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Nonparametnc estimation of abrupt changes ina regression Tunction imvolves choosing smoothing (band-
widdth) parameters. The performance of estimation procedures depends heavily on this choiee. So far, Iin-
te attention has been paid (o the erucial issue ol choosing approprisne bandwidth parameters in practice.
L thas article we propose o bootstrap procedure Tor selecting the bandwidth parameters in a nonparametric
twa=step estimation method. “This method results in a Tully data-driven procedure Tor estimating a linile
(but possibly unknown) number of changepoints in a regression function. We evaluate the performance
al the data-deiven procedure vin a simulation study, which reveals that the fully awtomatic procedure
performs guite well. As an tlustranon. we apply the procedure to some real dita.
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1. INTRODUCTION

There is a vast literature on the estimation of smooth re-
gression [unctions. In many applications in physical sciences,
engincering, medicine, and cconomics, the regression function
I8 smooth except at a finite number ol locations (e.g., jump
discontinuities). (See Miller and Stadimiiller 1999 ftor more
background information and many cxamples of data applica-
tions.) Estimation of an unknown regression function with a fi-
nite number of discontinuitics is usually done in scveral stages.
In the first (and more challenging) stage, the locations of the
possible jump discontinuities are estimated. The second stage
15 the actual estimation ol the regression curve, usually by fit-
ling nonparametrically smooth curves to the left and to the right
of the estimated locations of jump discontinuities, relying on
lechniques available for estimating smooth curves. Another ap-
proach was described by Kang, Koo, and Park (2000), who es-
timated the locations of the jump discontinuitics as well as the
sizes of the jumps, Using these estimations, they then adjusted
(the data suitably and applied ordinary smoothing techniques to
these adjusted data. Thus, estimating regression functions with
Jump discontinuities involves estimation of the number of jump
discontinuities and their locations, the jump sizes, and the re-
gresston function itsell,

The literature on nonparametric estimation of regression
functions that are smooth except at some points is by now
quite large. Kernel-based estimation methods have been stud-
icd by Canny (1986), Korostelev (1987), Hall and Titterington
(1992), Miiller (1992), Wu and Chu (19934, b, ¢), Chu (1994),
Speckman (1994), Eubank and Speckman (1994), Bunt, Koch,
and Pope (1995), and Kang et al. (2000), among others. Lo-
cal polynomial methods were usced by McDonald and Owen
(1986), Leclere and Zucker (1987), Loader (1996), Horvath and
Kokoszka (1997), Qiu and Yandell (1998), Spokoiny (1998),
Hamrouni (1999). and Grégoire and Hamrouni (2002), among
others. Work on spline-based methods has been reported by
Laurent and Uweras (1986), Girard (1990), and Koo (1997);
on wavelet-based methods, by Mallat and Hwang (1992),
Pottier and Vercken (1994), Wang (1995). Raimondo (1998),
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Oudshoorn (1998), and Antoniadis and Gijbels (2002). Miiller
and Song (1997) and Gijbels, Hall, and Kneip (1999) proposed
two-step procedures.

Two important issucs arise when dealing with nonparamelt-
ric estimation of a regression curve with jump discontinuitics.
The first issuc 15 knowledge of the finitc number of jump dis-
continuities. Often 1t 1s assumcd that this number 1s known,
whercas this i1s often not the case in applications. The second
issuc 18 that any nonparametric estimation method involves the
choice of parameters, call them “smoothing parameters,” and
the performance ol the cstimation procedures depends heav-
ily on the choice of these parameters, Hence 1t is very impor-
tant to address the 1ssue of how to choose these parameters in
practice. Some attention has been paid to these issues in the
literature. Authors who have explored the first issue include
Yin (1988), Wu and Chu (1993a), Bunt et al. (1998), Becunen
(1998), Oudshoorn (1998), Miiller and Stadumiiller (1999), and
Antoniadis and Gijbels (2002). As far as we know, little work
has been done on the second issuc; Wu and Chu (1993¢) and
Spokoiny (1998) have provided theorctical contributions.

In this article we focus on estimating the locations ol the

jump discontinuities, particularly on the practical choice of the

smoothing (bandwidth) parameters involved. We develop an es-
tumation procedure with a data-driven choice ol the bandwidth
parameters and with a built-in cstimation of the number of dis-
continuity points that performs well in practice. We use the two-
step estimation method proposed by Gijbels et al. (1999), for
which it has been shown that the estimator [or the location of
a jump discontinuity achieves the optimal rate n—', where n is
the sample size. Other estimation procedures achicve the same
optimal rate of convergence, but we choose this method for two
reasons. First, this estimation method demonstrated, via exten-
sive simulation good finite-sample performance lor various re-
gression functions. Sceond, as we show later, the method leads
to a fully data-driven procedure. The simulation study carricd
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out for the two-step cstimation method by Gijbels et al. (1999)
revealed that the choice of the bandwidth parameters s crucial
in practice, not only for this estimation method, but also for any
other estimation method in this context. In Section 2.3 we illus-
trate this point by comparing the two-step estimation method
with another estimation procedure. The second issue motivates
the present article,

We propose a bootstrap procedure for selecting the band-
width paramcters. Gijbels et al. (2004) dealt with interval and
band estimation for curves with jumps and suggested this selec-
tion procedure. Some of the basic ingredients for the booltstrap
procedure used in our bandwidth selection problem are simi-
lar Lo thesc described in that article, and hence for details we
rcfer to this work. A theoretical justification of the bootstrap
bandwidth selection procedure introduced here would rely on
theoretical results established in Gijbels et al. (2004). We tested
our fully data-driven estimation procedure on various simula-
tion models; all demonstrated very good performance.

The article 15 organized as follows. In Section 2 we briefly
describe the estimation method and discuss the bandwidth pa-
rameters it involves. We also compare this method with the es-
timation method developed by Grégoire and Hamrouni (2002).
In Section 3 we introduce the bootstrap bandwidth selection
procedure and discuss how to choose the number of discon-
tinuities. We present numerical study of the fully data-driven
estimation method, along with an illustration using some real
data, in Section 4. We provide some discussion in Section 5.

2. ESTIMATING JUMP DISCONTINUITIES

2.1 Statistical Model

Consider a sample of n observed data pairs x = {(X), ¥}),
oy (X, ¥} gencrated from the model

Yi :H{XF) +8%

The design points X; are either regularly spaced on/ = [0, 1] or
arc the order statistics of a random sample from a distribution
having a density f supported on /. The errors &; are assumed to
be idd distributed with mean 0 and finite variance o*. The un-
known function g(-) is smooth except at a finite number of jump

| <i<n. (1)

discontinuities. For the moment, we assume that the number of

jump points is known, and, moreover, for ease of presentation,

we explain the estimation and bootstrap selection procedure for

the case of a single jump discontinuity in the regression func-
tion at the point xy € |0, 1[. We address the case of more than
one jump discontinuity in Scction 3.3 and discuss choosing the
number of jump discontinuities in Section 3.4,

2.2 Estimation Procedure

The two-step estimation procedure for estimating xp intro-
duced by Gijbels et al. (1999) involves: (1) obtaining a rough
estimate of xg, say Xy, and (2) improving Xy using least squares
estimation in an interval around Xy, say |xXo — h2, Xo + h2],
with 23 > 0 a bandwidth parameter, to obtain an improved cs-
timator Xy of xg. The first step, called the diagnostic step, is
based on the derivative of the Nadaraya—Watson estimator of
the regression function and involves a bandwidth parameter A, .
Section 5 presents some discussion on various aspects of this
estimation method.

2.2.1 Diagnostic Step.  One way to detect i jump discon-
tinuity is to look at locations with high derivatives. A possible
diagnostic function is the derivative of the Nadaraya—Witson
estimator (see Nadaraya 1964; Watson 1964). defined as

i F‘:-’=1K|(.1'—X,']/“|}Y,'
Jx K= X))

=l

D(x, )= (2)

where K is a compactly supported (with support | —v. v]) dif-
ferentiable kernel function and /1y = 0 1s a bandwidth, A first
rough estimator of xp s then given by

xo= argmax |D(v./n)|.

ve vy b vyl

The rate of convergence ol this preliminary estimator
is n~ (logn) /2. The second, least squares, step will lead to
a n~ " estimator (see Gijbels et al. 1999 for lurther details).

2.2.2  Least Squares Step.  We construct an interval con-
centrated around xg, namely |xg — /12, Xg + 12|, 10 which xy be-
longs with high probability. Denote by {i). 7 + 1..... 1>} the
set of integers i for which X; € |xg — ha. X + A2 | We it a step
function on the interval [xg — /12, X + fiz| using least squares.
We estimate that the jJump discontinuity occurs between design
points X;, and X 41, where iy 1s chosen to minimize the sum
of squares,

i) i) :
Y {Yi—tGo—ir+D7'Y Y,
i=i| F=
i) i 2
+Z Yi— (> — fpy) I Z}’} :
i=ig+) J=in+1

Denote by 7y the minimizer ol this sum ol squares. The linal
estimatlor of the jump discontinuity xg is then defined as the
. 1 ] r #, y A' - I = -

midpoint between X;, and X; .2 Xo = 5(X;, + Xj,4.1).

2.3 Comparison With an Available Method

In this section we present a comparison between the perfor-
mances of the two-step estimation method explained carlier and
the method proposed by Grégoire and Hamrouni (2002) that
also achieves the best rate of convergence 1~ when using a
specific class of kernel functions. The latter method cstimates
the location of the discontinuity point by that valuc ol ¢ lor
which [g4 (1) — g—(#)] is maximal, where g and g are local
lincar regression cstimates of the right and left limits of ¢. This
method requires the choice of a bandwidth parameter /1, because
it involves local linear estimation. As an illustration, we applicd
the two-step estimation method and this one-step method to the
regression model (1) with regression [unctions gy and g» given
later (Sec. 4.1) in (4) and (§), respectively, and depicted in Fig-
ures 3(a) and (b). These functions show one jump discontinuity
at the point .5 of sizes | and —2. We simulated 100 samples
from model (1) with N(0: o ?) distributed crrors and with 77 = 50
and 02 = .1 for ¢y and n = 200 and 62 = .5 lor g». For cach
fixed bandwidth in the set /= .03+ 015/ forj=0.1...., |8,
and for both methods, we obtain the estimate ol the unknown
location point for the 100 samples. Figure | provides a boxplot
of these 100 values, for each fixed value of /i that we consid-
cred (indicated on the horizontal axis). Pancls (a) and (¢) corre-
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Figure 1. Boxplots of the Estimated Values for the Discontinuity Point xp for the Functions gy and g2 Using the Two-Step Estimation Method
[(b) and (d)] and the Method of Grégoire and Hamrouni (2002) [(a) and (c)]. (a) and (b) Results for g, (c) and (d) results for go.

spond to the one-step method, whercas panels (b) and (d) cor-
respond to the two-step procedure, The outer whiskers extend
lo the extreme values ol the data (i.e., the simmallest and largest
observations) or to the nearest observation not exceeding a dis-
tance 1.5 times the interquartile range measured from the quar-
tiles, whichever is smallest. This figure is an illustration of how
the methods depend on the choice of the bandwidth parameter,
and of how the methods perform lor finite samples. Figure |
shows that the choice of the bandwidth parameter is indeced im-
portant. It also illustrates that the quadratic function g; |panels
(a) and (b)] represents an casier example than the cosinus func-
tion ga [panels (¢) and (d)).

Another remark that can be made is that the method of

Grégoire and Hamrouni (2002) tends to be more variable in
seneral, looking at the interquartile range. Figure 1(¢), for ex-
ample, shows that the median values (the little white squares)
ol the estimate are quite lar off from the true value ol .5 for a
whole range of h values. The two-step estimation method per-
lorms better here. This illustrates a feature of the latter method:
[ at the first step the preliminary estimator of xg is rather bad

TECHNOMETRICS, FEBRUARY 2004, VOL. 46, NO., 1

(but not too far off’), then the sccond step gives a chance to
“correct” for this.

2.4 Choice of the Bandwidth Parameters

Each step in the two-step estimation procedure involves a
bandwidth parameter, /) or 2. Both bandwidth choices are cru-
clal for the performance of the procedure, as has been explored
and discussed in detail by Gijbels et al. (1999).

The bandwidth /1y should be small enough to capture the be-
havior at the jump discontinuity, but not so small that the di-
agnostic curve shows artificial peaks. The bandwidth hy used
in the second step determines the interval in which we carry
out the least squares approximation, namely [xgy — ha, Xo + h2|.
If this interval is wide and g differs greatly from a step function,
then a local constant approximation may be very poor, leading
to a bad estimate of ip and hence of xi. Thus the interval should
bc as small as possible, but still contain sufficient data points
for a rcasonable least squares fit.

A simplification is obtained by taking the same bandwidth
in each step, that i1s, Ay = ha. In Section 3 we present the
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fully data-driven, bootstrap-type procedure for this simplified 3.1

case. For the more general case of two different bandwidths 5
and h», a fully data-driven procedure has also been developed.
Details of this more flexible procedure can be obtained from the
authors on request.

2.5 |dentification Problem

Gijbels et al. (1999) noted that a simple search for the maxi-
mum in the diagnostic function |D(x, )| might be problematic.
As an example, consider the cosine function in (5), depicted in
Figure 3(b). This function has many steep declines and inclines.
Thus the diagnostic function exhibits many local maxima, and
the largest may correspond to a steep gradicent instead of to the
jump discontinuity. We nced to identify the local maximum of
the diagnostic function that corresponds to the jump disconti-
nuity. Gijbels et al. (1999) proposed a four-step algorithm for
dealing with this identification problem. The algorithm also in-
cludes an automatic choice of the bandwidth parameter A in
the diagnostic step. Let Ay = hor', for i =0,1,2,..., be a
range of decreasing values of the bandwidth hy, with hy > 0
and 0 < r < |, The four-step algorithm proceeds as follows:

Step 1: Initialization. Let M denote the number of local max-
ima of |D(-, Ay o)| on [vhy o, | —vhol. Let {&;, | <
J < M} be the set of points at which the maxima are
achieved.

lteration. Given a set {§;;, | <j < M} of local max-
ima of [D(-, hy ;)| on |vhAyo, | — vhol, let &4
denote the local maximum of |D(-, Ay j4+1)| that 1s
nearest to &; ;.

Step 3: Termination. Stop the algorithm at iteration i =1,
when the number of data values in some interval
lx—hy ;x4 hy il S vhyo, | —vh gl first falls below
a predetermined value. The preliminary estimate xg
of the jump discontinuity xg is the value of & ; for
which |D|(&; ;. by ;)| — |D(&o,, hy.0)l] 1s largest.
Least squares. Use local least squares within the in-
terval [.xg — ha, Xo + h2] to obtain the final estuma-
tor Xj.

Step 2:

Step 4:

The first three steps of the algorithm yield a preliminary es-
timator for xy. The two parameters kg and r that appear in the
automatic choice of the bandwidth A are of little importance,
because they represent the starting value of the range of h
values and the multiplicative decreasing step in the sequence
of iy values. The grid of /1| values should be fine enough and
should be of a reasonable range; thus safe choices are hg large
(e.g., half of the length of the domain of the regression function)
and r close to 1.

3. FULLY DATA-DRIVEN ESTIMATION PROCEDURE

The estimator 7y obtained as in Section 2.2 is integer-valued
and may differ in absolute value from the thcorctical (ran-
dom) ig by 0, 1,2,.... Ideally, the estimator 7y equals iy with
high probability. We use a bootstrap procedure to estimate the
probability Pr(ip — iy = 0) = pg and to select the bandwidth for
which this estimated probability is maximal. We first describe
in detail the bootstrap algorithm for estimating pg, and then
specify the actual bandwidth sclection procedure. We provide
examples of implementations in Section 4, and discuss some
altcrnative selection criteria in Section 3.

Bootstrap Algorithm

Step |: Estimation of g and computation of residuals. Let
Y = EL(X;” + Xj,.1.1) denote the estimator intro-
duced in Section 2.2. Using local lincar regression
(see, e.g., Fan and Gijbels 1996). we construct g
on [0, xg] and [Xp. 1]. We define & = Y; — g(X))
fori=1,....nand & the mecan ol &, and &, = &; — £,
the centralized cstimated residuals.

Step 2: Monte Carlo simulation. Conditional on the ob-
served sample x = {(X1, Y1).....(X,. V) ), we con-
sider &7,...,&,, a resample drawn randomly with
replacement from the set £, ....&,. We deline

Yo =g(Xi) + &, = a— n
Then 3" ={(X Y7 oiaa (X, Y1)} is the bootstrap
version of x.
Step 3: Determination of the bootstrap probability. Using the

method described in Section 2.2, we compute the

ﬂ!i: r ""‘",.": —_— I e e = ® ﬁ' & o
analog 7 and xj = 5 (X5 + Xj ) ol 10 and xy (o
the resample x* rather than the sample x. From
B bootstrap replications, we obtain /8 values of 77,
denoted by ?{“;':’, b=1,2....,B, and we evaluate the

discrete probability Pr{F["; — 1 =0]x) via

i
%Z#{h:?ﬁh=ﬂ;l. (3)

h=|
Using the foregoing procedure, we can evaluate all discrete
probabilities Pr(ig — g = k) k=0 =1 =22 THhUSE
have been studicd theoretically by Gijbels et al. (2004), who
showed that under some regularity conditions and for fixed de-
S1gN SUPg—q —1.1... |Prg —to=klx) = Pr(tp —ip =4k)|— O In
probability. The same holds for random design; the only dilfer-
ence is that probabilities must be considered conditionally on

the realized design Xy, ..., X,,.

3.2 Bootstrap Bandwidth Selection Method

With the toregoing bootstrap procedure, the bandwidth se-
lection is simple and reads as follows: For a set of potential
bandwidths A, choosc that bandwidth for which the bootstrap
estimate of Pr(7p — iy = 0) is maximum. More precisely, de-
note by h;, j =0,..., H the set ol potential bandwidths. For
cach bandwidth /;, we obtain a preliminary estimator x(/;),
that is, the value of x that maximizes the diagnostic fune-
tion [D(x, h;)|. Next we construct an interval ol length 2/,
around x(h;) and use least squares fitting to obtain the fi-
nal estimator corresponding to this bandwidth value /;. Using
the bootstrap algorithm described earlier, we then estimate,
via (3), the probability Pr(ip — in = 0) associated with that fixed
bandwidth A;. Finally, we sclect the bandwidth that yicelds the
largest bootstrap-estimated probability. We denote this band-
width by fn,{,{,.. We then use this bandwidth to calculate the fi-
nal estimator of the jump discontinuity. To be sale, one should
consider a sufficiently large set of potential bandwidths.

Functions with possible identification problems, as indicated
i Section 2.5, require the (more sophisticated) four-step algo-
rithm, The bandwidth A 18 chosen automatically by the algo-
rithm, and the bandwidth /2 1s chosen as belore. We select a
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(large) sct ol potential bandwidths ha; for j =0, ..., H and es-
timatce the discrete probability Pr(rg — iy = ()) tor each of them,
then choose that bandwidth s from the candidate set that max-
imizes the bootstrap estimate of this probability.

To achieve a fully data-driven bandwidth selection proce-
(CV) to estimate the (smooth)
regression Tunctions. Applying the same bandwidth to esti-
mate g to the left of Xy and to the right of X, and denoting the
local lincar fit on |0, ¥y] by g1 and the local linecar fit on |y, 1]
by ¢2 we choose h that minimizes the CV quantity

dure, we use cross-validation

-'l.l

CV(hy = 1&g "(Xinh) = Yi)* + Z 185 (Xi; h) — Yi)2,

f==| =i+

where g, ‘() and ,’s}j"(-} denote the estimators ¢ and g
obtained by disgarding the ith data pomt on the interval
10, xy] and [xg, 1]. The CV bandwidth selector is then defined
as fl{_'y = argmin, CV(h). In our simulation study presented in
Section 4, we incorporate more flexibility by allowing two dil-
ferent bandwidths for estimating ¢ (o the lelt and o the right
of xp.We discuss alternative data-driven bandwidth selectors
lor this step in Scection 5.

3.3 Generalization for More Than One Discontinuity

The gencralization ol the data-driven bandwidth selection
procedure to the case of more than one jump discontinuity 1s
rather straightforward, For convenience, we use the tour-step
algorithm of Section 2.5, which generalizes easily to the casc
of k jump discontinuitics xy, x2, ..., x; by slight modifications
of steps 3 and 4

Step 3: Termination (addition). Take the preliminary cs-
mates Xy, ..., X ol the & jump discontinuitics
A, A2, ., A 0 be those values ol & ; Tor which
D ;. Iy i) =D& i, I o)l] 1s one of the k largest.
[Least squarcs (addition). Use local lcast squares
within the interval |x; — ha, x; + ha| torj=1,..., 4,
and obtain  the final
XNlsvooyXks

Step 47

The first three steps of the generalized four-step algorithm
lcad to preliminary estimators for xy, ..., xx, involving an au-
tomatic choice of the bandwidth A, as in Scction 2.5, An il-
lustration ol this four-step algorithm 1s provided in Figure 2,
which deals with estimation of the piecewise quadratic function
g(x) = dx- + 1 21(x> 2)+ Bl(x > 5), where /1(A) denotes the
indicator function on a sct A. This function has two jump dis-
continuitics of size 1.2 and .8 occurring at .2 and .5, Figure 2
presents four selected iterations in the four-step algorithm with
hop = .1 and r = .9, corresponding to 7 = 0,4, 10, and the final
iteration step with 7 = 15. In the initial iteration step (i = 0),
the diagnostic function shows M = 3 local maxima, and hence
the four-step algorithm scarches in each iteration step for the
closest local maxima, indicated by the vertical dotted lines in
Figur* 2. The preliminary estimates are the two values of &; ;,

= 1, 2.3, lor which [|D(&; ;. Iy ;)| —
the two lmthl. These differences are the differences in mag-
nitude between the maximal values of the diagnostic function

TECHNOMETRICS, FEBRUARY 2004, VOL. 46, NO. 1

estimators Xy, ...,x; of

|1D(Eg i,y 0)]] s one of

achieved in the first and the last iteration step for the three local
maxima. The first three steps of the four-step algorithm track
back the jump points nicely and lead to the prelimimary esti-
mates .203 and .51 | of the true values .2 and .5.

For the least squares fitting, we select, via the bootstrap algo-
rithm, a bandwidth ha for cach jump discontinuity separalely.
More precisely, we select a (large) set of potential band-
widths Ay ; for j=0,..., H and then estimate, for each jump
point x¢, £ = 1,..., k, the discrete probability Pr(ig.¢ — iy.¢ =
() = po.¢, where obviously the extra subscript € refers to the

jump discontinuity x¢. For each jump discontinuity, we choosc

that bandwidth /13 from the candidate set that maximizes the
bootstrap estimate of the probability pg .

We need to ensurc that the interval around x¢ in the least
squares step contains only one jump discontinuity. Hence the
set of potential bandwidths should not contain large band-
width valucs.

3.4 Determining the Number of Discontinuities

In most practical examples, the number of discontinuities &
(k = 0) 1s not known, and hence we usc the automatic bootstrap
sclection method described previously. We compare the qual-
ity of the fitted curves for various fixed values of & and select
the one with the best (it in terms of minmimizing the CV sum
of squares,

n

Vi = (¥ — g (X))

=)

where g, (X ) is the fit obtained at X;, assuming & changepoints
and cmludmb the data pomt(X;, ¥;) when constructing the fit.
This CV approach was proposed by Miiller and Stadtmiiller
(1999). The number of discontinuities k 15 then estimated by

i

k== argmin CV(k),
kel |, ...}
and the estimated curve 1s then the onc associated with this
number ol discontinuities. With this CV rule for selecting the
number ol discontinuities, we have a fully data-driven method
for estimating curves with possible jump discontinuitics.

4. NUMERICAL STUDY

In this section we cvaluate, via a simulation study, the fully
data-driven estimation procedure developed in Section 3 and
provide an illustration with some real data. Emphasis 1s on the
evaluation of the bootstrap bandwidth sclection method, but we
also bricfly demonstrate the performance ol the CV method 1n
determining the number of discontinuitics, in conjunction with
the bootstrap selection method.

4.1 Simulation Study
We consider the regression functions
¢1(0) = 4x° + 1(x > .5) (4)

and
35— x)]

ga(x) = cos{8m (. —2¢o8{8r (.5 — ) (x> .5). (5)
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Figure 2. Performance of the Diagnostic Function for the Piecewise Quadratic Function With n = 50 and 0% = .1 and Using the Four-Step
Algorithm. (a)—(d) Plots of |D(x,hy ;)| fori=0, 4, 10, and i =1 = 15.
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Figure 3. The True Regression Functions (solid curves) With a Typical Simulated Dataset of Size n= 100 and Variance o° = .5 for Regression

Functions (a) gy and (b) go.

We considered a fixed equidistant design, x; = i/n for
i=1,...,n. Theerrors, &, arc Gaussian with variance o = .|
or .5. We present sumulation results for sample sizes n = 50,
100, or 200. Figure 3 presents the true regression functions
g1 and g» with typical simulated datasets for sample size
n=100and o* = .5.

For the diagnostic function in (2), we use a standard Gaussian
kernel, 1,000 simulations and B = 2,000 bootstrap replicates.
For cach example, we use the CV bandwidths defined in Sec-
tion 3.2 to choose the smoothing parameters in the first step of
the bootstrap algorithm described in Section 3.1,

We first investigate the performance of the bootstrap band-
width selection method for cach of the regression functions.
We simulate from model (1) with unknown regression fune-
tion gy. We consider the set of potential bandwidths h; =

03 4+ 015/ for j=0,..., 18. Figure 4(a) depicts a simulated
dataset for n = 50 and o? = .| together with the truc func-
tion g(). Also presented is a local linear estimator of the re-
gression function, obtained by applying local lincar fitting to the
left and right of the estimated jump point. Figure 4(b) shows
the bootstrap estimates of the probability pg, associated with
the potential bandwidths A; for j =0, ..., 18. For this particular
simulation, the bandwidth selected by the bootstrap algorithm is
Aot = 075, which is the bandwidth with the largest bootstrap
cstimated probability. With this bandwidth, the final estimator
of the discontinuity point is Xp=.51. To estimate the variability
of the bootstrap algorithm for sclecting h = hy = hy, Figure 4(c¢)
presents a kernel density estimate of the 1,000 bandwidths ﬁm,m
sclected for the 1,000 simulations. This graph shows that for
these 1,000 simulations, the bootstrap-sclected bandwidth Ay
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Figure 4. (a) A Simulated Dataset With n= 50 and o2 = .1, Together With the True Regression Function g, (solid curve) and a Local Linear
Estimator, Adapted to the Estimated Changepoint (dashed curve), (b) the Bootstrap Estimate of the Probability pg for a Range of Values of the
Bandwidth h for That Simulated Dataset; and (c) a Kernel Density Estimate of the Bandwidth hysst Selected by the Bootstrap Procedure, Based

on 1,000 Simulations.
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Table 1. Simulation Results for the Functions gy and g»,; Evaluation of the Bootstrap
Bandwidth Selection Method

gi gz
gl=_1 0l =5 a® =1 02 =.5

n= 50 n= 100 n= 100 n— 100 n=200 n- 200
% in |0, .15] 0 0 ) R 5 1.6
%in (.15 25 0O 0 4 1.8 5 7.1
%in|.25,.35] O 0 7 3 7 9.2
% in |.35, .45| 3 1 2.2 2.5 7 4.5
% in [.45..55 93.9 99.5 78.4 91.2 96.4 58.8
%in|.55,.65] 4.9 4 9.8 1.6 4 4.8
% in [.65, .75 4 0 9 4 6.3
% in |.75, .85 6 0 3.2 1.6 4 7.5
% in |.85, 1.0 4 0 2.1 0 0 2
Mean of Xy 517640 50685 .533130 504740 .499390 .491135
SD of % 035288 007330 .091399 06589 .044386 .151566

has a density function concentrated around the value .0488. The
little mode around .3 can be explained by the fact that for the
[unction g, bandwidths of larger order are also quite appropri-
ate, because the function is overall increasing, and large band-
widths will still allow one to detect the jump discontinuity.
Table | summarizes the simulation results for functions g
and g». Presented are percentages of the estimated values xg
falling in the specified intervals. The last two rows list the
means and standard deviations of Xg across the 1,000 sim-
ulations. The [unction go presents some specific difficulties,
because it shows many fluctuations, regions with a steep in-
crease followed by regions with a steep decrease. To identify the
“appropriatc’ local maximum, we use the four-step algorithm
as specified in Section 2.5, For the bandwidth /| we considered
the sct of possible values 4 j = .1 x .9" fori =0, 1,..., and
we took the set of potential bandwidths A3 for the least squares
step to be hyj = .03 + 0I5/ forj=0,1,...,5. For the func-
tion g2, we used fitting with linear functions instead of constant
functions in the least squares step of the estimation procedure.
See also Section 5 for some discussion on this issue. Note that

the data-driven method performs very well even for these rather

small sample sizes.

We now demonstrate the performance of the fully data-driven
procedure, including the CV choice of the number of jump
points, based on 100 simulations, 1,000 bootstrap replicates,
and possible values for k, k =0, I, 2, 3, or 4. For each example,

we use the CV bandwidth to choose the smoothing parameter

that we nced to determine g, . Table 2 summarizes the simula-
tion results for the functions ¢; and g and for the smooth func-
tion go(x) = x? using different sample sizes and values of o2,
Presented are the frequencies (out of 100) that the estimated

values &k correspond to the specified values. Clearly, the CV
choice of & scems to work nicely.

4.2 Application

As an illustration, we now apply the fully data-driven esti-
mation method to a real datasct. The application concerns 215
average annual temperatures measured in Prague from 17735 to
1989, discussed by Horvith and Kokoszka (1997). This datasct
was analyzed by Horvath and Kokoszka (1997) to detect cli-
matic changes occurring over a span of several years or a
decade. For this datasct, previous analysis often considered the
number of jump points to be either two or three. Antoniadis
and Gijbels (2002) also studied these data from 1775 o 1902
and, using a wavelet method, found two jump points occurring
at 1787 and 1837.

We apply the fully data-driven procedure to these data and
search for changepoints in the data between 1775 and 1989,
From the CV criterion, we lind £ = 3, and the locations ol the
jumps are estimated to be 1,786.5, 1,836.5, and 1.942.5. This
agrees with previous analysis, in particular with that of Horvth
and Kokoszka (1997). Horvath, Kokoszka, and Steincbach
(1999) analyzed these data, considering models for dependent
obscrvations. They tested for changes in the mean tempera-
ture and found that changes occured in the years 1835, 1893,
and 1927. Note that the changepoint around 1836 was also an
important one in our analysis. Figure 5(a) presents a smooth
fit using the mcthod of local linear fitting. Figures 5(b)—(c)
depict the fitted curves assuming A = 1, 2, 3, and 4 discon-
tinuities. The large negative slope of the first fitted curve in
Figures 5(c)—(e) looks rather strange. A possible explanation is
that during this period, some errors appcarcd in the measure-
ments of the temperatures. Note also that the first discontinuity
occurs near the boundary, and hence very little data are used to
do the fitting. The plot of the CV function CV (k) is provided in
Figure 5(1).

Table 2. Simulation Results for the CV Choice of k

Function gg Function g4 Funclion g»
= 100 200 100 200 100 200
k 2. 1 5 1 .5 , A" - 1 5 1 .5
0 80 72 88 17, 1 7 0 1 1 8 3 2
1 ¥ i 8 4 /7 83 73 87 79 B0 71 88 84
2 5 8 4 3 6 6 0 4 7 18 2 3
3 8 11 6 g 8 12 4 15 8 1 4 8
4 0 1 2 4 2 2 2] 1 4 2 3 3
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Figure 5. Average Annual Temperatures in Prague With Superimposed Regression Fits. (a) Smooth fit without discontinuity and fit with (b) one
discontinuity, (c) two discontinuities, (d) three discontinuities, and (e) four discontinuities, (f) the CV function CV(k).

5. DISCUSSION

5.1 Options for the Two-Step Estimation Method

The two-step estimation method of Gijbels ct al. (1999) used
here offers several options. including (1) the diagnostic func-
tion could be any other consistent estimator of the derivative
of the regression function: (2) the least squarcs step could in-
volve fitting any appropriate parametric function; and (3) the

[tnal estimation of the function could be based on any other

ood nonparametric estimator. In our context ol the bandwidth
sclection problem, we opted for implementing the simplest op-
tions: the Nadaraya—Watson estimator as a basis lor the diag-
nostic function, a fitting with constant lunctions in the least
squares step, and local lincar estimation for constructing the
linal estimator. In the final estimation we opted for local lin-
car estimation, because this 1s known to better handle boundary
clfects (as opposed to local constant approximation), When us-

ing the two-step estimation procedure, one should be aware of

the various options and exploit these options according to the
context. For example, when dealing with functions for which
onc suspects significant curvature (such as the cosine function
in our simulation study), we recommend using least squares fit-
ting with a polynomial ol degree at least 1 to better capture
the curvature.
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5.2 Alternative Bootstrap-Based Criteria for
Selecting the Bandwidth

Our bandwidth selection criterion is based on maximizing
the bootstrap estimate of the probability P(ig — ip = 0). Here
we discuss some alternatives.

A first alternative criterion is to focus on minimizing the
mean squared error (MSE) of 1g,

+0C

MSE(ig) = ) k*Pr(io — io = k) = {Bias(ig))* + var(i).
k=—0x

Each probability, Pr(ip — iy = k), can be estimated by

Pr(iy — o = k|x), and thus this criterion involves taking the

bandwidth that minimizes, using (3),

—— +m
MSE(io) = Y = k*Pr(i§ —io =k|x).
h——ex

A second alternative criterion is simply to minimize the esti-
matcd variance of 1.

-+

i 3 s k%

var(ip) = Z k= Pe(fy — 1o =kl x)
A= — 00

~

-

00
—1 Y kP — o =kix)

k=0

——



’ —_—

BANDWIDTH SELECTION FOR CHANGEPOINT ESTIMATION 85

We compared the performances of these alternative crite-
ria with the proposed criterion. The results from 200 simula-
tions for, for example, the quadratic function g, (with n = 50
and o= = .1) revealed presentages of estimated values Xg falling
in the interval [.45..55] to be 97.5%, 87.5%, and 91% for
the criterion based on the maximum probability, the minimum
MSE, and the minimum variance. For the cosine function g
(with 7 = 100 and o? = .1), these percentages were 90.5%,
91.5%, and 91%. The means and standard deviations of the es-
timator xg were very close for the three criteria. The data-driven
methods bascd on the different bandwidth sclection criteriua per-
form comparably; hence, we opted for the simplest criterion and
focused on maximization ol Pr(iy — i = 0] x).

5.3 Alternatives to the Cross-Validation Bandwidth

For the final estimation of the curve with discontinuitics,
we usc local linear estimation with CV bandwidth sclectors.
We opted for CV, because it worked well throughout our ex-
lensive simulation study. Of course, here the user also has
the option to choose his or her favorite data-driven band-
width selector. To illustrate this point, we implemented more
sophisticated bandwidth selectors to replace the CV selec-
tors that we used. We implemented the data-driven constant
(global) and variable bandwidth selectors proposed by Fan
and Gubels (1995) in the context of locally weigthed least
squares regression. For the 1,000 simulations used to produce
Table 1, we found for the quadratic function g, (with n = 50
and o = .1) that the percentages that xy falls in .45, .55]
are 93.3% and 93.3% when using the constant and variable
bandwidth sclector, with means (and standard deviations) of Xg
ot 519 (.0378) and .519 (.0377). These figures should be com-
parcd with the corresponding ones in Table | (i.e., 93.9%,
mean .5 18, and standard deviation .0353). For the cosine func-
tion (with 7 = 100 and 0% = .1), we obtained 92.4%. mean .507
(standard deviation .0588) and 92.4%, mean .509 (standard de-
viation .0593) for the constant and variable bandwidths, Hence
very little difference in these examples results from using the
more sophisticated bandwidth selectors. There is a little gain
in using the better bandwidth selectors when dealing with
(the more dillicult) cosine function. Similar conclusions hold
true for all other simulations that we carried out (and do not re-
port here). In cases where the functions are less nicely behaved
to the right and the lcft of jump points it might be worthwhile
to choose better bandwidth selectors.

5.4 Further Discussion

So far no theorctical results have been established for the
data-driven procedure. From the literature, we know that for ap-
propriately chosen fixed bandwidths, the two-step estimator of a
jump discontinuity achieves the optimal rate n~'. This would be
expected to continue to hold when using the data-driven band-
widths (based on a consistent bootstrap procedure), but theoret-
ical work 15 needed to establish the rate of convergence of the
data-driven estimation method.

Jump discontinuities represent only one type of irrcgularity
that might occur in an otherwise smooth regression function,

Other types of irregularitics include changes in the derva-
tive functions. The fully data-driven estimation procedure de-
veloped in this article can be adupted for detecting jumps in
dervative functions. This essentially requires the use ol an
appropriate diagnostic function and an appropriate family ol
paramctric tunctions in the least squares step (see Gijbels and
Goderniaux 2004b).

One also might be interested in testing whether or not an un-
known regression function has jump discontinuities, Such test-
ing problems are rather difficult and arc mostly dealt with via
asymptotic theory. We have proposed bootstrap testing proce-
dures based on the two-step cstimation method that seem to
perform very well in comparison with other testing procedures
available in the literature. They do not rely on asymptotics
and are data-driven, so that the user is not left with a dif-
ficult and crucial choice of some smoothing parameter (sce
Gijbels and Goderniaux 2004a).
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