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Summary

The online detection of a monotonic trend in a time series with a time-varying mean is an important
task in medical applications like intensive care monitoring, that is rendered difficult by autocorrelations.
Statistical control charts designed for industrial processes are not adequate as they typically rely on a
fixed target value, and many detection rules assume a trend to be linear or neglect autocorrelations. We
report our experience with the online detection of slow monotonic trends. Our approach is based on a
moving time window, and time-varying autocorrelations are estimated online using parametric assump-
tions. The performance of versions of this approach is investigated in a simulation study. We find that
shrinkage estimation of the time-varying mean improves the results.

Key words: Statistical process control; Online monitoring; Change-point detection; Autocor-
relation; Shrinkage estimation.

1 Introduction

In many modern applications of statistical data analysis subsequently measured observations need to
be analyzed online. The fast and reliable detection of patterns of change in e.g. medical or environ-
mental time series is important since such patterns point at some change in the data generating me-
chanism. In intensive care for instance, early detection of monotonic trends in physiological time
series allows the physician to take some therapeutical intervention before a critical threshold is ex-
ceeded.

Many rules for trend detection rely on independent observations, although many time series exhibit
strong, possibly time-varying autocorrelations (Endresen and Hill, 1977). Positive autocorrelations
cause monotonic sequences in the data similar to deterministic trends. Vice versa, deterministic trends
do not only affect the process mean, but they also strongly influence sample autocorrelations, which
are needed to standardize test statistics for trend detection. In retrospective analysis often a simple
linear trend is fitted for detrending the data and then the autocorrelations are approximated by an
autoregressive (AR) model for the residuals (Cochrane and Orcutt, 1949, Bloomfield and Nychka,
1992). AR models constitute a quite flexible model class describing a wide variety of autocorrelation
functions and simple algorithms for model fitting exist.

For online trend detection, control charts based on exponential smoothing are frequently recom-
mended (Trigg, 1964; Cembrowski et al., 1975; Endresen and Hill, 1977; Montgomery and Mastrange-
lo, 1991; Schack and Grieszbach, 1994). However, for any choice of the weighting parameter there
are scenarios where the resulting EWMA rule shows poor performance. Monte Carlo comparisons of
EWMA and CUSUM charts reveal that none of them has overall optimal performance (Chang and
Fricker, 1999). Moreover, most of these charts are designed for industrial processes and assume statio-
narity in the steady state, i.e. unique model parameters for the whole process, as well as the existence
of a fixed target value. In applications such as monitoring pollution in environmental sciences or
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controlling vital signs in intensive care stationarity can often not be assumed, and it is not possible to
specify a target value in advance because of natural fluctuations within the data generating mechanism
like seasonality or biorhythms (Endresen and Hill, 1977; H�gel, 2000; Schmid and Steland, 2000;
Gather et al., 2001; Gather, Imhoff and Fried, 2002).

We adapt Brillinger’s (1989) approach for retrospective detection of a monotonic trend to the online-
monitoring context by analyzing the data in a moving time window. Moving window techniques are
useful to estimate time-varying model parameters and to construct adaptive control limits assuming statio-
narity to hold only locally (Dahlhaus, 1997). W.r.t. the length of the time window we must look for a
compromise since a long time window results in a small variance for the expense of a large bias. Determi-
nistic and stochastic variability can hardly be separated based on a moderate amount of data without any
assumptions, particularly if the parameters vary in time. We restrict to the case that the noise can be
approximated by an AR model as it is frequently met in practice (Gerodette, 1987; Bloomfield and Nych-
ka, 1992). Several strategies based on linear modelling are compared for automatic detrending of the data
when estimating the AR parameters, which are needed to standardize the nonparametric test statistic.

We proceed as follows. Section 2 describes the basic underlying model and the proposed procedure.
In Section 3 the reliability of this procedure and of the parameter estimators is checked via simula-
tions. In Section 4 the procedure is applied to physiological data observed in intensive care, before we
finish with a discussion of the results.

2 Automatic Trend Detection

We assume that at each time point t 2 Z the measurement Yt of a deterministic signal mt is disturbed
by additive autocorrelated random noise Et,

Yt ¼ mt þ Et ; t 2 Z :

In retrospective applications often a linear trend mt ¼ b1t þ b0 is assumed (Cochrane and Orcutt, 1949;
Bloomfield and Nychka, 1992; Sun and Pantula, 1999) and it is tested whether an estimate b̂b1 of b1 is
significantly different from zero. However, this means to specify a fixed form of the mean. Trends which
are not linear may not be detected this way. This problem becomes even more serious in online monitor-
ing since a procedure needs to function automatically and reliably in a wide variety of situations.

Abelson and Tukey (1963) suggest using a weighted sum
PN
t¼1

ctYt to test for a monotonic increase

of mt during a time interval t ¼ 1; . . . ;N, i.e. m1 � m2 � . . . � mN with mt < mtþ1 for at least one

t 2 f1; . . . ;N � 1g. They restrict the weights c1; . . . ; cN to fulfill �cc ¼
PN
t¼1

ct=N ¼ 0, such that
P

ctmt

also equals zero in case of a constant mean m1 ¼ m2 ¼ . . . ¼ mN . Then the weights are determined to
solve

max
c

min
m

j
P

ðct � �ccÞ ðmt � �mmÞj2P
ðct � �ccÞ2

P
ðmt � �mmÞ2

;

where �mm ¼
P

mt=N, i.e. to have optimal worst case discriminatory power for an extremely unfavor-
able trend. This results in

ct ¼ ðt � 1Þ 1� t � 1
N

� �� �1=2
� t 1� t

N

� �h i1=2

and the corresponding worst case is a single step change. The hypothesis of a constant mean should
be rejected in favor of an increasing (decreasing) mean if the standardized test statistic

T ¼

PN
t¼1

ctYt

t̂t
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takes large positive (negative) values, where t̂t is an estimate of the standard deviation t of the
weighted sum in the numerator. Abelson and Tukey (1963) estimate t and calculate critical values for
T under the assumption that the noise process consists of independent identically distributed variables.
Brillinger (1989) generalizes this approach to stationary noise processes applying a nonparametric
estimator of t and large sample asymptotics. However, Monte Carlo experiments show that his rule is
too sensitive even in retrospective applications to long time series (Woodward, Bottone and Gray,
1997).

In online monitoring of a locally stationary process where both the mean and the autocorrelations
may vary slowly in time we may be interested whether a monotonic trend has occurred during the last
n observations. The choice of n will often be guided by the application. Large sample asymptotics like
those used by Brillinger in his nonparametric approach are not useful if the window width n is moder-
ate only. We use n ¼ 60 observations corresponding to one hour of measurements. In order to separate
deterministic and stochastic variability we impose a parametric model for the noise assuming that it
can be approximated within each time window by an AR(p) process

Et ¼ j1;NEt�1 þ . . .þ jp;NEt�p þ Ut ; t ¼ 1; . . . ; n;

where we denote the observed N � n values by yn�Nþ1; . . . ; y0; y1; . . . ; yn for notational simplicity,
i.e. y1; . . . ; yn correspond to the current time window. Here, j1;N ; . . . ;jp;N are unknown autoregres-
sive coefficients and fUt; t 2 Zg denotes an unobservable white noise process with uncorrelated,
identically distributed disturbances having zero mean and unknown variance s2N . Autoregressive
models are commonly used in practice as they allow to approximate a broad variety of autocorrela-
tion functions, and sometimes they can be justified from background knowledge. We note that all
parameters may vary in time, i.e. depend on the current time window, and suppress indices repre-
senting the time window further on for simplicity. We do not address the problem of choosing the
fixed order p from the incoming data as this is difficult in view of time-varying model parameters
and possible trends. In many applications p can be selected by analyzing historic data representing
a steady state.

In order to standardize the weighted sum
Pn
t¼1

ctYt we need to estimate its variance

t2 ¼ Var
Pn
t¼1

ctYt

� �
¼

Pn
t¼1

Pn
s¼1

ctcsgðt � sÞ : ð1Þ

Hence, we need reliable estimates of the autocovariances gð0Þ; gð1Þ; . . . ; gðn� 1Þ at time lags
0; . . . ; n� 1, or, equivalently, of the AR parameters. A deterministic trend seriously affects the ordin-
ary sample autocovariances as these decay to zero very slowly, irrespective of the true values. Preli-
minary experiments told us that nonparametric detrending by a running mean used by Brillinger
(1989) can hardly be done if the window width n is moderate since the number of observations
included in the running mean must be sufficiently large to reduce the noise, but it must be small in
comparison to n. Instead we use a parametric approach for detrending the data in a preliminary step.
The basic idea is to approximate a deterministic trend within the current time window by a linear
model mt ¼ f ðtÞ0 b and to estimate the autocovariances from the residuals. In retrospective applications
often a simple linear trend mt ¼ b0 þ b1t is assumed. In the following we investigate some modifica-
tions of this idea in an automatic online application.

Fitting a simple linear trend for detrending is not completely satisfactory as we want reliable esti-
mates for all time windows, also for those where only some of the observations are influenced by a
trend, e.g. its beginning. For more flexibility we add further trend functions in the regression getting
f ðtÞ ¼ ð f0ðtÞ; . . . ; fkðtÞÞ0 with k þ 1 � 2. The functions fiðtÞ could be chosen as low order polyno-
mials, but then extrapolation of a trend is difficult because of the strong curvature of polynomials of
order higher than one. Instead we use ramp functions

gsðtÞ ¼
0; t < s

t � s; t � s

�
s 2 f0; . . . ; n� 1g ;
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describing a linear trend starting at time point s. Then mt ¼ fðtÞ0 b is a piecewise linear function. For
n ¼ 60 we take k ¼ 3 with f1 ¼ g0, f2 ¼ g20, f3 ¼ g40, and f0 being constant equal to 1. This allows a
rough approximation of any trend. We estimate b using

b̂bV ¼ X0V�1X
� 	�1

X0V�1y ;

where

X ¼

f0ð1Þ . . . fkð1Þ
f0ð2Þ . . . fkð2Þ
..
. ..

.

f0ðnÞ . . . fkðnÞ

0
BBB@

1
CCCA

and y ¼ ðy1; . . . ; ynÞ0. For V ¼ I, the ðn� nÞ-identity matrix, we get the ordinary least squares esti-
mate ~bbk ¼ b̂bI, while for V ¼ S ¼ ðgði� jÞÞ1�i; j�n, the ðn� nÞ covariance matrix of E1; . . . ;En, we get
the generalized least squares estimate. While the latter is not feasible as S is unknown, the former is
based on independence. For any reasonable choice of V subtracting fðtÞ0 b̂bV from yt reduces the im-
pact of a trend and we obtain estimates ĝgVðhÞ, h ¼ 0; . . . ; n� 1, of the autocovariances from the
residuals ẐZt ¼ Yt � fðtÞ0 b̂bV , t ¼ 1; . . . ; n.

In the following we restrict attention to AR(1) models, which are frequently used in practice, parti-
cularly for short time series. Some simplifications are possible then. We call the single autoregressive
parameter j. Since gð0Þ ¼ s2=ð1� j2Þ and gðhÞ ¼ jhgð0Þ; h � 1, the autocovariances can be esti-
mated by inserting estimates of s2 and j into these equations. If the model mt ¼ f ðtÞ0 b holds exactly
we get consistent estimates of j and s using

~jjk ¼

Pn
t¼2

ðyt � fðtÞ0 ~bbkÞ ðyt�1 � f ðt � 1Þ0 ~bbkÞ

Pn�1

t¼1
ðyt � f ðtÞ0 ~bbkÞ

2
; ð2Þ

~ss2k ¼
1

n� k � 1

Pn
t¼2

½ðyt � f ðtÞ0 ~bbkÞ � ~jjkðyt�1 � fðt � 1Þ0 ~bbkÞ�
2 ð3Þ

(Nickerson and Basawa, 1992). We denote the number of regressors by subscripts here. In the denomi-
nator of ~jjk we sum up to t ¼ n� 1 instead of t ¼ n for bias reduction. Since ~jjk may turn out to be
larger than one we restrict it to be at most 0.99. In order to improve these estimates we can use a
two-step approach. First we estimate b by ordinary least squares to get an estimate ~SS of S inserting
~jjk and ~ssk. Then we calculate a feasible generalized least squares estimate b̂bk ¼ b̂b~SS . Inserting b̂bk into
(2) and (3) instead of ~bbk we get two-step weighted least squares estimates ĵjk and ŝsk.

A higher dimensional parameterization mt ¼ f ðtÞ0 b, b ¼ ðb0; . . . ; bkÞ
0, provides flexibility for time

windows with non-linear trend. In a steady state, however, it may result in instability of the mean
estimates as we fit an overparameterized model then. A possibility to overcome this problem is data-
driven shrinkage of the mean estimates in the full model towards the estimates in a reduced model
corresponding to a steady state. Particularly, we consider a convex combination b̂bS of b̂bk and
b̂b0 ¼ ðm̂m; 0; . . . ; 0Þ0 corresponding to fitting a ðk þ 1Þ-dimensional trend function and a constant mean
respectively to the current time window,

b̂bS ¼ b̂bk �
cŝs2k

ðb̂bk � b̂b0Þ
0 X0~SS�1X
� 	

ðb̂bk � b̂b0Þ
ðb̂bk � b̂b0Þ : ð4Þ

The amount of shrinkage is controlled by a factor which is just c times the inverse of a c2-statistic
which compares the fit of the reduced model to the fit of the full model. We restrict this factor not to
exceed one. Shrinkage estimators ĵjS and ŝsS can be obtained by inserting b̂bS into formulas (2) and (3).
Shrinkage estimation of the parameters of a regression model with correlated errors has been treated
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by Nickerson and Basawa (1992) and by Chaturvedi and Wan (2000). The former authors show that
the shrinkage estimator of the mean has smaller expected weighted mean square error than the
weighted least squares estimator if the covariance matrix is known up to a scale parameter, n � k and
0 � c � 2ðk � 1Þ ðn� kÞ=ðn� k þ 3Þ. For unknown covariances, they prove that shrinkage estimation
of the mean has higher asymptotic efficiency than generalized least squares if the true mean is ap-
proximately constant. In the latter paper it is shown that the shrinkage estimator of the mean domi-
nates feasible generalized least squares in case of known variances and unknown correlations. Thus,
shrinkage may well improve the estimation of the mean; see Sargan (2001) for a discussion of this
topic. We set c ¼ 4, that is at the upper end of the interval suggested by Nickerson and Basawa since
we have k ¼ 3.

We are not interested in the mean estimates themselves but we use them to detrend the data and to
estimate the AR parameters. Therefore we check in the next section whether these improved regres-
sion estimates also result in better estimates of the autocovariances. We compare the performance of
ð~jj1; ~ss

2
1Þ, ð~jj3; ~ss

2
3Þ, ðĵj3; ŝs

2
3Þ and ðĵjS; ŝs

2
SÞ, where the index denotes the number of regressors in the trend

function, while S denotes shrinkage. The first estimator is computationally cheap as we fit a simple
linear trend, while the second needs fitting a trend with four parameters and the third is a two-step
estimator, that needs iteration. Shrinkage estimation only affords additional evaluation of equation (4)
once in each step.

There are further possible variations of the approach suggested above. The weighted sum test statis-
tic could be applied to the residuals derived from fitting an AR model to the data instead of the
untransformed observations. Then we could use the standardization for independent observations and
would not need to adjust the control limits for the autocorrelations. However, experience shows that it
is often better to use the original observations than residuals from a possibly misspecified time series
model (see Lu and Reynolds, 1999, and the references cited therein). Another approach would be to
use isotonic regression (Wu, Woodroofe and Mentz, 2001) for detrending if it was known in advance
that all changes of the mean are monotonic. However, this restriction may be unduly severe if the
mean shows non-monotonic behavior in the steady state. Alternatively, a referee suggested using local
polynomials instead of imposing a parametric form for detrending. Indeed, Einbeck and Kauermann
(2003) apply local polynomials for online trend detection and they shrink a local linear to a local
constant fit. However, their approach is distinct from ours in several aspects: Firstly, their procedure is
based on the comparison of two level estimates, while ours estimates the mean only for estimation of
the autocorrelations and standardizing the test statistic, which uses optimal weights. Secondly, they do
not consider time-varying autocorrelations. Thirdly, they control the amount of shrinkage by a local
slope estimate and not by comparing the residuals, which we regard as preferable. Finally, they use
longer time windows in their nonparametric procedure than we do imposing parametric assumptions.

3 A Simulation Study

In the following we perform Monte Carlo experiments to check the reliability of the parameter estima-
tors, to derive critical values and to check the power of the proposed procedure.

3.1 The simulation design

We simulate time series Y1; . . . ; Y300 of length N ¼ 300 corresponding to five hours of measurement
from a process

Yt ¼ mt þ Et ;

Et ¼ jEt�1 þ Ut

sampled every minute, where Ut denotes Nð0; 1Þ-distributed disturbances. We consider
j 2 f0:0; 0:1; . . . ; 0:9g and several mean functions mt. The latter either include no trend, a linear trend
m
ð1Þ
t ¼ aðt � 100Þ 1100< t< 200 þ 100a1199< t starting at time point t ¼ 101 with a duration of 100 time
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points and slope a 2 f0; 0:05; 0:1g, or a non-linear trend m
ð2Þ
t having the shape of the ascending part

of the sinus-function, i.e. zero derivatives at the endings, and causing the same total change in mean
as a linear trend with slope a 2 f0:05; 0:1g. For monitoring, we move a time window with n ¼ 60
observations through the series.

First we illustrate the problems resulting from positive autocorrelations and the behavior of shrink-
age estimates as proposed above. Figure 1 shows simulated time series with a linear trend, slope
a ¼ 0:05 and j ¼ 0:3 (small autocorrelations) or j ¼ 0:9 (large autocorrelations). The test statistic T
with shrinkage-based standardization as described above is also depicted. For j ¼ 0:9 the trend is
barely visible as there are monotonic increasing as well as monotonic decreasing patterns. Neverthe-
less, T increases during the trend period even in case of such high autocorrelations, but it takes more
time until it becomes large. If j is small or moderate (not shown here) T increases strongly briefly
after the start of the trend.

Figure 2 shows the shrinkage factors for the previous time series as a function of time. Additional
simulations for j ¼ 0:0 and j ¼ 0:6 reported in our discussion paper (Fried and Imhoff, 2002) show
that for small to moderate autocorrelations this factor is close to one in a steady state, while it is close
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Fig. 1 Simulated time series (solid), underlying mean M (bold solid) and test statistic T (dashed) for zero
(j ¼ 0:0, left) and large autocorrelations (j ¼ 0:9, right).
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Fig. 2 Shrinkage factors for simulated time series with inserted trend and small (j ¼ 0:3, left) or large autocor-
relations (j ¼ 0:9, right).
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to zero in a trend period. In case of large autocorrelations (j ¼ 0:9), monotonic patterns cause the
shrinkage factor to be small most of the time.

A comparison of the mean estimates reveals that a four dimensional regression function fits the data
most of the time well, but during the steady state the data are overfitted as could be expected. Shrink-
age reduces this overfitting, while fitting a simple linear trend means a crude approximation particu-
larly at the beginning and the end of a trend period.

3.2 Comparison of the parameter estimators

For standardizing the weighted sum we need a reliable estimator of its standard deviation t. In order
to explore the properties of the distinct methods we simulate 500 time series for each of
j ¼ 0:0; 0:3; 0:6; 0:9 and a linear trend with slope 0.05 between time points 101 and 200. We average
the parameter estimates across the 500 time series for each model and each time point to assess the
bias of the distinct methods.

Figure 3 depicts the averaged estimates of t. The estimator based on the sample autocovariances
without detrending is not depicted here since it shows a very large positive bias in a trend period, i.e.
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including it would prohibit discerning differences between the other methods. All other methods show
a negative bias, that increases with increasing autocorrelations. When all observations within the
current time window arise from a steady state, simple linear detrending has the smallest (negative)
bias. Two-step estimation provides only minor improvement as compared to one-step third order
detrending, that is almost negligible in case of small autocorrelations. This is in line with the results
of Bloomfield and Nychka (1992), who find the ordinary least squares and the optimal (in the sense
of mean square error) unbiased estimate of a simple linear trend in case of AR(1) disturbances to be
very close to each other if the autocorrelations are moderate to small. Grenander (1954) shows that
ordinary least squares is asymptotically fully efficient in a broad range of regression models with
correlated errors. Shrinkage estimation is usually in between simple linear and third-order detrending
in a steady state.

In a trend period, simple linear detrending results in estimates that are typically larger than in a
steady state. Its bias may even become positive if the autocorrelations are small. Hence linear detrend-
ing reduces the effect of a trend on the test statistic. The negative bias of shrinkage estimation, how-
ever, increases even slightly in a trend period if the autocorrelations are not very large. This is due to
the fact that the shrinkage estimators are close to the ordinary, not trend corrected estimators in a
steady state and close to third order regression during a trend. This is advantageous since it increases
the differences between the values of the test statistic in a trend period and in a steady state even
more, while we can cope with a bias in a steady state adjusting the estimator or the critical value.

Further considerations for the AR parameters j and s lead to very similar results (Fried and Im-
hoff, 2002). For s, shrinkage results even in a smaller bias than simple linear detrending. An addi-
tional analysis for non-linear, sinusoidal trends leads to essentially the same results, and an analysis of
the variances of the estimators does not reveal large differences.

In view of these results we prefer shrinkage detrending if computation time is not extremely criti-
cal. The increasingly negative bias of these estimators in trend periods increases the power of the
procedure. Two-step estimation without shrinkage improves the results only in case of very large auto-
correlations. The estimates obtained from fitting a straight line increase in a trend period, but the
estimates without detrending are much worse.

Although bias corrections for AR parameters exist (Fuller, 1996, chapter 6.2), we are not aware of
them for shrinkage estimation. Therefore, we estimate the bias of ĵjS by simulations. For each of
j ¼ 0:0; . . . ; 0:9, we simulate 200 time series of length 300. Then we calculate the sample means of
the resulting 200 � 241 ¼ 48200 shrinkage estimates, cf. Table 1. The standard error is about 0.0006
for each value of j. Plotting the simulated bias against j reveals that a quadratic function might be
appropriate. We find the linear term not to be significantly distinct from zero and the adjusted R2 to
increase from 0.949 to 0.955 when neglecting it. Fitting a pure quadratic function we get the approxi-
mately bias-corrected estimates ĵjS; bc ¼ ĵjSð1þ 0:305ĵjSÞ þ 0:0424.

3.3 Critical values

As stated above, Brillinger’s (1989) rule for retrospective trend detection is too sensitive even for long
time series. This problem may become even more serious in online monitoring since we perform
multiple testing at subsequent time points. To overcome this problem, we derive approximate critical
values for the test statistic via simulations. We simulate 5001 time series for each of
j ¼ 0:0; 0:1; . . . ; 0:9 and a constant mean. Shrinkage estimation with the bias correction derived
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Table 1 Simulated and fitted bias (multiplied by �1) of the shrinkage estimator ĵjS in case of a
steady state for several j.

j 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

sim. 0.0365 0.0496 0.0511 0.0668 0.0763 0.0977 0.1051 0.1254 0.1619 0.2084
fit. 0.0432 0.0436 0.0496 0.0594 0.0748 0.0922 0.1175 0.1435 0.1670 0.1887
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above is used to standardize the weighted sum and for each time series the maximal absolute value of
the test statistic is calculated.

Table 2 provides empirical percentiles of these maxima for each j. The ð1� aÞ-percentile means
an approximate 2a-significance limit for a test whether a monotonic trend occurs during 300 observa-
tions corresponding to five hours of measurement in our application. The increase of the percentiles
for large j is not completely satisfactory as we hence should choose critical values in dependence on
the estimate of j. However, the percentiles are rather stable for small to moderately large autocorrela-
tions allowing us to regard c ¼ 5 as a conservative 5% significance bound for wrong detection of a
trend within five hours of measurements if we estimate j to be less than 0:5. If the estimate is larger
we should use a larger critical value, that can be chosen from Table 2 by interpolation.

3.4 Statistical power

Now we inspect the power of the proposed procedure. We simulate 200 time series of length 300 for
each of several models. Either a linear or a sinusoidal trend is inserted between t ¼ 101 and t ¼ 200
causing a total change of 5s or 10s. We use the weighted sum test statistic T with n ¼ 60 for mon-
itoring and apply the bias-corrected shrinkage estimators for standardization. We choose a ¼ 5% and
select the critical value corresponding to the shrinkage estimate for the current time window from
Table 2 by interpolation. Then we count in how many time series a trend is detected between t ¼ 101
and t ¼ 260 for the first time as a signal outside this period means a false alarm. To check the validity
of the critical values we also analyze time series without a trend. Here, we calculate the number of
time series in which a trend is detected at any time point since all alarms are false then.
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Table 2 Percentiles of Max Ti in case of a constant mean for j ¼ 0:0; . . . ; 0:9.

j 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

90% 3.476 3.535 3.644 3.707 3.789 3.961 4.163 4.496 5.269 7.379
95% 3.724 3.840 3.925 4.027 4.143 4.338 4.590 5.051 6.058 8.593
97.5% 3.961 4.032 4.184 4.347 4.521 4.640 5.102 5.571 6.725 9.856
99% 4.235 4.317 4.604 4.771 4.991 5.170 5.630 6.344 7.748 11.415
99.5% 4.537 4.652 4.832 5.008 5.285 5.573 6.006 6.984 8.391 12.360

Table 3 Number of identified trends (first line) and average delay of trend detection (second line) for
several trend sizes (measured in multiples of the standard deviation s): No trend (top), linear trend
(center) and sinusoidal trends (bottom).

Size j

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0s 7 7 10 5 16 8 12 20 24 63

5s 200 199 198 198 198 187 164 127 88 92
41.3 43.7 44.5 49.0 56.2 58.4 65.6 68.5 70.7 85.4

10s 199 199 199 196 198 200 194 185 153 132
31.3 32.4 33.5 36.6 38.4 42.3 49.4 54.4 62.1 68.4

5s 197 197 200 200 191 180 151 115 97 84
34.4 36.9 40.4 45.9 50.8 57.2 65.1 70.4 77.2 76.2

10s 200 199 198 198 198 197 194 186 176 137
20.8 22.7 25.3 27.4 31.7 35.2 44.4 51.5 57.0 67.7
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Table 3 provides the numbers of time series in which a trend is detected. All trends considered here
can be detected reliably if j is small to moderate. Sinusoidal trends pose larger difficulties than linear
trends, which might be caused by their smooth beginning. However, the power increases with increas-
ing steepness also for such non-linear trends.

For large autocorrelations, say j � 0:8, it is difficult to distinguish whether monotonic sequences are
due to autocorrelations or due to a trend. For j ¼ 0:9 the number of false alarms largely exceeds the
percentage of false alarms regulated by the significance level even though we derived critical values
from simulations. Woodward and Gray (1993) note that deterministic trends are very difficult to detect
in short time series if the autocorrelations are high. The large percentage of false alarms found here may
be caused by the need to estimate j for choosing the critical value, while these values were derived
assuming j to be fixed and known. The results might improve if we demand that T exceeds the critical
value at some subsequent time points in order to reduce the impact of minor fluctuations.

In Table 3 the average delay of trend detection is also provided. We only consider those cases
where a correct alarm is given. The delay increases slightly for small to moderate autocorrelations,
and substantially for large autocorrelations. For small autocorrelations on average about 45 (34) obser-
vations are sufficient to detect a linear trend with slope 0.05 (0.1), while more than 60 (50) observa-
tions are needed in case of large autocorrelations. When the autocorrelations are very large, reliable
and fast discrimination of a trend from a steady state affords a trend to be stronger than those consid-
ered here. The average delay for a sinusoidal trend is typically smaller, but we have to keep in mind
the lower detection rate. The time delay could be reduced by using a shorter time window but the
expense would be a larger number of false alarms, particularly for large autocorrelations.

The trend for j ¼ 0:3 shown in Figure 1 is detected with a delay of 44 observations, while in the
time series with j ¼ 0:9 no trend is detected at all as the large positive autocorrelations cause mono-
tonic patterns with duration less than 30 observations. Here, the systematic changes are small in com-
parison to the random variability found in the data.

4 Application to Real Time Series

In order to judge the performance of the proposed procedure for real data we analyzed time series
representing physiological variables like the heart rate or blood pressure and found the procedure to
perform well. Analyzing a large number of such time series, Imhoff et al. (2002) find that the autocor-
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relations can be described well by AR models of low order during a steady state. We present a single
example in the following. Figure 4 shows two hundred measurements of the systolic arterial pressure
of a critically ill patient taken every minute. The time series first drifts slightly around a steady state
and then starts increasing slowly at about t ¼ 100. From about t ¼ 164 on it increases more strongly.
Analyzing the autocorrelations we find an AR(1) model with j between 0.1 and 0.4 to be adequate.
Figure 4 also provides the test statistic T for a moving time window of length n ¼ 60. The test
statistic remains well within the non-critical limits up to time point 163, then it increases and crosses
the critical value c ¼ 5:0 at t ¼ 165.

5 Discussion

We have proposed a procedure for online detection of monotonic trends in time series with time-
varying autocorrelations, which are modelled by a low order AR model for the noise. We have also
investigated some variations of parametric detrending for estimation of the autocorrelations and have
found that shrinkage estimation improves the discriminatory power of the test statistic. Although
further work remains to be done, we consider the results to be encouraging so far if the autocorrela-
tions are not very large. Shrinkage estimators of the AR parameters are only mildly influenced by
trends, and the proposed test statistic usually results in much larger absolute values in a trend period
than in a steady state. Both linear and nonlinear trends were identified correctly rather soon in most of
the cases. We applied the procedure to a couple of long physiologic time series observed in intensive
care and found the results to agree well with the opinion of an experienced physician. Possible prob-
lems w.r.t. the clinical relevance of detected trends can be facilitated replacing s by a constant percen-
tage of the current mean in the standardization. Further improvements are possible by smoothing the
parameter estimates for subsequent time windows.

Trend detection is a hard problem in case of very large positive autocorrelations since the behavior
of an undisturbed process is close to non-stationarity with frequent monotonic sequences. Comparing
several tests for retrospective trend detection, Woodward and Gray (1993) found the rate of false
alarms to be often larger than 50% then. Our procedure may be modified for very large autocorrela-
tions by fitting a simple linear trend to the data and shrinking it towards a constant mean as detrend-
ing may be too flexible if trend functions of higher order are fitted. Some experiments showed that
another possibility might be a local linear fit with a large bandwidth. In case of small to moderate
autocorrelations, however, this nonparametric method did not give better results than the approach
taken here. Parametric shrinkage estimation has the advantage of resulting in smaller estimates of the
standard deviation in a trend period than in a steady state. Combining local polynomials with data
driven shrinkage seems worthwhile, but further experience is needed e.g. with respect to the suitable
automatic choice of the bandwidth for autocorrelated data (Altman, 1993). Anyway, a time window of
length n ¼ 60 is perhaps not sufficient to distinguish slow trends and very large positive autocorrela-
tions as both result in similar patterns.

The proper specification of the window width n is an important issue, similarly as a suitable forget-
ting factor l is needed for an EWMA chart. We consider the choice of a time period to be easier for
an operator than the choice of a weighting factor. In our medical application, an experienced physi-
cian may well consider a monotonic change of a vital sign over one hour to be clinically relevant.
Moreover, the power of EWMA and CUSUM charts is best for sudden shifts of the mean, whereas
this is the worst case for the weighted sum statistic. This statistic mirrors the start and the end of the
time window as the corresponding weights have different signs. This is similar to comparing time
delayed means, that has also been suggested for trend detection (Daumer, 1997, 1998; Daumer and
Neiss, 2001). Comparison of time delayed means corresponds to weighted sums with weights
�1=m1; . . . ;�1=m1; 0; . . . ; 0; 1=m2; . . . 1=m2. Therefore, such test statistics have lower worst-case
power than that advocated here as the latter uses optimal weights.

Like EWMA and CUSUM charts the procedure as presented here is not robust against outliers. A
simple possibility to overcome this deficiency is to apply additionally a procedure for online outlier
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detection, or alternatively the test statistic could be robustified using M-estimators for instance.
Gather, Bauer and Fried (2003) propose a control chart for online outlier detection applying multivari-
ate outlier detection rules to a multivariate embedding of the time series in order to incorporate auto-
correlations. Detected outliers and missing values can be replaced by a convex combination of the
current mean estimate and previous observations regulated by the estimated AR parameters. This takes
better account of the dynamics of the time series than simply inserting the mean or the previous
observation as these bias the lag one sample autocovariance towards zero and one, respectively. The
performance of the proposed procedure will not be affected a lot as long as there are a few outliers or
missings only within a single time window. Proper resolutions of further practical difficulties, which
need to be found before a more extensive validation of the procedure with real data and its real-world
usage certainly depend on the individual application.
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