
t=1

<̃n

(
rt(�j)
sn(�)

)
rt(�j)I

j
t

sn(�)

and

ṡjn(�) =
9sn(�)
9�j

=−1
n

n∑
t=1

 1

(
rt(�j)
sn(�)

)
XtI

j
t

Dn(�)
;

such that <n(z) =Wn(�)=−
1 (z)−=−

2 (z); <̃n(z) =Wn(�)=+
1 (z)−=−

2 (z) and=±
j (z) =

 j(z)± ˜̇ j(z).

Proof. Consider j = 1. Then, diLerentiating (5) we get

ṡ1n(�) =−

1

n

2∑
j=1

n∑
t=1

 ̃ 1

(
rt(�j)
sn(�)

)
I

j
t




−1

1
n

n∑
t=1

 1

(
rt(�1)
sn(�)

)
XtI

1
t

=
1
n

n∑
t=1

 1

(
rt(�1)
sn(�)

)
XtI

1
t

Dn(�)
(A.4)

and result (A.1) follows after some operations. Now, consider the second derivative,

92Vn(�)
9�19�′

1
=

1
n

k∑
t=1

(
Wn(�) ̇ 1

(
rt(�1)
sn(�)

)
+  ̇ 2

(
rt(�1)
sn(�)

))
XtX ′

t

− 1
n

k∑
t=1

(
Wn(�)=−

1

(
rt(�1)
sn(�)

)
+=−

2

(
rt(�1)
sn(�)

))
Xtṡ′1n(�)

− sn(�)
1
n

k∑
t=1

 1

(
rt(�1)
sn(�)

)
XtẆ ′

1n(�):

Noting that,

Ẇ 1n(�) =
9Wn(�)
9�1

=
1
n


 2∑

j=1

n∑
t=1

<̃n

(
rt(�j)
sn(�)

)
rt(�j)I

j
t

sn(�)


 ṡ1n(�)

Dn(�)

−1
n

k∑
t=1

<̃n

(
rt(�1)
sn(�)

)
Xt

sn(�)Dn(�)
;

we get (A.2) for j = 1. The result for j = 2 is obtained similarly.

Proof of Theorem 1. First, de.ne for a given k; �0
t (k) = (�0

1t
′(k); �0

2t
′(k))′, where �0

1t
(k)= �10I 1t and �0

2t(k)= �10I 2t + �20I 3t , such that {Ut}nt=1 = {rt(�0
1t(k)+ �0

2t(k))}nt=1. In
order to get more clarity in the exposition, the explicit dependence on k which have
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previous parameters will be omitted throughout, such that �0
jt(k) = �0

jt . Then, from (3)
and (4),

Vn(�0) =
s2n(�0)

n

n∑
t=1

�2

(
Ut

sn(�0)

)

=
s2n(�0)

n

(
k∑

t=1

�2

(
rt(�0

1t)
sn(�0)

)
+

n∑
t=k+1

�2

(
rt(�0

2t)
sn(�0)

))
;

by A1.1-(i). From (5), sn(�0), denoted by s0n from now on, is such that n−1∑n
t=1 �1(Ut=

s0n) = b and then,

1
n

k∑
t=1

�1

(
rt(�0

1t)
s0n

)
+

1
n

n∑
t=k+1

�1

(
rt(�0

2t)
s0n

)
= b; (A.5)

using the same arguments as above. Similarly,

Wn(�0) =

∑n
t=1 �̃2(Ut

s0n
)∑n

t=1  ̃ 1(Ut
s0n
)
=

∑n
t=1 �̃2(

rt(�0
1t+�0

2t)
s0n

)∑n
t=1  ̃ 1(

rt(�0
1t+�0

2t)
s0n

)

=

∑n
t=1 �̃2(

rt(�0
1t)

s0n
) +

∑n
t=k+1 �̃2(

rt(�0
2t)

s0n
)∑n

t=1  ̃ 1(
rt(�0

1t)
s0n

) +
∑n

t=k+1  ̃ 1(
rt(�0

2t)
s0n

)
; (A.6)

which will be also denoted by W 0
n . Therefore, by the mean value theorem (MVT) and

Proposition A.1, Vn(�0)−Vn(�) is given by

s0n
n

k∑
t=1

(�1 − �0
1t)

′ 0
n

(
rt(�0

1t)
s0n

)
Xt +

s0n
n

n∑
t=k+1

(�2 − �0
2t)

′ 0
n

(
rt(�0

2t)
s0n

)
Xt (A.7)

− 1
2n

k∑
t=1

(�1 − �0
1t)

′
(
 ̇ ∗

n

(
rt(�∗

1t)
s∗n

)
XtX ′

t +
n
k
W ∗

1n

)
(�1 − �0

1t) (A.8)

− 1
2n

n∑
t=k+1

(�2 − �0
2t)

′
(
 ̇ ∗

n

(
rt(�∗

2t)
s∗n

)
XtX ′

t +
n

n− k
W ∗

2n

)
(�2 − �0

2t); (A.9)

where, as a matter of notation, for any sequence of functions gn :�2 × � → R, we
denote g∗n = gn((�∗

t
′; �)′), with �∗

t = (�∗
1t
′; �∗

2t
′)′, such that �∗

jt = �0
jt + ?j(�j − �0

jt), for
j = 1; 2, and |?j|¡ 1. Moreover,  0

n (z) =W 0
n  1(z) +  2(z);  ̇ ∗

n(z) =W ∗
n  ̇ 1(z) +  ̇ 2(z)

and W ∗
jn = ṡ∗jn;̃

∗
jn
′ + ;∗jnṡ

∗
jn
′ + ṡ∗jn;̃

∗
n ṡ

∗
jn
′, for j = 1; 2. Note that {rt(�∗

1t + �∗
2t)}nt=1 = {Ut +

X ′
t (?1(�10 − �1)I 1t + ?2(�10 − �2)I 2t + ?2(�20 − �2)I 3t )}nt=1. Then, s∗n will be such that

n−1∑3
h=1

∑n
t=1 �1(s∗−1

n (Ut + -′hXt))I ht = b, denoted by sn(-) in what follows, with
-=(-′1; -

′
2; -

′
3)

′ ∈�3, such that -1=?1(�10−�1); -2=?2(�10−�2) and -3=?2(�20−�2)
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for this particular case. Similarly,

W ∗
n =

(
3∑

h=1

n∑
t=1

 ̃ 1

(
Ut + -′hXt

s∗n

)
I ht

)−1 3∑
h=1

n∑
t=1

�̃2

(
Ut + -′hXt

s∗n

)
I ht ; (A.10)

which will be represented by Wn(-) throughout.
Next, de.ne Mi

n(j; l; -) = n−1∑l
j+1  ̇ ∗

n((Ut + -′iXt)=sn(-))XtX ′
t , for i = 1; 2; 3, and

Nn(j; l) = n−1∑l
j+1  0

n (Ut=s0n)Xt . Then, given (A.7)–(A.9), Vn(�) − Vn(�0) will be
equal to

−1
2
(�10 − �1)′(M 1

n (0; k; -) +W1n(-))(�10 − �1)− (�10 − �1)′s0nNn(0; k)

(A.11)

−1
2
(�20 − �2)′(M 3

n (k0; n; -) +W3n(-))(�20 − �2)− (�20 − �2)′s0nNn(k0; n)

(A.12)

−2
(
1
2
�′ +

1
2
(�20 − �2)′

)
(M 2

n (k; k0; -) +W2n(-))
(
1
2
�+

1
2
(�20 − �2)

)
(A.13)

− (�′ + (�20 − �2)′)s0nNn(k; k0); (A.14)

considering that (�10 − �2) = � + (�20 − �2) and that the components of Whn(-), for
h= 1; 2; 3 are the following:

;hn(-) =
1
n

n∑
t=1

<n

(
Ut + -′hXt

sn(-)

)
XtIht ; ;̃hn(-) =

1
n

n∑
t=1

<̃n

(
Ut + -′hXt

sn(-)

)
XtIht ;

(A.15)

;n(-) =
1
n

3∑
h=1

n∑
t=1

<̃n

(
Ut + -′hXt

sn(-)

)(
Ut + -′hXt

sn(-)

)
I ht ; (A.16)

ṡhn(-) =−1
n

n∑
t=1

 1

(
Ut + -′hXt

sn(-)

)
XtIht
Dn(-)

;

Dn(-) =
1
n

3∑
h=1

n∑
t=1

 ̃ 1

(
Ut + -′hXt

sn(-)

)
I ht :

(A.17)

The rest of the proof is similar to that of Fiteni (2002, Theorem 2). It su+ces to
prove that the corresponding Lemmas A.1–A.6 by Fiteni (2002) follows
for the present estimation method, de.ned by an objective function which has an
asymptotic linear approximation given by (A.11)–(A.14). This is obtained below, by
Proposition A.2 (which prove the corresponding Lemma A.1), Proposition A.3 (prov-
ing Lemma A.2), Proposition A.4 (proving Lemma A.3) and Proposition A.5 (proving
Lemmas A.4–A.6).
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Proposition A.2. Under A1 and A2 (except A2.9), is holds that, (i) sup�∈�;-∈�

‖n−1∑[n�]
t=1 /̇it(-; (0)−�Mi(-)‖ p→0, where Mi(-) is de�ned by A2.7, (ii) sup-∈�3‖Wn(-)

−W (-)‖ p→0 and (iii) sup-∈�3‖Whn(-) − Wh(-)‖ p→0, for i = 1; 2 and h = 1; 2; 3,

with W (-) = (
∑3

h=1 ehH Y 1
(-h; s(-)))−1∑3

h=1 ehH Y�2 (-h; s(-)) and Wh(-) = ṡj(-);̃′j(-) +
;j(-)ṡ′j(-) + ṡj(-);(-)ṡ′j(-), such that

ṡj(-) =−ejHX
 1
(-j; s(-))=D(-); D(-) =

3∑
h=1

ehHX
 ̃ 1
(-h; s(-));

;j(-) = ej(W (-)HX
 1− ˜̇ 1

(-j; s(-))− HX
 2− ˜̇ 2

(-j; s(-)));

;̃j(-) = ej(W (-)HX
 1+

˜̇ 1
(-j; s(-))− HX

 2− ˜̇ 2
(-j; s(-)));

;(-) =
3∑

h=1

eh(W (-)HX

 ̃ 1−
˜̃̇
 1

(-h; s(-))− HX

 ̃ 2−
˜̃̇
 2

(-h; s(-)));

where HX
 k± ˜̇ k

(-j; s(-))=HX
 ̇ k
(-j; s(-))±HX

˜̇ k
(-j; s(-)); HX

 ̃ k− ˜̃̇
 k

(-j; s(-))=HX
 ̃ k
(-j; s(-))−

HX
˜̃̇
 k

(-j; s(-)), de�ned by A2.8 for k = 1; 2 and j = 1; 2; 3.

Proof. Result (i) is immediate applying the triangle inequality, Lemma A.3 and As-
sumption A2.7. Lemmas A.2 and A.5 and the Slutzky Theorem establish results (ii)
and (iii).

Proposition A.3. Let �3
0 ⊂ �3 be a compact subset of R3p, containing neighborhoods

of -0, such that s(-0)=(0. Consider a sequence {-n; n¿ 1}∈�0, with -n →n↑∞ -0.
Then, under A1 and A2 (except A2.9), it holds that (i) sup�∈�‖n−1∑[n�]

t=1 /̇jt(-in; sn
(-n))− �Mj(-0)‖ p→ 0, where Mj(·) is de�ned by A2.7, (ii) ‖Wn(-n)−W (-0)‖ p→0 and
(iii) ‖Whn(-n)−Wh(-0)‖ p→ 0, for i; h= 1; 2; 3 and j = 1; 2.

Proof. Result (i) follows by the triangle inequality, Lemma A.7 an Assumption A2.7.
Results (ii) and (iii) are obtained using Lemma A.7 and the Slutzky Theorem.

Proposition A.4. Let {ak}k¿1 be a sequence of decreasing positive constants and
Sj
k =

∑k
t=1  j(Ut=(0)Xt , for j = 1; 2. Then, under A1 and A2 (except A1.3, A2.5–

A2.8), there exists a K ¡∞ such that, for every *¿ 0 and m¿ 0 it holds that
Pr{maxm6k6n} sup�∈Rp;‖�‖=1�k |�′Sk |¿*}6 *−2K(ma2m +

∑n
j=m+1 a2j ).

Proof. By A2.4, the result follows from Lemma A.3-(3.2) by Fiteni (2002).

Proposition A.5. Consider {/0t =W0/1t + /2t ; t6 n} and vn(�) = n−1=2∑[n�]
t=1 /0t , such

that {vn(�); n¿ 1} belongs to the bounded cadlag functions space in Rp and is
de�ned on � ⊂ [0; 1]. Under A1 and A2 (except A1.3, A2.5–A2.8), vn(�) ⇒ S1=2B(�),
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where “⇒” denotes weak convergence in the D([0; 1]) space under the Skorokhod
metric and B(�) is a p-vector of independent Brownian process.

Proof. By A2.4, {/0t } is L2-NED of size −1=2. Lemma 4 by Fiteni (2002) establishes
the result.

Proposition A.6. Under A1 and A2, sup�‖n−1=2∑[n�]
t=1  j(Ut=s0n)Xt − n−1=2∑[n�]

t=1  j(Ut=

(0)Xt‖ p→0 holds.

Proof. The results follows as in Corollary 2 by Fiteni (2002).

Proof of Theorem 2. The parameter estimator (2) can also be de.ned as �̂n =
argmin�∈�2×� (Vn(�) − Vn(�0)). The limiting distribution of the estimators will be
obtained analyzing the local behavior of the objective function on a compact set
determined by Theorem A.1. Therefore, we reparametrize the objective function in
(3) and (4), such that Bn(v) = Vn(�0 + (n−1=2v′1; n

−1=2v′2; n
−1P�v3)′) − Vn(�0), for

v=(v′1; v
′
2; v3)

′ ∈VN ⊂ Rp×Rp×R, with VN ={v: ‖vj‖¡N; j=1; 2; 3}, a compact set
de.ned for an arbitrary constant N ¿ 0. P� =O(‖�‖−2), with P�n =O(‖�n‖−2) for the
decreasing case and P�=1 for a constant �. The weak convergence result follows taking
into account that

√
n(�̂jn − �j0) = v̂j, for j=1 and 2, and n(�̂n − �0) =P�v̂3, such that

(v̂′1; v̂
′
2; v̂3)

′ = argminv∈VN
Bn(v), de.ned on a compact set for N ¡∞. Again, we only

consider the case of v3 ¡ 0, without loss of generality because of symmetry. For nota-
tional convenience [v3P�] will be denoted by v3P�. First, observe that, by Lemma A.6,
s0n →p (0 and sn(-n) →p (0 for -n=(?1v′1=

√
n; ?2(v′2=

√
n+�′); ?3v′2=

√
n)′ → (0′p; ?2�

′; 0′p)
as n → ∞. Similarly, W 0

n →p W0 by the Slutzky theorem and Wn(-n) →p W0 by
Proposition A.3. Then, considering (23)–(26), we obtain that

nBn(v) =−v′1
s0n√
n

k0∑
t=1

/0tn − v′2
s0n√
n

n∑
t=k0+1

/0tn + v′1
s0n√
n

k0∑
t=k0+v3P�+1

/0tn (A.18)

− �′s0n
k0∑

t=k0+v3P�+1

/0tn − v′2
s0n√
n

k0∑
t=k0+v3P�+1

/0tn (A.19)

− 1
2v

′
1�0Mv1 − 1

2v
′
2(1− �0)Mv2 − 1

2�
′M (�)�P�v3 + op(1); (A.20)

using again Proposition A.3 and noting that /0tn=W 0
n /1t(0p; s

0
n)+/2t(0p; s0n), for each t,

and n−1P� =O(n−1‖�‖−2), an o(1) term in both cases of �, .xed and decreasing with
n. Next, from Propositions A.5 and A.6, we have the following convergence results:

v′1
s0n√
n

k0∑
t=1

/0tn ⇒ v′1S
1=2B(�0); v′2

s0n√
n

n∑
t=k0+1

/0tn ⇒ v′2S
1=2B(1− �0)
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and

v′j
s0n√
n

k0∑
t=k0+v3P�+1

/0tn = op(1);

for j=1; 2, with S de.ned by A2.9. From here the result follows as in Theorem 2 by
Fiteni (2002) using Propositions A.3, A.5 and A.6.

Proof of Corollary 1. Immediate from Theorem 2.

A.1. Lemmata

Lemma A.1. Let � be a compact set of Rp and [h1; h2] a closed interval with
0¡h1; h2 ¡∞. Under A1.1, A2.1–A2.3 and A2.8, sup�∈� sup-i∈�;s∈[h1 ;h2]|n−1∑[n�]

t=1

�1(s−1(Ut + -′iXt))− �H�1 (-i; s)|a:s:→0 holds.

Proof. By the triangular inequality, the left-hand side of above expression is upper
bounded by

sup
�∈�

sup
-i∈�;s∈[h1 ;h2]

∣∣∣∣∣1n
[n�]∑
t=1

(
�1

(
Ut + -′iXt

s

)
− E

[
�1

(
Ut + -′iXt

s

)])∣∣∣∣∣ (A.21)

+ sup
�∈�

sup
-i∈�;s∈[h1 ;h2]

∣∣∣∣∣1n
[n�]∑
t=1

E
[
�1

(
Ut + -′iXt

s

)]
− �H�1 (-i; s)

∣∣∣∣∣ : (A.22)

By A2.8, (34)→ 0. By A2.1–A2.3 and A2.8, (33)
p→0 follows from Lemma A3 of

Andrews (1993).

Lemma A.2. Under A1.1–A1.2, A2.1–A2.3 and A2.8, it holds that, sup-∈�3 |sn(-; �)−
s(-; �)|a:s:→0, where, for -= (-′1; -

′
2; -

′
3)

′ ∈�3; sn(-; �) and s(-; �) are such that, Bn(-; �;
sn(-; �)) = b and B(-; �; s(-; �)) = b, respectively, with Bn(c; �; s) = n−1∑3

h=1

∑n
t=1

�1(s−1(Ut+c′hXt))I ht and B(c; �; s)=
∑3

h=1 ehH�1 (ch; s), for c=(c′1; c
′
2; c

′
3)

′ ∈R3p; s¿ 0;
�∈� ⊂ (0; 1) and H�1 (ch; s) de�ned by A2.8.

Proof. For each �, de.ne h1=inf -∈�3 s(-; �) and h2=sup-∈�3 s(-; �), such that h1 ¿ 0
and h2 ¡∞. From Lemma 1, it follows that

sup
�∈�

sup
-∈�3 ; s∈[h1 ;h2]

|Bn(-; �; s)− B(-; �; s)|a:s:→ 0: (A.23)

Let * be such that 06 *6 h1=2 and de.ne, for each �; g1(-; �) = B(-; �; s(-; �) +
*) and g2(-) = B(-; �; s(-; �) − *). Then, g1(-)¡b¡g2(-). Given g1(·) and g2(·),
continuous functions in -, we obtain that ;1 = sup-∈�3 g1(-)¡b¡ inf -∈�3 g2(-) = ;2.



I. Fiteni / Journal of Econometrics 119 (2004) 19–44 41

Let ?=min{b− ;1; ;2 − b}. If (A.23) holds, then there exists a n0 such that ∀n¿ n0,

sup
�∈�

sup
-∈�3 ; s∈[h1=2;2h2]

|Bn(-; �; s)− B(-; �; s)|¡ ?
2
: (A.24)

Next, observe that, for each �∈�,
(a) Given that s(-; �)−*¿ h1−h1=2=h1=2, then s(-; �)−*∈ [h1=2; 2h2], and therefore,

by (A.24) sup-∈�3 |Bn(-; �; s(-; �)− *)−B(-; �; s(-; �)− *)|6 ?=2, which also holds for
the in.mum. Because inf |A−B|¿ |inf (A)− sup(B)|; Ssup 16 inf -∈�3 Bn(-; �; s(-; �)−
*)6 Ssup 2, where Ssup 1 = sup-∈�3 B(-; �; s(-; �) − *) − ?=2 and Ssup 2 = sup-∈�3

B(-; �; s(-; �) − *) + ?=2. Hence, we obtain that Sinf 16 inf -∈�3Bn(-; �; s(-; �) − *),
where Sinf 1 is de.ned as Ssup 1, with the in.mum instead of the supremum. However,
given that Sinf 1 = ;2− ?=2¿ b+ ?− ?=2= b+ ?=2, it holds that b+ ?=26 inf -∈�3Bn(-;
�; s(-; �)− *).
(b) Given that s(-; �)+*6 h2+h1=26 2h2, then s(-; �)+*∈ [h1=2; 2h2] and therefore,

by (A.24) sup-∈�3 |Bn(-; �; s(-; �)+ *)−B(-; �; s(-; �)+ *)|6 ?=2. Noting that sup|A−
B|¿ |sup(A−B)|¿ |sup(A)−sup(B)|; S ′

sup 16 sup-∈�3 Bn(-; �; s(-; �)+*)6 S ′
sup 2, with

S ′
sup 1 = sup-∈�3 B(-; �; s(-; �) + *)− ?=2 and S ′

sup 2 = sup-∈�3B(-; �; s(-; �) + *) + ?=2.
Hence, S ′

sup 2 = ;1 + ?=26 b− ?+ ?=2 = b− ?=2.
As a consequence of (a) and (b), we obtain that, for *¿ 0, there exists a n0 such

that ∀n¿ n0,

sup
-∈�3

Bn(-; �; s(-; �) + *)6 b− ?
2
6 b6 b+

?
2
6 inf

-∈�3
Bn(-; �; s(-; �)− *)

and, noting that b = Bn(-; �; sn(-; �)), we conclude the proof of this lemma because
∀*¿ 0, there will exist a n0 such that ∀n¿ n0; s(-; �) − *6 sn(-; �)6 s(-; �) + *,
uniformly in -∈�3.

For notational convenience, throughout this Lemmata, sn(-; �) and s(-; �) will be
denoted by sn(-) and s(-), respectively.

Lemma A.3. Suppose that: (a) Assumption A2.1–A2.3 hold; (b) f(z; -; s) is an
Rq-valued function on Z × � × [h1; h2]; 0¡h1; h2 ¡∞, that is continuous in z for
all (-; s)∈� × [h1; h2] and is continuous in - uniformly over (z; -; s)∈C × � × R+

for all compact sets C ⊂ Z ; (c) For some *¿ 0, it holds that limn→∞ n−1 ∑n
1

E[sup-∈�;s∈[h1;h2]|f(Zt ; -; s)|1+*]¡∞. Then,

sup
�∈� -∈�;

sup
s∈[h1 ;h2]

∣∣∣∣∣
∣∣∣∣∣1n

[n�]∑
t=1

(f(Zt ; -; s)− E[f(Zt ; -; s)])

∣∣∣∣∣
∣∣∣∣∣ p→0:

Proof. From Lemma A3 by Andrews (1993).

Lemma A.4. Suppose that assumptions of Lemma A.2 and A.3 hold. Let �0 ⊂ �
be a compact subset of Rp, containing neighborhoods of -0 and consider a sequence
{-n; n¿ 1}∈�0 such that -n →n↑∞ -0. Then, sup�∈� sups∈[h1 ;h2] ‖n−1∑[n�]

t=1 (f(Zt ; -n;
s)− E[f(Zt ; -0; s)])‖ →p 0.
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proof. Observe that, by the triangle inequality the left-hand side is upper bounded by

sup
�∈�

sup
s∈[h1 ;h2]

∣∣∣∣∣
∣∣∣∣∣1n

[n�]∑
t=1

(f(Zt ; -n; s)Ef(Zt ; -n; s))

∣∣∣∣∣
∣∣∣∣∣

+sup
�∈�

sup
s∈[h1 ;h2]

∣∣∣∣∣
∣∣∣∣∣1n

[n�]∑
t=1

(Ef(Zt ; -n; s)− Ef(Zt ; -0; s))

∣∣∣∣∣
∣∣∣∣∣= (I) + (II):

(I) is upper bounded by sup�∈�; sups∈[h1 ;h2];-∈�0
‖n−1∑[n�]

t=1 (f(Zt ; -; s) − Ef(Zt ; -; s))‖
p→0, from Lemma A3 by Andrews (1993). To study (II), note that: (i) by the tightness
condition of {Fn; n¿ 1}, we obtain that n−1∑n

t=1 P(Zt �∈ Cj) → 0 as j → ∞, for
some sequence of compact sets {Cj; j¿ 1} in Z , and (ii) ∀j¿ 1,

sup
n¿1

sup
�∈�

sup
s∈[h1 ;h2]

∣∣∣∣∣ 1n
[n�]∑
t=1

E[f(Zt ; -n; s)− f(Zt ; -0; s)]I (Zt ∈Cj)

∣∣∣∣∣
∣∣∣∣∣

6 sup
z∈Cj

sup
s∈[h1h2]

‖f(Zt ; -n; s)− f(Zt ; -0; s)‖ → 0;

for -n → -0, for function /̇(·) de.ned in (z; -)∈Z ×�, continuous by A1.1, and thus,
uniformly continuous in the compact set Cj. (iii) sup�∈�;s∈[h1 ;h2]‖n−1∑[n�]

t=1 E[f(Zt ; -n;
s)− f(Zt ; -0; s)]‖ converges to zero as -n → -0 by results (i) and (ii).

Lemma A.5. Suppose that Assumptions of Lemma A.4 holds and for -=(-′1; -
′
2; -

′
3)

′ ∈
�3, let sn(-) and s(-) be de�ned by Lemma A.2. Then, for i = 1; 2; 3,

sup
�∈�

sup
-∈�

∣∣∣∣∣
∣∣∣∣∣1n

[n�]∑
t=1

(f(Zt ; -i; sn(-))− E[f(Zt ; -i; s(-))])

∣∣∣∣∣
∣∣∣∣∣ p→0:

Proof. The proof is similar to that of Lemma A.4. The result follows by Lemmas A.2
and A.3.

Lemma A.6. Let �3
0 ⊂ �3 be a compact subset of R3p, containing neighborhoods

of -0. Consider a sequence {-n; n¿ 1}∈�3
0 such that -n →n↑∞ -0. Then, under

A1.1–A1.2, A2.1–A2.3 and A2.8, it holds that ‖sn(-n)− s(-0)‖ p→0.

Proof. By A2.9 and Lemma A.4, sup�∈� sups∈[h1 ;h2]|Bn(-n; �; s)−B(-0; �; s)| p→ 0, which
proves the result by Lemma A.2.

Lemma A.7. Suppose that assumptions of Lemma A.4 hold. Then, for i = 1; 2; 3,

sup
�∈�

∣∣∣∣∣
∣∣∣∣∣1n

[n�]∑
t=1

(f(Zt ; -in; sn(-n))− E[f(Zt ; -i0; s(-0))])

∣∣∣∣∣
∣∣∣∣∣ p→ 0:

Proof. From Lemmas A.6 and A.3 by Andrews (1993), the result follows as in
Lemma A.4.
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