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Sequential change-point detection with likelihood ratios

Edit Gombay 1

Department of Mathematical Sciences, University of Alberta, 632, Central Academic Building, Edmonton,
Alberta T6G 2G1, Canada

Received July 1999; received in revised form September 1999

Abstract

We consider the problem of sequential change-point detection when the family of distributions is exponential, and
distinguish between parameters of interest, and nuisance parameters. Likelihood ratios are used as test statistics, and
their large sample approximations under the alternative hypothesis of change are given. Our formulae allow type II error
approximations and they suggest di�erent schemes for change detection and change-point estimation. c© 2000 Elsevier
Science B.V. All rights reserved
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1. Introduction

Let X1; X2; : : : be a sequence of independent random variables with densities belonging to the exponential
family of distributions, that is, for the density=probability function of Xi; i = 1; 2; : : : ; we have

logf(x; �) = T (x)�′ + S(x)− A(�); �= (�; �);

T (x) = (T1(x); : : : ; Td(x); Td+1(x); : : : ; Td+p(x)) = (Td(x); Tp(x));

where � ∈ 
; � ∈ 
1⊂Rd; � ∈ 
2⊂Rp; d¿1; p¿0, and 
=
1×
2. (The transpose of a vector is denoted
by �′.) In our discussion � is the parameter of interest and � is a nuisance parameter. We are interested in
testing for a change in � from a known initial value � 0 to some unknown value in the presence of nuisance
parameter �. Our null hypothesis is

H0: �= � 0 for r:v:’s X1; X2; : : :
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and the alternative is

Ha: �= � 0 for r:v:’s X1; X2; : : : ; X�;

�i= � a for r:v:’s X�+1X�+2; : : : :

The change-point �, and the parameters � a; � are unknown.
Testing for H0 against Ha can be done, for example, by Shewhart charts, by Shiryayev–Roberts procedure,

by cumulative sum tests, by exponentially weighted moving averages, depending on the model assumptions.
See Shewhart (1931), Shiryaev (1963), Roberts (1966), Pollack and Siegmund (1985), Srivastava and Wu
(1993), Gosh and Sen (1991), and references therein. Now, we propose the use of the generalized likelihood
ratio. This allows testing for any parameter=parameter vector, not just the mean, and allowing the presence
of nuisance parameters is also an improvement compared to most existing procedures. For the application of
the likelihood ratio test to the change-point problem we refer to Chapter 1 in Cs�orgő and Horv�ath (1997).
The connection between sequential tests and sequential change detection procedures is very close. Our

null hypothesis is the same as that of a sequential test for a value � 0. Gombay (1996) derived almost sure
approximations for the generalized likelihood ratio under H0. The test statistic is

�n =
sup�∈
2

∏n
i=1 f(Xi; �

0; �)

sup�∈
1 ; �∈
2
∏n
i=1 f(Xi; �; �)

; n¿1:

Hence, we have an approximation which can be used to obtain critical values to control the level of signi�-
cance. See Gombay (1998) for practical implementations and weighted versions. The family of distributions
considered in this note is smaller than in Gombay (1996), so we state the conditions for our present case and
state the result we want to use.
Let �0 be a neighbourhood of (� 0; �), and let �a denote a neighbourhood of the (d + p)-dimensional

interval spanned by endpoints (� 0; �) and (� a; �) where � is the true value of the nuisance parameter.
To unify the conditions for the two theorems we state them for a general �⊂Rd+p. (∇ denotes the vector

of partial derivatives.)
(C1) ∇�A; ∇�A are continuous and have unique inverses in �, which are Lipschitz continuous of order one

in each variable.
(C2) The matrices ∇2

�2A, and ∇2
�2A are positive de�nite, Lipschitz continuous of order one in each variable

in �. Furthermore, their inverses exist.
(C3) (@3=@�i@�j@�k)A(�); i; j; k = 1; : : : ; d+ p, exist and are bounded in �.
(C4) E�|Ti(X )|
 ¡∞; 16i6d+ p, with some 
¿ 2.
We also assume that the probability space is rich enough to support all stochastic processes de�ned below.

Theorem 1. If H0 and conditions (C1) – (C4); are satis�ed for �=�0; then there exist independent; Wiener
processes W1(x); : : : ; Wd(x); such that with Vd(x) = (1=x)

∑
16j6d W

2
j (x)

(i) sup16t¡∞| − 2 log�[nt] − Vd(nt)|=O(n−�(log log n)1=2); a:s:; where 0¡�6 1
2 − 1=
;

(ii) for any 0¡�¡ 1∣∣∣∣ sup
16k6n

(−2 log�k)1=2 − sup
16t6n

V 1=2(t)
∣∣∣∣=OP(exp(−log n)1−�):

The proof of Theorem 1 is more simple than those of the corresponding theorems in Gombay (1996), so
it will be omitted.

Theorem 2. Let � = �a. Under conditions (C1) – (C4); if n¿�; then

sup
n→∞

∣∣∣∣∣−2 log�n − nQnn1=2V 1=2n
−
(
n− �
n

)1=2 W (n− �)
(n− �)1=2 +

(
�V ∗
n

nVn

)1=2
N(0; 1)

∣∣∣∣∣= oP(1);
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where W (·) is a Wiener process; the standard normal random variable N(0; 1) is independent of W (·);
Qn = (�an − (� 0; �0an ))∇2

�2A(�
∗)(�an − (� 0; �0an ))′;

Vn = (�an − (� 0; �0an ))∇2
�2A(�

a; �)(�an − (� 0; �0an ))′;

V ∗
n = (�

a
n − (� 0; �0an ))∇2

�2A(�
0; �)(�an − (� 0; �0an ))′;

�an; �
0a
n are de�ned in (3:1) and (3:4); respectively; while for �∗ (3:6) holds.

The complexity of the notation of the di�erent parameter values is present because of the crucial role these
di�erent points in the parameter space play in deriving these results, and it cannot be avoided.
By (C1), (C2), and by the de�nitions of �an; (�

0; �0an ), one can see that Vn 6= 0; V ∗
n 6= 0, and the quadratic

form Qn in the mean is positive and bounded away from zero as n → ∞. Theorem 2 generalizes some of
the results in Gombay (1997), where �= 0 was considered.
In Theorem 2 nothing is assumed on the connection between � and n. The result covers the case when

� does not depend on n as well as the case when � is a function of n. For example, if � = [n�], for some
0¡�¡ 1, then in Theorem 2 we would have

sup
n→∞

∣∣∣∣∣−2 log�n − nQnn1=2V 1=2n
−
(
�
(
1 +

V ∗
n

Vn

))1=2
N(0; 1)

∣∣∣∣∣= oP(1):
Furthermore, in this case Qn; Vn, and V ∗

n would be constants, not depending on n, only depending on �.
Combining Theorems 1 and 2, we can see that the sequential generalized likelihood ratio-based statistic

−2 log�n has the following large sample behaviour.
Until the change point it has approximately a constant mean value d (number of parameters of interest),

that starts to increase at the change point by a value Qn with each additional observation. The variance will
also change at � from the approximate value of 2d to the sum of two weighted quadratic forms.
The increments in the process {−2 log�n}, when additional observations are taken after change, are inde-

pendent in the leading term, as shown in (3.5). They are not identically distributed as the mean and variance
are changing. See examples for demonstration. Hence cumulative-sum, and other change-in-the mean proce-
dures may be adopted for {−2 log�n}. In particular, if we prepare a cusum plot for it, the point, where the
graph of observed values starts to increase, can be taken as our estimator for �.

2. Examples

Example 1. Let {Xi} be normal random variables, the mean, �, the parameter of interest, the variance, �2, a
nuisance parameter. The test statistic is

−2 log�n = n
{
−log

(∑
(Xi − X )2

)
+ log

(∑
(Xi − �0)2

)}
:

As the initial parameter value is assumed to be known, without loss of generality, we may assume that
�0 = 0. We have to express the parameters in terms of the natural parameters of the exponential family. We
have d = p = 1; 
1 = R; 
2 = (0;∞); T1(x) = x; T2(x) = x2; � = �=�2; � = −1=2�2; A(�; �) = 1

2 log(2�) −
1
2 log(−2�) − 1

4 �
2=�;∇�A(�; �) = (−�=2�;−1=2� + � 2=4�2). The matrix of the di�erent quadratic forms, in

terms of the original parameters, is

∇2
�2A=

(
�2 2��2

2��2 4�4 + 4�2�2

)
:
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Solving Eqs. (3.1) and (3.4) we get for the components of �an, in terms of the original parameters

�an =
�a

(�=n)(�a)2 + �2
;

�an =
(
−1
2

)
1

((n− �)=n− ((n− �)=n)2)(�a)2 + �2 ;

and

�0an =
(
−1
2

)
1

[(n− �)=n](�a)2 + �2 :

The vector of the quadratic forms is

(�an − (� 0; �0an ))

=
(

�a

(�=n)(�a)2 + �2
;
(
−1
2

)
1

((n− �)=n− ((n− �)=n)2)(�a)2 + �2 +
1
2

1
[(n− �)=n](�a)2 + �2

)
:

Example 2. Let �2 be the parameter of interest, and � the nuisance parameter in the normal observations. As
the initial value is known, we assume w.l.g. that �0 = 1. Then the test statistic is

−2 log�n = n log
(
1
n

n∑
i=1

(Xi − X )2
)
+ n−

n∑
i=1

(Xi − X )2:

In terms of the natural parameters, � = −1=2�2; � = �=�2; T1(x) = x2; T2(x) = x; ∇�A(�; �) = (1=2� − �2=
4� 2; �=2�). The null hypothesis is that there is no change in the distribution along the sequence of observa-
tions, while the alternative hypothesis is

Ha: �2 = (�0)2; � unknown; for r:v:’s X1; X2; : : : ; X�;

�2 = (�a)2; � unknown; for r:v:’s X�+1; X�+2; : : : ;

and in terms of the natural parameters � and � it is

Ha: �= � a; � unknown; for r:v:’s X1; : : : ; X�;

�= � a; �0a unknown; for r:v:’s X�+1; X�+2; : : : ;

with �0a= �=(�a)2. (This change in the � value leaves the proof of the theorem valid.) Solving equations we
get for the components of �an,

� an =
(
−1
2

)
1

(�=n)(�0)2 + [(n− �)=n](�a)2 ;

�an =
�

(�=n)(�0)2 + [(n− �)=n](�a)2 :

For �0an we have

�0an =
�

(�0)2
:

The vector of the quadratic forms in Theorem 2 is

�an − (� 0; �0an ) =
(
−1
2

1
(�=n)(�0)2 + [(n− �)=n](�a)2 −

−1
2(�0)2

;
�

(�=n)(�0)2 + [(n− �)=n](�a)2 −
�

(�0)2

)
;
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and its matrix is

∇2
�2A=

(
2�4 + 4�2�2 2��2

2��2 �2

)
:

Example 3. Now, we are looking for simultaneous change in both parameters of the normal distribution.
Without loss of generality, we may assume � 0 = (0; 1), and then the test statistic is

−2 log�n =−n log
(∑

(Xi − X )2
n

)
+
∑

X 2i − n:

In this case d = 2; p = 0, as there is no nuisance parameter. T1(x) = x; T2(x) = x2; �1 = �=�2; �2 =
−1=2�2; �=(�1; �2); ∇�A(�1; �2)=(−�1=2�2;−1=2�2 + 1

2�
2
1=�

2
2). Solving equations we get for the components

of �an = (�1; �2)
a
n

�a1n =
[(n− �)=n]�a

�=n+ [(n− �)=n]((�a)2 + (�a)2)− ([(n− �)=n]�a)2 ;

�a2n =
(
−1
2

)
1

�=n+ [(n− �)=n]((�a)2 + (�a)2)− ([(n− �)=n]�a)2 :

The vector in the quadratic form is

(�an − (� 0; �0an )) = (�a1n; �a2n − 1
2 );

and the matrix ∇2
�2A is the same as in Example 1.

Example 4. Consider three independent sequences of normal observations {X1i}; {X2i}, and {X3i}, all with
variance one. Test that the three population means are equal, i.e.,

H0: �1 = �2 = �3 = �; � unknown; for r:v:’s X1i ; X2i ; X3i ; i = 1; 2; : : :

against a change

Ha: �1 = �2 = �3 = �; � unknown; for r:v:’s X1i ; X2i ; X3i ; i = 1; 2; : : : ; �;

�j 6= �k ; for some k 6= j; for r:v:’s X1i ; X2i ; X3i ; i = �+ 1; �+ 2; : : : ;

where � and �j; j = 1; 2; 3, are unknown constants. This is like a sequential ANOVA test for the equality of
three means, when they are initially equal. To apply our theorem we transform the parameters: �1 =�1 +�2−
3�3; �2 = �1 − �2; �= �3, and we get T1(x1; x2; x3) = (x1 + x2)=2; T2(x1; x2; x3) = (x1 − x2)=2; T3(x1; x2; x3) =
x1 + x2 + x3. Our hypotheses become

H0: (�1; �2) = (0; 0); � unknown; for r:v:’s X1i ; X2i ; X3i ; i = 1; 2; : : :

and

Ha: (�1; �2) = (0; 0); � unknown; for r:v:’s X1i ; X2i ; X3i ; i = 1; 2 : : : ; �;

(�1; �2) 6= (0; 0); � unknown; for r:v:’s X1i ; X2i ; X3i ; i = �+ 1; �+ 2; : : : :

The test statistic is

−2 log�n =
(
∑3

j=1

∑n
i=1 Xji)

2

3n
− (
∑n

i=1 X1i)
2

n
− (
∑n

i=1 X2i)
2

n
− (
∑n

i=1 X3i)
2

n
:
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A(�1; �2; �) = �21=4+ �
2
2=4+

3
2�
2 + �1�; ∇�A(�) = (12�1 + �;

1
2�2; 3�+ �1). Solving equations again, we get for

�an in terms of the original parameters �
a
n = ([(n−�)=n](�1 +�2)−2[(n−�)=n]�3; [(n−�)=n](�1−�2); (�=n)�+

[(n− �)=n]�3), and �0an = (�=n)� + [(n− �)=n](�1 + �2 + �3)=3. So the vector of the quadratic forms is

(�an − (� 0; �0an )) =
(
n− �
n
(�1 + �2 − 2�3); n− �n (�1 − �2); n− �n

(
�3 − �1 + �2 + �3

3

))
;

and their matrix is

∇2
�2A=




1
2 0 1

0 1
2 0

1 0 3


 :

As this is a constant matrix, the three quadratic forms Qn; Vn, and V ∗
n are identical, and Theorem 2 gets a

very simple form.

Example 5. Consider the problem of two population proportions that are unknown but equal initially. The
interest is in detecting a change in this situation. More precisely, assume Yij; j=1; 2; : : : ; i=1; 2, are indepen-
dent sequences from populations with probability functions fij(y)=�

y
ij(1−�ij)1−y; y=0; 1; 0¡�ij ¡ 1; i=

1; 2; j = 1; 2; : : : , and test

H0: �1j = �2j; �2j = �2; j = 1; 2; : : :

Ha: �1j = �2j; �2j = �2; j = 1; 2; : : : ; �;

�1j = �1; �2j = �2; �1 6= �2; j = �+ 1; �+ 2; : : : ;

where �; �1; �2 are unknown. To reparametrize, we write

logf(y1; y2; �1; �2) = y1log
�1

1− �1 + y2log
�2

1− �2 − (−log[(1− �1)(1− �2)]);

and let �= log (�1=(1− �1))− log (�2=(1− �2)); �= log (�2=(1− �2)). We test
H0: �= 0; � unknown; for r:v:’s Yij; i = 1; 2; j = 1; 2; : : : ;

Ha: �= 0; � unknown; for r:v:’s Yij; i = 1; 2; j = 1; : : : ; �;

�= � a; � unknown; for r:v:’s Yij; i = 1; 2; j = �+ 1; �+ 2; : : : ;

where �; � a; � are unknown. Now, T1(y1; y2) = y, and T2(y1; y2) = y1 + y2,

A(�; �) =−log
[(
1− e�+�

1 + e�+�

)(
1− e�

1 + e�

)]
:

The matrix of the quadratic forms in terms of the original parameters is

∇2
�2A=

(
�1 − �21 �1 − �21

�1 + �2 − �21 − �22 �1 − �21

)
:

Calculations of �an − (� 0; �0an ) give for its �rst component

log
([(n− �)=n]�1 + [(n− �)=n]�2)(1 + [(n− �)=n]�2 − (�=n)�2)
((�=n)�2 − [(n− �)=n]�2)(1− [(n− �)=n]�1 − [(n− �)=n]�2)

and for its second component

log
((�=n)�2 − [(n− �)=n]�2)(1− (�=n)�2 − [(n− �)=n]�1)
(1− (�=n)�2 + [(n− �)=n]�2)((�=n)�2 + [(n− �)=n]�1) :
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3. Proofs

Proof of Theorem 2. We have

−2 log�n = 2
n∑
i=1

{T (Xi)�̃′n − A(�̃n)} − 2
n∑
i=1

{Td(Xi)� 0′ + T ′(Xi)�̂
′
n − A(� 0; �̂n)};

where T (Xi) = (Td(Xi); Tp(Xi)),

�̃n = inv ∇�A

(
1
n

n∑
i=1

T (Xi)

)
;

�̂n = inv ∇�A

(
� 0;

1
n

n∑
i=1

Tp(Xi)

)
;

which are to be interpreted as

∇�A(�̃n) =
1
n

n∑
i=1

T (Xi);

∇�A(� 0; �̂n) =
1
n

n∑
i=1

Tp(Xi);

respectively. When n¿�

E
n∑
i=1

T (Xi) = �∇�A(� 0; �) + (n− �)∇�A(� a; �):

De�ne �= �an as the solution of equations

∇�A(�) =
�
n
ET (X1) +

n− �
n

ET (X�+1);

which gives

�an = inv ∇�A
(
�
n
ET (X1) +

n− �
n

ET (X�+1)
)
: (3.1)

From the law of iterated logarithm we get that∥∥∥∥∥ET (X1)− 1
�

�∑
i=1

T (Xi)

∥∥∥∥∥=OP
((

log log �
�

)1=2)
;

so using (C1) we obtain

‖�an − �̃n‖=OP(n−1(� log log �)1=2 ∨ n−1((n− �) log log(n− �))1=2): (3.2)

We can write

−2 log�n =
{
2

n∑
i=1

[T (Xi)�̃
′
n − A(�̃n)]− 2

n∑
i=1

[T (Xi)�a
′
n − A(�an)]

}

+

{
2

n∑
i=1

[T (Xi)�a
′
n − A(�an)]− 2

n∑
i=1

[T (Xi)(� 0; �̂n)
′ − A(� 0; �̂n)]

}

= 2L1n + 2L2n:
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By Taylor expansion and the de�nition of �̃n

L1n =
n∑
i=1

T (Xi)(�̃n − �an)′ − n(A(�̃n)− A(�an))

=
n∑
i=1

T (Xi)(�̃n − �an)′ − n{∇�A(�̃n)(�̃n − �an)′ +
1
2
(�̃n − �an)∇2

�2A(�
a
n)(�̃n − �an)′}+ Rn

=
n
2
(�̃n − �an)∇2

�2A(�
a
n)(�̃n − �an)′ + Rn

where

Rn =
n
2
(�̃n − �an)(∇2

�2A(�̃n)−∇2
�2A(�

a
n))(�̃n − �an)′

+ n{third order terms in (�̃n − �an)j; j = 1; : : : ; d+ p}
=OP(n−2(� log log �)3=2 ∨ n−2((n− �) log log (n− �))3=2)
= OP(
�n); (3.3)

by conditions (C2), (C3), and (3.2).
De�ne �= �0an as the solution of equations

∇�A(� 0; �) =
�
n
ETp(X1) +

n− �
n

ETp(X�+1);

that is,

�0an = inv ∇�A
(
� 0;

�
n
ETp(X1) +

n− �
n

ETp(X�+1)
)
: (3.4)

Taylor expansion gives

A(�an)− A(� 0; �̂n) = A(�an)− A(� 0; �0an ) + A(� 0; �0an )− A(� 0; �̂n)
= A(�an)− A(� 0; �0an ) +∇�A(� 0; �̂n)(�

0a
n − �̂n)′

+ 1
2(�

0a
n − �̂n)∇2

�2A(�
0; �0an )(�

0a
n − �̂n)′

+ 1
2(�

0a
n − �̂n)(∇2

�2A(�
0; �̂n)−∇2

�2A(�
0; �∗))(�0an − �̂n)′;

where ‖�∗ − �̂n‖6‖�0an − �̂n‖.
Using the law of iterated logarithm as in (3.2) before, (C2), and the de�nitions of �0an and �̂n, we get that

the last quadratic form above is OP(
�n). We have

L2n =
n∑
i=1

[T (Xi)�a
′
n − A(�an)]−

n∑
i=1

[T (Xi)(� 0; �0an )
′ − A(� 0; �0an )]

+
n∑
i=1

[T (Xi)(� 0; �0an )
′ − A(� 0; �0an ) ]−

n∑
i=1

[T (Xi)(� 0; �̂n)
′ − A(� 0; �̂n)]

=
n∑
i=1

T (Xi)(�an − (� 0; �0an ))′ − n(A(�an)− A(� 0; �0an )) +
n∑
i=1

Tp(Xi)(�0an − �̂n)T

− n
{
∇�A(� 0; �̂n)(�

0a
n − �̂n)′ + 1

2(�
0a
n − �̂n)∇2

�2A(�
0; �0an )(�

0a
n − �̂n)′

}
+ OP(
�n):
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Combining the expressions for L1n and L2n, we get when n¿�

− 2 log�n = 2
n∑
i=1

T (Xi)(�an − (� 0; �0an ))′ − 2n(A(�an)− A(� 0; �0an ))

+ n(�̃n − �an)∇2
�2A(�

a
n)(�̃n − �an)′

− n(�0an − �̂n)∇2
�2A(�

0; �0an )(�
0a
n − �̂n)′ +OP(
�n)

= 2
n∑
i=1

T (Xi)(�an − (� 0; �0an ))′ − 2n(A(�an)− A(� 0; �0an ))

+OP

(
�
n
log log � ∨ n− �

n
log log(n− �)

)
; (3.5)

as by (3.2), and by a similar statement for ‖�0an −�̂n‖ the above quadratic terms are OP((�=n) log log �∨[(n−�)=
n] log log(n− �)). The remaining sum in (3.5) is of independent components. Its expected value is two times

E

{
n∑
i=1

T (Xi)(�an − (� 0; �0an ))′ − (A(�an)− A(� 0; �0an ))
}

=(�∇�A(� 0; �) + (n− �)∇�A(� a; �))(�an − (� 0; �0an ))′

− n∇�A(�an)(�
a
n − (� 0; �0an ))′ +

n
2
(�an − (� 0; �0an ))∇2

�2A(�
∗)(�an − (� 0; �0an ))′; (3.6)

where �∗ is a point between �an and (�
0; �0an ), in the (d+p)-dimensional sense. As the de�nition of �

a
n causes

cancellation in (3.6), we get that apart from an error of O((�=n) log log � ∨ [(n − �)=n] log log(n − �)), the
expected value of −2 log�n is

nQn = n(�an − (� 0; �0an ))∇2
�2A(�

∗)(�an − (� 0; �0an ))′¿ 0:

Terms U (Xi) = T (Xi)(�An − (� 0; �0an ))′; i = 1; 2; : : : , are independent. We note that, if there is no change
n∑
i=1

U (Xi) = 0;

as in that case

�an = (�
0; �); �0an = �:

Let Yi =D U (X�+i); i = 1; 2; : : : , be independent random variables, and n¿�. By (C4) and Koml�os et al.
(1975, 1976), there exists a Wiener process, s.t.∣∣∣∣∣

k∑
i=1

(Yi − EYi)=V 1=2n −W (k)
∣∣∣∣∣ a:s:= o(k1=�); (3.7)

where

Vn =Var(U (X�+1))

= (�an − (� 0; �0an ))∇2
�2A(�

a; �)(�an − (� 0; �0an ))′:
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From this we get∣∣∣∣∣((n− �)Vn)−1=2
n∑

i=�+1

(U (Xi)− EU (Xi))− (n− �)−1=2W (n− �)
∣∣∣∣∣ a:s:= o((n− �)−�);

06�6 1
2 −

1
�
: (3.8)

By the central limit theorem

1
�1=2

�∑
i=1

(U (Xi)− EU (Xi))=(V ∗
n )
1=2

is approximately a standard normal random variable, where

V ∗
n =Var(U (X1))

= (�an − (� 0; �0an ))∇2
�2A(�

0; �)(�an − (� 0; �0an ))′:
As the two sums

∑�
i=1 U (Xi) and

∑�
i=�+1U (Xi) are independent, (3.5), (3.7) and (3.8) give the theorem.
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