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Abstract

Assuming that the observations are from an exponential family we obtain the asymptotic
distribution of the maximum likelihood estimator of the time of change. We also prove that the
maximum likelihood ratio test is asymptotically normal, if there is a change in the parameters
at an unknown time.
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1. Introduction and results

Let X),X5,...,X, be independent random vectors in R™. We assume that
X1.Xs,..., X, have probability densities with respect to v, a o-finite measure and the
density of X; is in the exponential form

f(x:0;) = exp(T(x)8] + S(x) — AB:){x € C},

where x = (x1,...,%x),0; = (0;1,....0,4) € OCRLT = (T),...,T;) and CCR™.
Several authors studied the detection of changes in the parameters of random sequences
(cf. the review papers of Csorgd and Horvath (1988) and Zacks (1991)). In the simplest
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case we want to test the null hypothesis of ‘no change’, i.e.,
I{OZ 01 ::02 =:~-~=:0n

against a ‘one change’ alternative, i.e.,
g )

Hp @ there is an integer k*, 1 <k* < n such that 6, = - =64 £ 0, =
. =0,
We can use the maximum likelihood method to test Hp against Ha. It is easy to
see that the generalized likelihood ratio is

Supg H]gisk f(Xi;0)sup, Hk+l<isn f(X;;0)

A = , (1.1)
supg [ [} <; < /(X5 0)
if k = k* is known. Since £* is unknown, we reject Ho for large values of
Q, = max (2log Ay). (1.2)

I1<k<n

Assuming some regularity conditions on the function 4(8), we get a simpler expression
for Ar. Let 4'(0) = (;5A4(8),..., 7-4(0)),0 = (61,...,64). We assume that

C.l. invA (@), the unique inverse of A'(0) exists for all 0 € ©.

If C.1 holds, then the log likelihood ratio can be written as

log Ay = kH(By) + (n — k)H(B}) — nH(B,), (1.3)
where
H(x) = (invd' (x))x" — A(invd (x)), (1.4)
1
B =, > T(X) (1.5)
I<igk
and
1
Bl = — d T(X). (1.6)
k+1<i<n

Restricting the more general case in Gombay and Horvath (1994) to the exponential
family, we get the limit distribution of Q, under Hp. Let a(t) = (2log?)"/? and bu(¢) =
2logt+ % loglogt —logI'(d/2), where I'(t) = f0°° y*~'e7¥dy is the Gamma function.

Theorem 1.1. Assume that Ho holds, and the true value of the parameter is 0,. In
addition to C.1, assume that there is an open interval ®,C @ CRY containing 0,
such that A(0) has continuous derivatives up to the third order, if 6 € O, and
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2
A"(0) = ﬁA(()), 1 <i,j<d} is a positive definite matrix, if 0 € @,. Then,
i0j

lim P{a(logn)Q}? <t + ba(logn)} = exp(—2¢~")
for all t.

In this paper we are interested in the distribution of Q, under the alternative. So far
only some special cases of 0, have been considered under Hy in the parametric frame-
work (cf. Yao and Davis, 1984; Haccou et al., 1988). Ferger (1994a, b, ¢, d) studied the
behaviour of some tests derived from U-statistics under the null as well as the alter-
native hypothesis without assuming the form of the underlying densities. Szyszkowicz
(1991a, b, c) obtained the weak convergence of empirical and related processes under
contiguous alternatives which include the ‘small disorder’ as a possible change-point
alternative.

If H, does not hold, we may want to estimate the time of change. The maximum
likelihood estimator of £*, the time of change, is defined by

k =min{k : 0, = 2log Ax}. (1.7)

Bhattacharya (1987) defines a similar estimator which maximizes the quadratic func-
tional of the partial sums By — B} over a restricted range. Estimators which are defined
as the time when a random process reaches its maximum have also been studied by
Yao (1987), Csorgo and Horvath (1987), Diimbgen (1991), Ferger and Stute (1992),
Ferger (1994c, ¢) and Antoch et al. (1995). Consider first the behavior of k under Ho,.

Theorem 1.2. If the conditions of Theorem 1.1 hold, then
kin = ¢,

where P{{, =0} =P{{, =1} =1

Proof. Gombay and Horvath (1994) showed that

lim P{k<n/logn or k>n —nf/logn} =1

and since {A;,1<k < n} 2 {An—k+1,1<k < n} under Hp, we get immediately
Theorem 1.2. [

Now we consider the behaviour of Q, and % under the alternative. We say that the
change occurs early, if k*/n — 0 and the change is small, if the difference between the
parameters before and after the change goes to zero, as n — co. We have different types
of limit results, depending on whether we have small changes or the change occurs
immediately after the first few observations. The results will be given in Theorems
1.3-1.6. Let 0;1) and 0;2) be the values of the parameter before and after the change.
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The size of the change is 4, where 42 = (0! — 0{")(8'" — 8'7)T. We consider the
following four cases:

F.l. k* =k*(n), 0 < lim,_ o k*/n=4 < 1 and 0;1 ),022) are fixed elements of the
interior of ©.

F.2. k* = k*(n), 0 <limy— oo k*(n)/n =2 <1, 8 =0 (n) — 04,07 = 0P (n) —
0,4, as n — oo, where 84 is in the interior of © and

nA%(n)
im =
n—oc loglogn

(1.8)

F3. k* = k*(n), lim,_, k*(n)/n = 0, 09),022) are fixed elements of the interior of
© and
k*(n)
im
n—oo loglogn

= o0. (1.9)

Fd. k* = k*(n), lim,— o k*(n)/n = 0, 0 = 67(n) — 8,07 = 0P(n) — 0,, as
n — oo, where 04 is in the interior of © and

* 2
k*(n)4 s

= 10
n—oo loglogn (1.10)

Next we define 7, = 4'(0’),7, = 4'(6) and 1, = 4'(8,). Let {Y;,i < 0} be
independent, identically distributed random vectors (i.i.d.r.v.’s) with density function
f(x; 09)) (with respect to v) and similarly, {Y;,i > 0} are i.i.d.r.v.’s with density func-
tion f(x; 0;2)). We assume also, that the two sequences {Y;,i < 0} and {¥;,i > 0}
are independent. Now we define

T
(T (Y- 1)

(H’(rz) - H'(z, )) >
—k{H(ty) — H(t)) + H' (1) (1) — 1)} ifk <0,

k<ig—1

Zi=40 if k=0, (1.11)

(H’(tn)—H’(rz)> > (T(Yi)—rz)

I<isk

+h{H(t)) — H(ty) + H'(t) )12 — 11)'}, if k > 0.

Let

u :k*H(11)+(n—k*)H(‘tz)—nH(%‘tl+n_nk ‘Ez) (1.12)
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and

ot = MH'(v1) — H'(m + (1 - 224" (0 ) H (1))
—H'(Jt1 + (1 = Du))' + (1 = YH (1) — H' (3, + (1 — Dr2))
xA"(OPYH' (1) — H'(Jt) + (1 — ). (1.13)

As usual, N(g,0?) denotes a normal r.v. with parameters y and a°. Let
T ={t:1=4'0),0 € 6}
and
Tt e)={t: ||t — (511 + (1 —s)12)||<e for some 0<s< 1},
where ||x||? = xxT.

Theorem 1.3. Assume that Hy, F.1, C.1 hold, and
C.2. there is ¢ > 0 such that H'" exists and H" is positive definite on T *(1,,
12;€),
C3. H' ()t — 1) +H(ty) — H(t1) < 0,
C4. H'(t))(t: —t) +H(t) - H(t) <0,
and
C.5. supecser—o(H(sti + (1 = 5)02) — sH(T1) — (1 — $)H(12)) < 0

fora110<5<%.

Then,
-k Lo, (1.14)
where
é:inf{k:Zk: sup Z,} (1.15)
—oc<i<oo
and
(0, — 207) < N(0,407). (1.16)

Next we consider the case when F.2 holds.
Let * = (11 — )11 — 12)T,

2 = lim (T1(n) — 2(n)H"(T4)(T1(n) — T2(n))"

nmo (Ti(n) — T(m) (i (1) — W) (1.17)

and

o3 = M1 — A)a?. (1.18)
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We also define
oaWi(—t) - Laile| ift <0,
wrt)y=24 0 if 1 =0, (1.19)
oaWa(t) — Lo3lt|  if >0,

where {W\(t),t>0} and {W>(t),t>0} are independent Wiener processes.

Theorem 1.4. Assume that Hy, F.2, C.1 hold, and
C.6. H' exists and H' (t) is positive definite in a neighbourhood of T4 = H'(6,).

Then,

&k —ky Lo, (1.20)
where

n=inf{t: W*(t) = sup w*(s)} (1.21)
and

(n62)"2(Q, — 2u*) -1 N(0,402). (1.22)
Let

oF = (H'(z1) — H'(12))4" (03 Y(H'(z1) — H'(z2))". (1.23)

Theorem 1.5. Assume that Hy, F.3, C.1-C.5 hold. Then,
K-k Le (1.24)
where ¢ is defined by (1.15) and
(k") 2(Qy — 207) =5 N(0,403). (1.25)
Our last theorem considers the case when we have a small and early change.

Theorem 1.6. Assume that Hy, F.3, C.1 and C.6 hold. Then,

Sk —k*y Loy,
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where 1 is defined by (1.21) and

(k*8*)"2(Q, — 2u*) -5 N(0,402),

with 63 = 3.

It is clear from Theorem 1| and Theorems 1.2-1.6, that the likelihood ratio test is
consistent against the alternative if one of the conditions F.1-F.4 hold. The proofs of
Theorems 1.2-1.6 are given in Section 3. In the following section we consider some
examples.

2. Some examples

Let
Wi(=t)— %li| ift <0,
winy=q° =0
Wyt)—1lt|  ift>0,

where W, and W, are independent Wiener processes. We also define

—o0 << o0

ﬁzinf{t:W(t): sup W(s)}. (2.1)

Bhattacharya and Brockwell (1976) (cf. also Yao, 1987 and Ferger, 1994c) proved
that the density function of 7 is

g(x) = Sexp(|x){1 — G |x|")} — (1 — (L [x]'?)), —o0 <x <00, (22)

where @ denotes the standard normal distribution function and the distribution function
is given by

G(x) =1+ (2n)"2x2e™ — L(x 4 5)B(—3x'7?) + Je"B(—3x'2),

if x >0 and G(x) = 1 — G(—x) if x<0. Using Theorems 1.4 and 1.6 we can get
distribution free limit distributions.

Corollary 2.1. If the conditions of Theorem 1.4 or Theorem 1.6 are satisfied, then
we have

(11 —)H" ) — 1)k — k%) 5 7, (2.3)

where 1 is defined in (2.1) and its density is given in (2.2).

Proof. It follows immediately from Theorems 1.4 and 1.6 and from the scale trans-
formation of Wiener processes. [
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Of course, we cannot use (2.3) to construct confidence intervals for £*, since
(t1 — 12)H"(14)(t) — 12)", the size of the jump is unknown. However, it can be
estimated from the observations.

Corollary 2.2. If the conditions of Theorem 1.4 or Theorem 1.6 are satisfied, then
(B; — B)H"(B,)(B; — B))"(k —k*) -5 7, (2.4)
where 1 is defined in (2.1) and its density is given in (2.2).
Proof. It follows from the law of large numbers that
B, 21, (2.5)

if the conditions of Theorem 1.4 or Theorem 1.6 hold. By Slutsky’s lemma and (2.3)
it is enough to show that

(B; — B;)H"(B,)(B; — B} v
o o H @ — ) (2.6)

By the law of the iterated logarithm we have

|1B; — 1]l = Op((loglog k™ /k*)'"?) Q.7)
and

IB; — 2| = Op((loglog(n — k*)/(n — k")), 2.8)
Now the conditions of Theorems 1.4 and 1.6 imply that

. loglog k*
lim =0 2.9
M (e — e H () — )T 9)

and similarly

. loglog(n — k™)
hm * " T
n—ooo (n—k*) Tt —T2)H"(t4)(t1 — 1)1 =0

It is clear that (2.6) follows from (2.7)-(2.10). O

(2.10)

Next we consider a few special cases of the results in Section [.

Example 2.1 (Normal observations, change in the mean with a known, constant vari-
ance). The density function is

e =exp| Lo L L L ome)
) =exp | 0= 303~ 557 — 7 logCmo) ),

and therefore T(¢) = t/o%, H(t) = t*6%/2 and 4() = 6%/(24%). Elementary calculations
yield that 47(0) = 1/6%, H"(t) = 6%, 02 = A1 — A}’ — 0PV /a%, 62 = (1 — L)d?,
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a3 = (0 - 0P)/o? and 0% = 0} = ¢%. Also, p* = KD gDy qf
{N;,—o0 < i < oo} is a sequence of i.i.d. standard normal r.v.’s, then

{Zy,—o0 < k < oo} £ {221),700 < k < o0},

where
9(2) 0(') k .
> N+ 2(0;” - 0Py ifk <o,
20
k<i<—1
zZ"=1¢0 if k =0,
0 — o koo o
A—G—L Z N = 5 (0 — 0Py ifk>0.
1<i<k
Hence the limit distribution of k¥ depends on 0 — 6 only.

Example 2.2. (Exponential observations). The density is given by
f(t;8) = exp(—10 + log )I{t =0},

and therefore T(t) = —t(t=20),H(x) = —1 — log(—x) (x < 0) and A(6) = —log¥.
Thus we get 63 = ;(1 — 0P — 06 +(1 DR, 62 = 21 — D2, of =
(1 —09/600)2, 62 = 62 = 0% and p~ = k" log 6 + (n — k) log 09 + nlog(4/6}" +
(1 - /1)/0(2)). If {¥*,—00 <i< oo} is a sequence of ii.d. exponential r.v.’s with

EY =1 and
R . 00 0@\
( 9(1) Z yr-1—k 1+10g5(‘1—)—w if k <0,
k<i<—1 A A
ZP =40 if k=0,
0(1) . 9(1) 91(41) ‘
1— Z (Y =D +k|{ 1 +log s — 45 ) if k>0,
BA I<i<—k 0 0/4

then we have
{Z),—0 < k < o0} L2(Z? —o0 < k < 0}
The limit distribution of @, and k depend on 0;1 )/9;2) only.

Example 2.3. (Poisson observations). The probability mass function in the natural
form is

F(t;0) = exp(t0 — e’ — log ) {1 is non-negative integer
p g
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and therefore T(t) =t,A(8) = ¢ and H(x) = x(logx — 1). Some calculations give
ot = {0 ~ log(Aexp(6”) + (1 — A)exp(65"))} exp(6}”)
(1= (0P — log(Aexp(0) + (1 - 2)exp(67))} exp(6),
a% = A1 — Ayexp(—H,), 0% = (0;]) — 0£,2))2 exp(f)f,”),
af, = O'Z =exp(—0,y)

1t = (k00 exp(8)) + (n — k)07 exp(8y) — (k* exp(8)
@) K M —k @)
+(n — k*)exp(0;’)) log exp(0 )+ exp(6 ) |.
Example 2.4 (Normal random vectors, change in the mean vector with a known,
constant covariance matrix). In this case m = d and the density is
f(x;0) = exp(x27'0" — 1027107 — Lxz~'x" — log((2n)"*det X)),

where 2 is the covariance matrix. Hence T(x) = xX~', H(x) = JxZx" and 4(8) =
192710, and we get o} = A(1 — A)(6, —6THz='(6, — 6P)T,

1 2 — 1 2
o_i ~ im (01(4)_0;))2 1(0[(4)_01(4))1"

, o = A1 - M)d?,
oo (8% — 69z P !

7= @) 02z @) - 0P

1Lk*(n — k* _
: (n )(0;1)_022))2 10 — 62T,

2 *
Gy = 0y, =

Similarly to Example 2.1, the power function depends on 021) — 0;2).

We note that Hinkley (1970) and Hinkley and Hinkley (1970) suggested the max-
imum likelihood estimator for £*. They also obtained a recursive numerical method
to approximate the distribution of k. However, the computations are too involved to
compute the distribution of k for large sample sizes.

We checked the accuracy of the limit theorems in Theorems 1.3-1.6 by Monte Carlo
simulations for the cases of Examples 2.1-2.4. All simulations were run 2000 times. We
used the sample sizes » = 50, 100 and 500 and changes at &* = nd, 1 =0.1,0.2,...,0.5
for various values of the parameters before and after the changes. It turned out that
the results in (1.16), (1.22), (1.25) and (1.27) were very accurate if u* of (1.12) was
large enough and in this case the limit theorems and the Monte Carlo simulations gave
very close values, and the power was above 0.9. If the limit theorems gave different
values from the Monte Carlo simulations for the power functions, the limits always
underestimated the true power. Serious difference between the true and the asymptotic
powers occurred only if p* is small and the power was less than 0.7.
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We also checked the accuracy of the confidence intervals. We observed that the
location of the time of change does not have a great effect on the confidence in-
terval and the size of the jump was the important factor. It is interesting to note
that Corollary 2.1 gave shorter confidence intervals than the results in (1.15) and
(1.24).

3. Proofs of Theorems 1.3-1.6

First we obtain bounds for the difference between & and k*. Then we study the
gsymptotics of log A; in a neighbourhood of k¥ which yield the limit distributions of
k — k* and log A;. Let

k* —k e
kH(t)) + (n — k)H T+ g
n—k n—k

) —k*H(t1) — (n = k")H(12)

if 1<k<k™,

M =
kH <’;—*n AL Tz) (= () = KHE) ~ (1 — kH()
if &° < k<n,
and
Vi =log Ay —log A=, 1<k < n.
Lemma 3.1. If the conditions of Theorem 1.3 are satisfied, then
Ik — k*| = Op(1). (3.1

Proof. Let 1<k <k”. The Taylor formula gives

e = (k —k)H(T) + (k" — DH(T2) + (k* — HH'(12)(11 —12)"
1(k* —k)?

+2 n—k

(t1 — )H" (") — ),

where T* is on the interval connecting "nT”kktl + "n__kk T; and 1,. By the continuity of

H’ we can find a constant C; > 0 such that

1 (k* — k)
2 n—k

(k* — k)?

I(t1 — ©)H"(t")(T — )| <C p—

(3.2)
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for all 1 <k<k*. We can choose a small enough a such that

e <3k = {H ()11 — )" + H(z) — H(T)}, (3.3)
if na<k<k*. It is easy to see that

" =(n—k){H<’;*_‘kkn ¥ ’;—_kk*fz> - ) - r;__]:H(Tz)}

<(n—k) sup {H(tt) + (1 = t)yry) — tH(71) — (1 — 1)H(12)},

(k*—n2)/(n—na)<t<k*/n

(3.4)
if 1<k<na. By (3.3) and (3.4) we can find a constant C; < 0 such that
w<Ck™ —k), if 1<k<k™. (3.5)
A three-term Taylor expansion gives
kH(By) — kH(z,) — (k"H(By») — k" H(11))
=kH'(v))(Bi — 1) —k*H'(t))(Be- —11)"
+’]2E(Bk —t)H" (1) (B — 1) - kz—*(Bk* —T)H" (1)) (B — 1))
+ R, (3.6)
and by the law of the iterated logarithm we have
max [Ri1] = Op(1). (3.7)

1<k<k

Let % < o < 1. Using again the law of the iterated logarithm we get
| max |kH' (1) )(By — 11)" — k*H'(z)) (B — 1))T|/(k* — k)* = Op(1) (3.8)
and similar arguments yield

max |k(By —t)H"(7))(Bi —1))"

1<k <k
—k*(By- — t))H" (1)) (B — 1)T|/(k* — k)

= 0p(1). (3.9)
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As in (3.6) we have

k*—k —k*
(n—k){H(B/f)—H< pamyall +r;_k"-'2>}—(n—k*){H(B/:*)“H(Tz)}

*—k  n—k -k n—k Y
=(n—k)H' B — —
(n =) (n—ktl+n—k12)(k rz—k":I n—k‘rz)
n—=k kK —k n—k* k* —k n—k*
B*_ _ Hl/
+ 2 (k rt—kt1 n—ktz> <n—k11+n—krz)

=k on—k \
X (B;: — T — ‘Ez) - (n — k*)H/(Tz)(B;:* —-Tz)T

n—k n—=k
n—k* * ” * T
~T S (Bl —t)H"(0)(B}. — )" + Ri (3.10)
and
\max_[Rz| = Op(1). (3.11)

Next we write

k* —k n—k* B~k n—k* \
Riz = (n—k)H' B — —
%3 (n ) (n—krl+n—krz>(k n—k‘rl n—k12>

—(n—k)H' (1)(Bf —12)"
k* —k n—k*

:{H’(n_kr|+ n_k‘tz> —H'(Tz)} Z (T(X:) — )"

k*<i<n
K-k on—k
7 T
+H (n—kﬁ+ n_k‘52> Z (T(Xi) —n)
k<i<k*
S o) Y (T — )T
n—k -
k*<i<n
k* — k e
+ H n+i ) Y (TX) )" (3.12)
n—k n—k i

Using again the law of the iterated logarithm we obtain for all % < o < 1 that

max |Rys)/(k* — k)* = Op(1). (3.13)
1<k <k*
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Similar arguments yield
. K-k n—k* af K —k n—k*
1<k ek ("_k)<B"“ ko n—k”)H (n—krl+ n—k”)

=k on—k_\
X <B,f -t 1.‘2) —(n— k") By —t2)H" (1)

x(By. —t2)'|/(k* — k)
= Op(1)
if i <a<l.

It follows from (3.5) and (3.6)—3.14) that

lim limsupP{ max V, > —M} =0

K—00 n—oo I<k<k*—K
for all M > 0. By (3.15) we get

lim limsupP{k < k* —K} =0,

K—o0o n—oo

and similarly one can obtain
lim limsupP{k > k* + K} =0.
K—oc n—ooo
Now Lemma 3.1 follows from (3.16) and (3.17). O
Lemma 3.2. If the conditions of Theorem 1.4 are satisfied, then

8k — k*| = 0p(1).

Proof. Let 1 <k<k*. A three-term Taylor expansion gives

k* —k —k*
= (k" — k) H T+ | — Hny)
n—=k n—=k

+(n - k*){H(’:__,f T+ "n__':rz) - H(Tz)}

*

n—
n—k

* — k* 2
+k k (”__L) (t2 —T)H"(t1)(%2 — T})T

= (k" —k)H'(11) (ta—n)'

2 n—k

(3.14)

(3.15)

(3.16)

(3.17)
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k*—k
+(n — k")H'(12) (1 —1)'
n—k
—k [k —kY
+7 (1, — T)H"(T)(12 — 11)" + Ra (3.18)
2 n—k
and
max Rk’4|/<(k__kl("__k)52) =o(1). (3.19)
I<k<ke n—k

By the mean value theorem, (3.18) and (3.19) we can find a constant C3 < 0 such
that

(k* —k)(n—k")
n—k

It is easy to see that

i < Cs o if 1<k<k™ (3.20)

Vi — e = kH'(1))(Be —11)" — k*H'(11)(Bex —11)'
K-k  n—k K-k  n—k Y
1 * -
+(n k)H(n_k‘t1+n_k‘tz><Bk n—kt‘ n_k12>

k
—(n—kH (1)(Bf — )" + E(Bk —t)H" (T )(Be —11)"

k*
_T(Bk* ~t)H" (T )(Ber —11)"

n—k* .
- (Bi. —12)H" (1B — )"
n—k k* —k n—k* k* —k n—k*
B — — H" 2
+ 2 <k n—kt] n—ktz) (n—ktl+n—kth>
. K=k n—k* Y
X(Bk—- n~k‘tl— n-k1'2> +Rk’5 (321)

and

Re,s| < C{kllBk P + & Bie — il + (= k)| B —

3
}. (3.22)

max k32| B, — 11 /(loglogk)** = 0p(1), (3.23)
1<k<k*

k*—k —k*
B;:- 11—n T2
n

=k e

The law of the iterated logarithm yields
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and therefore by (3.20) we have

lim limsupP{ max k|| By — 1|1/ |u| > s} =0 (3.24)
K—o0 n—oo | <k <k*—K/o?

for all € > 0. Using similar arguments we can establish that for all € > 0
lim limsupP{ max Ry s|/|uk] > e} =0. (3.25)
K—oo n—ooo 1<k <k*—K/5?

Writing
KH' (1)) By — 1) — k*H' (1) (B —11)'
=k on—k k*—k  n—k \
p— I * — —
+(n k)H<n—ktl+n—kt2)<Bk n—ktl n_k‘tz)
~(n— K)H'(1)(Bf. — 1)

Kt —k pe
= {H’<n_ktl+r;—k12> —HI(Tl)} Z (T(Xi)_T])T

k<ishk*
k*—k n—k*
! ! T
+{H (n_k o —— n) —H(m} > (T(X)— )
k*<i<n
= Ri6 +Ri7, (3.26)
we get
—k*
max Rk,6|/(” S((k* — k) loglog(k* — k))‘/2> = 0p(1) (3.27)
1<k <k n—k
and by the central limit theorem we have
max |Ry 7|/ k*_ké(n—k*)”z = 0p(1) (3.28)
1<keke TV T Tk PR ’
Hence by (1.8) and (3.20) we have
lim limsupP{ max  |Rie+ Re 7/l > E} =0 (3.29)
Koo n—oo 1<k <k —K/S?
for all ¢ > 0.
By the law of the iterated logarithm we have
max |k(By — 1)) H"(t))(By — 11)"| = Op(loglogk™) (3.30)

I <k<k*
and (1.8) implies

. (n—k)loglogn
1 =
R e sy sy (33D
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for all 0 < o« < A. Thus by (3.20) we have

max |k(By — t)H"(t1)(Br — 1) |/|m| = Op(1), (3.32)

I<k<an

if 0 < o < A. Similarly, the central limit theorem, (1.8) and (3.20) yield that for all
0<a< i

max_[k*(Be- —T)H" (v )(Bee — 1) |/|1e] = Op(1). (3.33)

1<k<an

Using again the law of the iterated logarithm and the central limit theorem we
obtain

max |[{k"*(By — 1) — k"' 2B — 1)} H" (v )k (B — )"/ |

an <k <k*—K/9?

= 0p(1)

(n — k)(loglog k)" —-1/2
L ey s s L

n (k* — k) L 1/2
kl/Z(k* +k)1/2 k*

_ 12
max (n — k)(loglogk)
m<k<k -kt (k* —k)(n — k*)6?

(k* —k)loglog(k* —k)\?* k" —k
{(emet)

12
- 0,:(1)(M> , (3.34)

> (T(X)—1)

k<i<k*

}

> (TX)-7)

Pgigk™

= Op(1)

K

where Op(1) does not depend on K. Putting together (3.32), (3.33) and (3.34) we
obtain

K—oo n—oo | <k <k*—K/6*

lim lim supP{ max  [k(Bi —t)H" (1) )(Bi — 71"

—k™(Bg+ —T)H"(11)(Bie — 1) |/ 1| > 5} =0 (3.35)
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for all € > 0. Similarly to (3.35) one can prove that

k* —k
lim li P -k B — T
KLmoo lﬁgp { lskg}c%)ik/éz (n ) ( k n—k

n—k* Ak =k n—k . Kk =k n—k Y
—n—ktz)H<n—ktl+n—kt2 B

/] > 5}

_ 0 (3.36)

—(n— k*)(Bf. —t)H"()X(Bf. —12)"

for all £ > 0. By (3.21), (3.25), (3.29), (3.35) and (3.36) we have

lim limsupP{ max 5 Vi — |/ ] > 5} =0 (3.37)

K—oo n—oo | <k <k*—K/o
for all € > 0, which by (3.20) immediately implies

lim limsup P{k < k* — K/&*} = 0. (3.38)

K—oo n—ooo

Similar arguments yield

lim limsup P{k > k* + K/6%} = 0,

K—oo n—oo

which also completes the proof of Lemma 3.2. O

Lemma 3.3. If the conditions of Theorem 1.5 are satisfied, then
[k — k*| = 0p(1). (3.39)

Proof. First we assume that 1 <k <&*. The Taylor formula yields

(n— k){H(l:__:t] + "n__kk* ‘tz) - H(tz)}

* 2
=k =~ OH @)@ o)+ 5

(T —T)H" (") (T — 12)".

Since maxj <y <k % — 0, as n — 00, by C.3 we can find a constant C; < 0 such

that

W <Ca(k* — k) if 1<k<k®. (3.40)
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As in the proof of Lemma 3.1, (3.40) implies that

lim limsupP{ max Vi, > —M} =0
K—00 n—o0 I<k<k*—K

for all M > 0.

61

(3.41)

Since £*/n — 0, we need different estimates for maxy-  x <x <, Vs. We show that

lim limsupP{k max |V — e/ || > e} =0

K—oc n—ooc *+K<k<n

for all ¢ > 0. Let k* <k < n. Using again the Taylor formula we get

e = k{H(—*n ML k*Tz) - H(m} + (K — B{H(r) — H)}

k k
= (k* —){H'(t))(t) — )" + H(ty) — H(11)}

W \2
+E (k —k >(1-'1 —)H (')t — ),

2 k
and therefore we can find two constants > 1 and Cs < 0 such that
e <Cs(k — k™) if k™ <k<pk™.
Similarly to (3.6)—(3.14) one can show that

(T Vi — el /(k — k*)* = Op(1)

for all % <o < 1. Now (3.43) and (3.44) yield

K—oo n—oo k* +K <k < P+

lim limsupP{ max |V — wel/ || > 5} =0

(3.42)

(3.43)

(3.44)

(3.45)

for all € > 0. By condition C.4, for each 1 < § <y < oo we can find Cs = Co(B,7) < 0

such that
W < Cek™ if Pk* <k <yk™.
Noting that

we = k*{H(t) — H) + H'(12)(1) —12)"}

«\2
T <k7> (11 = T)H" ()1 — 1),

we can choose for each large enough y a constant C; = C7(y) < 0 such that

we < C7k* if yk* <k < n.

(3.46)

(3.47)
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Putting together (3.46) and (3.47) we get
W <Cek*™ if pk*<k < n (3.48)

with some constant Cg < 0. By the law of the iterated logarithm and the central limit
theorem we have

max
pk* <k<n

k k

k<H(Bk) - H(_*n ML "*n)) — K*(H(Be-) ~ H(T))

+(n — k)YH(B;) — H(t2)) — (n — k" )(H(B;.) — H(12))

* k_k*
H’<7€—‘n+ r Tz){ Z (T(X)—7)"

I <igk™

= max
Bk* <k<n

+ > (T(Xi)—Tz)T}—H'(Tl) > Iy —n)

k* <i<k 1 <igk™
+H'(1) Y (T(X) - 1) — H'(ta) Y (T(X)) —12)"| + Op(loglogn)
k<i<n k*<i<n
k* k —k*
< H/ . _H/ Y T
max ( ( R Tz) (n)) g;k*(T(X,) )
+ max ||H’ —*1: -i—k_k*r - H'(ty) Z (T(X;)) —12)T
Pk <k<n k ! k 2 2 ek ! 2
+ Op(loglogn)
k—k* k*
-0 " K N2 1/2
PO ey, i+ 0D ey Sk =k Cloglog )
+ Op(loglogn)
= o(k™). (3.49)

By (3.45), (3.48) and (3.49) we have

K—o00 n—oo k*+K<k<n

lim limsupP{ max | Vi — /|l > e} =0 (3.50)
for all € > 0. Lemma 3.3 follows from (3.41) and (3.50). 0O

Lemma 3.4. If the conditions of Theorem 1.6 are satisfied, then
Ok — k*| = Op(1).

Proof. The proof is a combination of the proofs of Lemmas 3.2 and 3.3 and therefore
it is omitted. [J
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In Lemmas 3.1 and 3.3 we showed that the difference between k* and % is bounded.
This shows that the distribution is determined by those values of V; when £ — £* is
bounded. Next we consider the weak convergence of Vi« 4.

Lemma 3.5. If the conditions of Theorem 1.3 or 1.5 are satisfied, then for each
positive integer N we have

(Vier ik =0,+1,42, . AN} 5 {Zi k= 0,£1,£2, .. +N},
where Zy is defined in (1.11).

Proof. Let 1 <k <k*. Taylor expansion gives

— = _ _ _ _ —12

b max Ve =t = Vi = Vi = Vis Vial = Op(n™ %), (3.51)
where

Ve =H'(m) Y (TX)—) —H'(m) Y (TX)-7),

I<igk I<i<k*

1 T
— . p— " . p—

Via —ﬁ{ Z (T(X)) rl)}H (n){ Z (T(X:) n)}

I1<i<k I<i<k

1 T
—Zk*{ > (T(Xo—m}H”(m{ > (T(Xf)—m},

1<k I <igk™
-k n—k
Vi =H' T+ T
%3 (n—k 1+ 2)

x{ &y -t) + ), (T(Xi)—rz)T}

k<isk* k* <i<n

—H'(n) Y (T(X)—1)

k*<i<gn
and

Vi.a :ﬁ{ Z (T(X;)—t)+ Z (T(X")_TZ)}HH(%II

k<i<k* k*<isn

* T
+nn——l‘;c Tz){ Z (T(Xi) —t) + Z (T(Xi)—‘rz)}

k<i<k* k*<i<n

T
_2(n_1k*){ 3 (T(X,-)—‘cz)}H//(tz){ > (T(Xi)—‘tz)},

k*<i<gn k*<i<n
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The central limit theorem yields that

o X W2+ Vial = 0p(1) (3.52)

and

max_ Ve + Vs — (H'(m) — H'@m)) Y (T(X) —1)7| = 0p(1). (3.53)

k*~N<k<k*
k<i<k*

It is easy to see that

o max e — (7 = B){H(t2) - H(t) + H'(n)(t — )} = o(1). (3.54)
Putting together (3.51)-(3.54) we get
o max Ve (H'(%) - H'(n ))g;k*(nxi) —)f
+ (k" — k){H(t2) — H(t)) + H'(22)(11 — 12)"}| = 0p(1). (3.55)
Similar arguments give
o max Ve (H' (@) - HI(TZ))“;Q(T(X") —1)!
+(k* = k){H(T1) — H(m2) + H'(11)(72 — 1)} = 0p(1), (3.56)

and therefore Lemma 3.5 follows from (3.55) and (3.56). O

Next we consider the problem of Lemma 3.5 under the conditions of Theorems 1.4
and 1.6.

Lemma 3.6. If the conditions of Theorem 1.4 or 1.6 hold, then for each K > 0 we
have

Vi g —K <t <K} Lo {(W*(1), =K <t <K},

where W* is defined in (1.19).

Proof. Using Taylor expansion, as in the proof of Lemma 3.6, with the applications
of the law of the iterated logarithm and the central limit theorem one can show that

max Ve — o — (H'(1) —H'(11)) Y (T(X) —7)"| = 0p(1). (3.57)

k*—K/82 <k<k*
/ k<i<k*
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Similarly,

max V-~ (H'(1) - H'(@)) Y (T(X;) — )| = 0p(1), (3.58)
k* <k <k*+K/3 Sl

and elementary calculations yield

SUp e e — ST — T)H (T0)(11 — 72)7/8] = o(1).

—K=<t<K

Now the weak convergence of partial sums of iid. random vectors gives the
result. [

Lemma 3.7. (i) If the conditions of Theorem 1.3 hold, then
n~V{log Ay~ — p*} = N(0,0}),

where o2 is defined in (1.13).
(ii) If the conditions of Theorem 1.4 hold, then we have

(n8%)" " {log Ay~ — u*} -2+ N(0,62),

where a3 is defined in (1.18).
(iil) If the conditions of Theorem 1.5 hold, then we have

(k)" {log Ay~ — p*} -2 N(0,03)

where o2 is defined in (1.23).
(iv) If the conditions of Theorem 1.6 hold, then we have

(k*8%)" 2 {log Ay~ — u*} -5 N(0,02)
where a2 = o% is defined in (1.17).

Proof. First we note that

log A= — p* = k™(H(By-) — H(t1)) + (n — k™ )(H(B;.) — H(12))

—n(H(B,,) _ H(En + 2= k*n))
n n

={H’(m—H'<’—§n+”;k*rz>} 3 (Tx) o)

| ik
k* —k*
+{H'(rz)—H’(—rl+n Tz)} S (TXx)-n)
n n "
k*<i<n
+ Op(1).

Hence the central limit theorem implies Lemma 3.7. O
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Proofs of Theorems 1.3-1.7. Lemmas 3.1 and 3.5 imply (1.14) and (1.16) follows
from Lemmas 3.1, 3.5 and 3.7. Similarly, combining Lemmas 3.1-3.7 we get the proofs
of Theorems 1.3—1.6.
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