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Abstract

This paper evaluates the properties of a joint and sequential estimation procedure for estimating
the parameters of single and multiple threshold models. We initially proceed under the assumption
that the number of regimes is known "a priori but subsequently relax this assumption via the
introduction of a model selection based procedure that allows the estimation of both the unknown
parameters and their number to be performed jointly. Theoretical properties of the resulting
estimators are derived and their 0nite sample properties investigated.
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1. Introduction

The recent applied and theoretical econometrics literature has witnessed a growing
interest in the class of threshold models characterized by piecewise linear processes
separated according to the magnitude of a threshold variable. When each linear regime
follows an autoregressive process for instance we have the well-known threshold au-
toregressive family of models, the statistical properties of which have been investigated
in early work by Tong and Lim (1980), Tong (1983, 1990), and more recently re-
considered and extended in Hansen (1996, 1997, 1999a, b, 2000), Caner and Hansen
(2001), and Gonz"alez and Gonzalo (1997) among others. Given their rich dynamic
structure and their ability to capture nonlinearities and asymmetries within an intuitive
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mathematical framework, this class of nonlinear models has also generated a growing
interest among economists interested in capturing economically meaningful nonlinear-
ities. Examples include the analysis of asymmetries in persistence in the US output
growth (Beaudry and Koop, 1993; Potter, 1995), nonlinearities in unemployment rates
(Hansen, 1997; Koop and Potter, 1999), threshold eFects in cross-country growth re-
gressions (Durlauf and Johnson, 1995) and in international relative prices (Obstfeld
and Taylor, 1997; O’Connell and Wei, 1997) among numerous others.
Although economic theory is often silent about the speci0c type of nonlinearities, it

frequently suggests models with switching behaviour as in the case of the speculative
storage model recently analyzed in Michaelides and Ng (2000) or situations where
macroeconomic variables such as output or employment present diFerent dynamics ac-
cording to the stage of the business cycle (see Koop and Potter, 1999; Altissimo and
Violante, 1999). It is also important to point out that the threshold family of models is
only one among a multitude of other possible speci0cations able to capture nonlinear-
ities in economic variables. The choice is typically dictated by the particular stylized
facts the model is designed to capture as well as the availability of statistical tools for
conducting inferences. Alternative formulations include Hamilton’s regime switching
model (Hamilton, 1989), the standard change-point model, bilinear processes, among
numerous others (see Carrasco (1999) for an encompassing testing strategy covering a
wide range of nonlinear speci0cations). Although the multitude of potential speci0ca-
tions may suggest that the threshold family of models is only a narrow subset, recently
Petruccelli (1992) has shown that the latter may also be viewed as an approximation
to a more general class of nonlinear processes.
Despite their ability to capture interesting asymmetric features and jump phenom-

ena observed in economic and 0nancial time series, the use of threshold models in
the applied economics literature has been quite limited when compared with speci0-
cations such as Hamilton’s regime switching model. Among the signi0cant problems
encountered when modelling data with threshold type of models are the prohibitive
computational costs when estimating speci0cations with more than two regimes and
on the theoretical side the diJculties in tabulating the limiting distributions of LR
type statistics for detecting single or multiple threshold eFects. For the latter case for
instance, inferences are nonstandard due to the well-known unidenti0ed nuisance para-
meters problem together with the fact that the relevant limiting distributions tend to
depend on model-speci0c moments, thus ruling out any general tabulation. Tsay (1989)
proposed a very interesting graphical approach for detecting the number and location of
the thresholds and more recently, Hansen (1996) has developed a general methodology
for the treatment of the at most two regime case which to our knowledge is the only
technique that can handle very general threshold models including SETAR’s of any
order, but its applicability to models with possibly more than two regimes is unclear.
In this paper our aim is to focus on some of the above-mentioned computational

and theoretical diJculties by 0rst formally establishing the large sample properties of a
sequential estimation approach that makes the estimation of multiple threshold models
computationally feasible. We subsequently concentrate on the possibility of using an
alternative approach to testing for a data-based determination of the unknown number
of regimes. The plan of the paper is as follows. Section 2 focuses on the sequential
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estimation of the parameters of a multiple threshold model under the assumption that
the number of regimes is 0xed and known. Section 3 extends the results to the case
of an unknown number of regimes by investigating the properties of a model selection
based approach for the joint determination of the threshold parameters and their number.
Section 3 concludes. All proofs are relegated to the appendix.

2. Joint and sequential estimation under a known number of thresholds

We consider the following multiple threshold model with m+ 1 regimes:

yt =
m+1∑
j=1

�′jxt I(�j−1¡zt6 �j) + 
t ; (1)

where yt is the dependent variable, xtI(�j−1¡zt6 �j) is a K × 1 vector of regres-
sors with I(·) denoting the indicator function, �j the corresponding K × 1 vector
of coeJcients and zt the threshold variable that triggers the regime switches. The
random error term 
t is a real-valued martingale diFerence sequence with respect
to some increasing sequence of sigma 0elds Ft generated by {(xj+1; zj+1; 
j); j6 t}
with E|
t |4r ¡∞ for some r ¿ 1. The threshold parameters denoted (�1; : : : ; �m) with
�0 = −∞; �m+1 = ∞ are such that �i ∈�m ∀i = 1; : : : ; m with �m = {(�1; : : : ; �m):
−∞¡�¡�1¡ · · ·¡�m¡ N�¡∞}. Thus we require all threshold parameters to lie
in the bounded subset [�; N�] of the threshold variable sample space.
The multiple threshold model (1) can also be expressed in matrix form as

y =
m+1∑
j=1

Xj�j + U; (2)

where y and U are T×1 vectors obtained by stacking yt and 
t ; Xj ≡ X∗I(�j−1¡z6�j)
is the T × K matrix obtained by stacking the regressor vectors. The dependence of
the Xj’s on the threshold parameters is omitted for notational parsimony. Here the
symbol ∗ denotes the Hadamard product operator that multiplies on an element by
element basis, I(�j−1¡z6 �j) is the stacked T × 1 vector of indicator variables and
throughout this paper we require rank(Xj) = K for all Tj¿K with Tj denoting the
number of observations present in regime j. Note also that the threshold variable zt
could be a component of the regressor matrix which may contain lagged values of
yt or a variable that is external to the system. Given data collected in y; X and z,
and assuming that the number of regimes is known, our objective is to estimate the
regression coeJcients together with the threshold parameters. Speci0cally the unknown
(m+1)K+m-dimensional parameter vector is given by �=(�1; : : : ; �m+1; �1; : : : ; �m). It
is also worth noting that within the speci0cation in (2) we have X=

∑m+1
j=1 Xj and the

regressors are such that X′
iXj=0 ∀i �= j. Before proceeding with the estimation of �, we

introduce a set of preliminary assumptions ensuring the identi0cation of the unknown
parameter vector. We de0ne X�=X∗I(�0j−�¡ z6 �0j ) and NX�=X∗I(�0j ¡ z6 �0j+�) for
a small �-neighbourhood of each of the m true threshold parameters and ∀j=1; : : : ; m.
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Assumption A1. (i) The minimum eigenvalues of X′
�X�=T and NX

′
�
NX�=T are bounded

away from zero in probability for large T and (ii) the threshold variable zt has a
positive density on [�; N�].

Part (i) of the above assumption ensures that there are enough observations around
each true threshold parameter so that they can be identi0ed. It implies that X� and NX�

have full column rank for T suJciently large. Part (ii) rules out the possibility that two
distinct threshold values produce the same 0t. In practice, the estimation procedure is
conducted by imposing an ad hoc lower bound for the number of observations present in
each regime by requiring Tj=T¿ �, with � typically set to 10% or 15% (see Andrews,
1993; Hansen, 1996, 1999a; Bai and Perron, 1998, 2000a, b).
Conditional on (�1; : : : ; �m) the model in (2) is linear in the �j’s and thus the ap-

plication of the least-squares principle leads to the concentrated sum of squared errors
function

ST (�1; : : : ; �m) = y′y −
m+1∑
j=1

y′Xj(X′
jXj)−1X′

jy (3)

from which the threshold parameters can be jointly estimated through the following
optimization programme:

(�̂1; : : : ; �̂m) = arg min
(�1 ;:::;�m)∈�m

ST (�1; : : : ; �m): (4)

The slope parameter estimates can then be computed as �̂j = �̂j(�̂1; : : : ; �̂m). We next
introduce a set of high-level assumptions which will allow us to establish the limit-
ing properties of both the joint and sequential threshold parameter estimators. We let
(�01; : : : ; �

0
m) denote the true con0guration of threshold parameters and X0

j =
X ∗ I(�0j−1¡z6 �0j ) ∀j = 1; : : : ; m+ 1 refers to the corresponding regressor matrix.

Assumption A2. As T → ∞; uniformly over �j ∈R

(i)
X′
jX

0
j

T
p→[G(�j ∧ �0j )−G(�j−1 ∧ �0j )]− [G(�j ∧ �0j−1)−G(�j−1 ∧ �0j−1)];

(ii)
X′
jU
T

p→0;

(iii)
X′
jU√
T

=Op(1);

where G(�0j ) are 0nite symmetric positive de0nite matrices ∀j and the G(�j)’s are
0nite symmetric positive de0nite matrices; absolutely continuous and strictly increasing
functions of �j ∀j = 1; : : : ; m+ 1.

In what follows it will also be understood that G(�00∧:) ≡ 0; G(�0∧:) ≡ 0; G(�m+1∧
�0m) ≡ G(�0m) and G(�m ∧ �0m+1) ≡ G(�m). Within our notational conventions it is also
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implicit that G(�m+1 ∧ �0m+1) = G � 0 together with G(�m+1) ≡ G(�0m+1) ≡ G � 0.

Thus an immediate consequence of Assumption A2(i) is that X′X=T
p→G � 0.

Assumptions A2(i) and (ii) are law of large-number type of conditions. They ex-
clude integrated processes and hold if for instance the sequence {(xt ; zt ; 
t)} is strictly
stationary and ergodic and the threshold variable zt has a continuous distribution (see
Hansen, 1996, Lemma 1). Assumption A2(iii) is a functional central limit theorem
(FCLT) type of result. A set of suJcient conditions ensuring that the FCLT holds for
the process X′

jU=
√
T (as in Hansen, 2000, Lemma A.4) together with the continuous

mapping theorem applied to the supremum functional over all �’s lead to the uniform
stochastic boundedness requirement stated in A2(iii). The set of suJcient conditions
mentioned above are typically divided into two groups. They 0rst involve conditions
for a CLT to hold for each � such as the strict stationarity and ergodicity of the se-
quence {(xt ; zt ; 
t)} combined with the requirement that 
t is a martingale diFerence
sequence and 0nite fourth-order moment conditions E|xt |4¡∞; E|xt
t |4¡∞. Second,
they involve conditions required to obtain the tightness of the above process in the
uniform metric, such as an appropriate mixing decay rate and a bounded density for
the threshold variable zt .
The above assumptions hold under a wide range of speci0cations considered in

applied work. If yt is generated by a SETAR process for instance then from Chan
(1990, 1993), A2(i)–(iii) hold provided that the relevant characteristic polynomials
have roots that lie outside the unit circle, the error process is iid with a bounded and
continuous pdf (see also Hansen (1996, pp. 420–422) for a more general discussion on
speci0cations under which A2 holds). Assumptions A2(i)–(iii) will also hold under the
framework of the threshold unit root model considered in Gonz"alez and Gonzalo (1997)
but will not hold for the threshold stochastic unit root model (TSTUR) considered in
Gonzalo and Montesinos (2000) since in general the model will not be either weakly
stationary or ergodic.
The limiting behaviour of the jointly estimated threshold parameters is summarized

in the following proposition.

Proposition 2.1. As T → ∞ and under A1 and A2(i) and (ii) we have �̂i
p→�0i ; i =

1; : : : ; m.

The above joint estimators are straightforward to compute when the model is char-
acterized by two regimes (m = 1) since the optimization programme in (4) requires
a one-dimensional grid search only. When m¿ 1 however, the computational burden
becomes substantial, requiring multi-parameter grid-based simulations over all possible
values of all threshold parameters taken together. The problem in hand is analogous to
the computational problems that arise when dealing with multiple change-point models,
recently investigated by Bai (1997), Bai and Perron (1998, 2000a, b) and in the earlier
work of Hawkins (1976) and Vostrikova (1981). In that literature it has been suggested
that one may proceed sequentially by estimating the change points one at a time since
the change-point estimator obtained as an optimizer of a misspeci0ed single parameter
based objective function (derived from a 0tted model with a single break while the
true model contains more than one) maintains its consistency property for one of the
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true change points. Given the similarities between threshold and change-point mod-
els, Hansen (1999b) also conjectured that a similar feature should hold when 0tting
threshold models. To our knowledge however the recent literature does not provide
any formal proof of the above result in the context of general threshold models such
as the speci0cation considered in (2) and even in the context of standard change-point
models, the properties of the sequential estimation approach have only been established
for simple mean shift models with no other included regressors (see Bai, 1997; Bai
and Perron, 1998, pp. 63–65; Altissimo and Corradi, 1999).
Our next objective therefore is to formally establish the properties of threshold

parameter estimators obtained via a sequential estimation approach, requiring solely
a single parameter based grid search in each sequence. We initially concentrate on
the limiting behaviour of a single threshold parameter estimate obtained from a 0tted
two regime speci0cation when the true model is given by (2). This will subsequently
allow us to formally establish the properties of a sequential algorithm for estimating
all threshold parameters one at a time. Speci0cally, the 0tted model is now given by

y = Z1T1 + Z2T2 + u; (5)

where Z1 = X ∗ I(z6 r) and Z2 = X ∗ I(z¿ r) while the true model is speci0ed as
in (2). Note that Z1 + Z2 = X and Z′

1Z2 = 0. Applying the conditional least-squares
approach outlined above to (5) leads to the following optimization programme for the
threshold parameter estimator:

r̂ = argmin
r∈�1

ST (r); (6)

where

ST (r) = y′y −
2∑

j=1

y′Zj(Z′
jZj)−1Z′

jy (7)

and �1 is the sample space of the threshold variable given by the “merged” version of
�m, i.e. �1=[�; N�]. For greater technical convenience it is useful to de0ne an alternative
objective function JT (r) = ST − ST (r), with ST = y′y − y′X(X′X)−1X′y denoting the
sum of squared errors obtained under the restriction �1 = · · ·= �m+1 imposed on (2).
Recalling that X=Z1 +Z2 we can rewrite ST = y′y− y′(Z1 +Z2)(X′X)−1(Z1 +Z2)′y
and using this formulation together with (7) leads to JT (r) = y′Z1(Z′

1Z1)−1Z′
1y +

y′Z2(Z′
2Z2)−1Z′

2y−y′Z1(X′X)−1Z′
1y−y′Z2(X′X)−1Z′

2y−2y′Z1(X′X)−1Z′
2y. Noting

also that Z′
jy = (Z′

jZj)T̂j for j = 1; 2 which follows from the least-squares formula
applied to (5) and using it in the above formulation of JT (r) we obtain

JT (r) = (T̂2 − T̂1)′Z′
2Z2(X′X)−1Z′

1Z1(T̂2 − T̂1): (8)

The optimization programme in (6) is now reformulated as

r̂ = argmax
r∈�1

JT (r): (9)

The limiting behaviour of a properly normalized version of JT (r) is established in the
following lemma.
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Lemma 2.1. As T → ∞ and under A1 and A2(i) and (ii) we have

sup
r∈�1

∣∣∣∣JT (r)T
− J∞(r)

∣∣∣∣ p→0;

where J∞(r) is a nonstochastic continuous function given by

J∞(r) =

[
m∑
‘=1

�′‘G(r ∧ �0‘)G(r)
−1 +

m∑
‘=1

�′‘(G(r ∧ �0‘)−G(�0‘))(G −G(r))−1

]

× (G −G(r))G−1G(r)

×
[
G(r)−1

m∑
‘=1

G(r ∧ �0‘)�‘ + (G −G(r))−1
m∑
‘=1

(G(r ∧ �0‘)−G(�0‘))�‘

]

(10)

with �‘ = (�‘ − �‘+1).

The above limit function J∞(r) will have diFerent expressions over the m+1 regimes.
For r = �0k and k = 1; : : : ; m we have

J∞(r = �0k) =

[
k∑

‘=1

�′‘G(�0‘)G(�0k)−1 +
m∑

‘=k+1

�′‘(G −G(�0‘))(G −G(�0k))
−1

]

× (G −G(�0k))G
−1G(�0k)

×
[
G(�0k)

−1
k∑

‘=1

G(�0‘)�‘ + (G −G(�0k))
−1

m∑
‘=k+1

(G −G(�0‘)�‘

]

(11)

and for r ∈ (�0k ; �
0
k+1) with k = 1; : : : ; m− 1 we have

J∞(r ∈ (�0k ; �
0
k+1)) =

[
k∑

‘=1

�′‘G(�0‘)G(r)−1 +
m∑

‘=k+1

�′‘(G −G(�0‘))(G −G(r))−1

]

× (G −G(r))G−1G(r)

×
[
G(r)−1

k∑
‘=1

G(�0‘)�‘+(G−G(r))−1
m∑

‘=k+1

(G−G(�0‘)�‘
]
:

(12)

Following the derivation of the uniform limit in (10), the most important subsequent
step in the evaluation of the asymptotic properties of the extremum estimator de0ned
in (9) involves establishing the existence of a unique maximum of J∞(r). Since J∞(r)
may have multiple local maxima, we initially introduce an assumption ensuring that one
of the true thresholds dominates in the data, in the sense that among the m true thresh-
old parameters there is one that most contributes to the maximization of J∞(r). We
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subsequently establish that J∞(r) has a unique maximum that occurs at that dominant
threshold parameter.

Assumption A3. There exists a single threshold parameter say �0(1) ∈{�01; : : : ; �0m} such
that J∞(r = �0(1))¿J∞(r = �0k) ∀�0k �= �0(1) and k = 1; : : : ; m.

According to the above assumption �0(1) strictly dominates all the remaining m − 1
threshold parameters in terms of their contribution to the maximization of J∞(r). Note
also that �0(1) could correspond to any of the �0i ’s ∀i = 1; : : : ; m and is not necessarily
equal to �01. To better highlight the meaning of a dominant threshold parameter as
described in Assumption A3 we consider the case of a three regime model with �0(1)=�01
for instance (i.e. assuming that in a three regime model the 0rst true threshold parameter
dominates). Given the expression of J∞(r = �0k) in (11) the above assumption then
translates into the following requirement on the limiting objective function:

J∞(�01)− J∞(�02) = �′1G(�01)G(�02)−1(G(�02)−G(�01))�1
− �′2(G(�02)−G(�01))(G −G(�01))

−1(G −G(�02))�2¿ 0:
(13)

Since �1 = �1 − �2 the above will be true for instance if the slopes corresponding to
the 0rst and second regimes are suJciently far apart and=or a large proportion of the
observations belongs to the 0rst regime. Note also that (13) can be seen as analogous
to condition (6) of Bai (1997, p. 319) in the context of a multiple change-point frame-
work. The next lemma establishes the existence of a unique maximum of the limiting
objective function.

Lemma 2.2. Under A3 the limiting functional J∞(r) in (10) is uniquely maximized
at r = �0(1).

The following two propositions next focus on the consistency and rate of convergence
of the threshold parameter estimator de0ned in (6) or (9).

Proposition 2.2. As T → ∞ and under A1; A2(i) and (ii) and A3 we have r̂
p→�0(1).

Proposition 2.3. As T → ∞ and under A1; A2(i) and (ii) and A3 we have
T |r̂ − �0(1)|=Op(1).

Propositions 2.2 and 2.3 establish that the single threshold parameter estimator ob-
tained from a misspeci0ed two regime model is T-consistent for one of the m true
threshold parameters. More speci0cally it is consistent for the threshold parameter
�0(1) ∈{�01; : : : ; �0m} that most contributes to the maximization of the objective function.
Although Assumption A3 is not restrictive from a practical perspective, we conjecture
that it would still be possible to establish results analogous to our Propositions 2.2
and 2.3 while maintaining the possibility that J∞(r) has m local maxima. This would
require the use of diFerent technical tools and an analysis along the lines of Bai (1997)
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who focused on a three regime mean-shift framework and established the convergence
in distribution of the single change-point estimator to a random variable with equal
mass at the two local optima of the limiting objective function.
The above results provide a rationale for a sequential estimation algorithm of the

m true threshold parameters by proceeding one at a time via a sequence of m one-
dimensional optimization programs as in (9) over appropriately de0ned search domains.
Once the 0rst step estimate, say r̂ (1), has been obtained for instance we can proceed
conditional on r̂ (1) and estimate the second threshold parameter by evaluating a second
stage objective function analogous to (8), say JT (r|r̂ (1)) over r ∈ (�; r̂ (1)) ∪ (r̂ (1); N�).

This is due to the fact that although r̂ (1) is T-consistent for one of the m true threshold
parameters, in practice it is not known to which true threshold parameter �0(1) corre-
sponds to. Thus in the second stage we need to consider search regions that lie to the
left as well as to the right of r̂ (1). More generally, suppose that we have estimated
h− 1 threshold parameters (r̂ (1); : : : ; r̂ (h−1)) by proceeding as described above, and let
(r̂(1); : : : ; r̂(h−1)) denote their ordered counterpart (note that the ordering of the 0rst
h−1 sequentially obtained estimates is known when proceeding with the estimation of
the hth threshold parameter estimator). The estimation of the hth threshold parameter
estimator will then involve maximizing JT (r|r̂(1); : : : ; r̂(h−1)) over r ∈ (�; r̂(1)) ∪ · · · ∪
(r̂(h−2); r̂(h−1)) ∪ (r̂(h−1); N�). More speci0cally, letting Ẑi = X ∗ I(r̂(i−1)6 z6 r̂(i)) for
i=1; : : : ; h with the convention that r̂(0)=� and r̂(h)= N� and introducing the corresponding
projection matrices

Q‘ = I −
h∑
i=1
i �=‘

Ẑi(Ẑ
′
iẐi)−1Ẑ

′
i ; ‘ = 1; : : : ; h; (14)

the estimator of the hth threshold parameter can then be de0ned as

r̂ (h) = argmax
r

JT (r|r̂(1); : : : ; r̂(h−1)) (15)

with

JT (r|r̂(1); : : : ; r̂(h−1)) =
h∑

‘=1

J‘T (r|r̂(1); : : : ; r̂(h−1))I(r̂(‘−1)¡r¡ r̂(‘)) (16)

and where J‘T (r|r̂(1); : : : ; r̂(h−1)) corresponds to an objective function analogous to (8)
but derived from each of the following h canonical forms of (5) instead,

Q‘y = Z1; ‘T1; ‘ + Z2; ‘T2; ‘ + u‘; ‘ = 1; : : : ; h; (17)

where Z1; ‘ and Z2; ‘ are de0ned as in (5) but with r ∈ (r̂(‘−1); r̂(‘)), i.e. Z1; ‘ =
X ∗ I(r̂(‘−1)¡z6 r); Z2; ‘ = X ∗ I(r ¡ z¡ r̂(‘)) and Z1; ‘ + Z2; ‘ = Ẑ‘. Speci0cally,

J‘T (r|r̂(1); : : : ; r̂(h−1)) = (T̂2; ‘ − T̂1; ‘)′Z′
2; ‘Z2; ‘(Ẑ

′
‘Ẑ‘)−1Z′

1; ‘Z1; ‘(T̂2; ‘ − T̂1; ‘):
(18)
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Note that since Ẑ
′
iZ1; ‘=0 and Ẑ

′
iZ2; ‘=0 ∀i �= ‘ and i=1; : : : ; h it follows that Z′

1; ‘Q‘=
Z′

1; ‘ and Z′
2; ‘Q‘ = Z′

2; ‘ and the least-squares estimators in (18) are de0ned as T̂1; ‘ =
(Z′

1; ‘Z1; ‘)−1Z1; ‘y and T̂2; ‘ = (Z′
2; ‘Z2; ‘)−1Z2; ‘y.

From the above notation it is clear that the consistency of the second stage threshold
parameter estimator r̂ (2) = argmaxr JT (r|r̂ (1)) and that of the subsequent ones can
be established in exactly the same manner as for r̂ (1). For this purpose we need to
introduce a generalization of Assumption A3 requiring that in each of the m estimation
sequences there is an ordering among the true threshold parameters in terms of their
contribution to the maximization of the limiting objective function evaluated at that
sequence. Speci0cally we let (�0(1); �

0
(2); : : : ; �

0
(m)) denote a particular con0guration of the

m true threshold parameters appearing not necessarily in the same order as the true
con0guration (�01; �

0
2; : : : ; �

0
m) (i.e. �

0
(i)=�0j ∀i; j=1; : : : ; m but with i not necessarily equal

to j) and also let J∞(r|�0(1); : : : ; �0(h−1)) denote the limiting objective function associated
with the (h− 1)th estimation sequence. We assume the following.

Assumption A4. There exists a con0guration (�0(1); �
0
(2); : : : ; �

0
(m)) of the m true thres-

hold parameters such that J∞(�0(h)|�0(1); : : : ; �0(h−1))¿J∞(�0k |�0(1); : : : ; �0(h−1)) ∀�0k ∈
{�0(h+1); : : : ; �

0
(m)} and h= 1; : : : ; m.

The above assumption is a generalization of A3 in the sense that we now require
that in each of the h estimation sequences a single true threshold parameter domi-
nates the remaining m − h in terms of its contribution to the maximization of the
corresponding limiting objective function. Given A4 we can now generalize our two
previous propositions to the entire con0guration of sequentially estimated threshold
parameters.

Proposition 2.4. As T →∞ and under A1, A2(i) and (ii) and A4 we have
(a) r̂ (h)

p→�0(h) and (b) T |r̂ (h) − �0(h)|=Op(1); ∀h= 1; : : : ; m.

Although it is beyond our scope to concentrate on the limiting distributions of the
threshold parameter estimators, it is also important to mention that analogous to the
change-point framework of Bai (1997), the 0rst m− 1 sequentially obtained threshold
parameter estimators will not have the same limiting distribution as their jointly esti-
mated counterparts since the former have been estimated using misspeci0ed objective
functions contaminated by the wrongly omitted thresholds and as a result will be less
eJcient regardless of the sample size. Note that this will not be the case for r̂ (m), the
threshold parameter estimator obtained in the last sequence. It is however possible to
re0ne the sequentially obtained estimates so as to make them have the same asymp-
totic distribution as their jointly estimated counterparts. This is achieved by adapting the
technique referred to as repartition in Bai (1997) to this multiple threshold framework.
The approach is straightforward to implement in practice and involves reestimating the
threshold parameters conditionally on the initially estimated ones so that each re0ned
estimate is obtained without an underlying neglected regime. Under m=2 for instance
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this can be achieved by reestimating r(1) taking r̂ (2) as given and subsequently reesti-
mating r̂ (2) taking the re0ned 0rst stage estimate as given. This is the principle adopted
in the analysis that follows.

2.1. Empirical properties

Having established the consistency of the joint and sequential estimators, our next
objective is to evaluate their relative behaviour in 0nite samples, viewing the joint
estimation as the benchmark case. Our empirical results will also provide an overall
picture of the 0nite sample behaviour and quality of estimators derived from threshold
type speci0cations, features that to our knowledge have not been investigated in the
recent time series literature and that are crucial for applied research. Given the compu-
tational burden that arises when dealing with models having more than three regimes,
we limit our analysis of the properties of the jointly estimated threshold parameters to
models with at most two threshold parameters (three regimes).
Before proceeding with the empirical performance of the threshold parameter estima-

tors however, it is important to highlight some diJculties that arise when designing a
threshold type data-generating process. The problem is related to the sensitivity of the
variance of the estimators of the slopes (and implicitly that of the threshold parameter
estimators) to the choice of the true threshold level. In a two regime (single threshold
parameter) set-up for instance one would expect to obtain more accurate estimates of
both the threshold parameter and slopes if the true threshold parameter is set equal to
the median or mean of the distribution of the threshold variable. In practice however
it is often impossible to evaluate the moments of the threshold variable appearing in
the DGP analytically making the interpretation of the resulting estimators (empirical
bias, variance, etc.) extremely sensitive to the choice of the true threshold parameter.
It is this latter aspect that we wish to initially illustrate by concentrating on a very
simple DGP that lends itself to analytically tractable results. This will then allow us to
achieve a fairer interpretation of our subsequent simulations based on richer dynamic
structures.
We initially consider the following two regime model

yt = �1I(yt−16 �1) + �2I(yt−1¿�1) + 
t ; (19)

where 
t ≡ NID(0; �2
 ) with �2
 set equal to 1 with no loss of generality and we let
�01 denote the true value of the threshold parameter. Letting �(·) denote the c.d.f. of
a standard normal random variable and noting that I(yt−16 �1) is a Markov Chain,
standard calculations using its transition matrix lead to P(yt6 �01) = �(�01 − �2)=(1 −
�(�01−�1)+�(�01−�2)) ≡  (�01) and for �1 �= �01 P(yt6 �1)= [�(�01−�2)�(�1−�1)+
�(�1 − �01)�(�1 − �2)]=(1− �(�01 − �1) + �(�01 − �2)) ≡  (�1). Letting �1(�1); �2(�1)
and �2
 (�1) refer to the limits in probability of �̂1(�1); �̂2(�1) and �̂2
 (�1), respectively,
it is then straightforward to obtain

�2(�1)− �1(�1) = (�2 − �1)
 (�1 ∧ �01)−  (�1) (�01)

 (�1)(1−  (�1))
(20)
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and

�2
 (�1) = �2
 + (�2 − �1)2 (�01)(1−  (�01))

− (�2 − �1)2
[ (�1 ∧ �01)−  (�1) (�01)]

2

 (�1)(1−  (�1))
; (21)

where  (�1 ∧ �01) =  (�1)I(�16 �01) +  (�01)I(�1¿�01). From the expression of  (�01)
given above it is clear that under the above DGP we will have  (�01) = 0:5 when
�01=0:5(�1+�2) also implying that �01=E(yt). In other words choosing a true threshold
parameter equal to the average of the parameters appearing in each regime ensures that
it will also be equal to the mean and median of the threshold variable, thus leaving an
equal number of observations in both regimes. Under �1 = 1 and �2 = 2 for instance,
setting �01 = 1:5 would ensure an equal number of observations in both regimes (i.e.
 (�01 = 1:5) = 50%) while the value of the true threshold parameter corresponding to
the 0rst quartile is �01 =1:022 and that corresponding to the third quartile is �01 =1:979.
To further explore the impact of speci0c choices of the magnitude of �01 we can also
evaluate the behaviour of the limiting variance of �̂2(�

0
1)−�̂1(�

0
1). Standard calculations

give

VT (�̂2(�
0
1)− �̂1(�

0
1)) →

�2

 (�01)(1−  (�01))

(22)

and using the expression of  (�01) given above we can observe that the above limiting
quantity draws like a U-shaped curve (across alternative magnitudes for �01), centred
at �01 = 0:5(�1 + �2) and increasing rapidly when we move outside the Uat horizontal
region. This suggests that choosing �01 in an improper range will lead to estimators with
an extremely high variance relative to the most favourable mean (or median) location.
Under �1 =1 and �2 =2 for instance, the parabola is centred at �01 =1:5 with the corre-
sponding variance equal to 4 while the variance corresponding to �01 =0 for instance is
close to 40, a ten-fold increase. In order to illustrate the usefulness of the above points
we conducted a simulation experiment using the DGP in (19) and evaluated the empir-
ical bias and variance of �̂1 for diFerent values of �01 together with the corresponding
magnitudes for the slope estimates. Speci0cally, we chose �01 ∈{0:75; 1:00; 1:50; 2:40}
corresponding to 0rst regime proportions of 15.0%, 24.0%, 50.0% and 89.0% respec-
tively. Results are displayed in Table 1.
It is immediately clear that the threshold parameter estimate becomes highly impre-

cise for values of �01 that fall outside the [1,2] range, with a typically greater than
three-fold increase in its empirical standard deviation. Note that the corresponding em-
pirical 0rst regime proportions were 16.1%, 24.7%, 50.3% and 86.6% respectively,
remarkably close to their theoretical counterparts. The third and fourth columns of
Table 1 display the empirical means and standard deviations of the resulting estimated
slope parameters �̂1(�̂1) and �̂2(�̂1). The biases of the latter are small and of similar
magnitude across all true threshold parameter values. In summary the purpose of this
preliminary exercise was to highlight the importance of experiment design when con-
sidering threshold type DGPs and that extreme caution should be taken when selecting
the magnitude of �01. Ideally for results to give a suJciently global picture it is an
important imperative to scan across a wide range of possible true threshold parameter
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Table 1
Empirical mean and standard deviation of estimators
DGP : yt= �1I(yt−16 �01) + �2I(yt−1 ¿�01) + 
t ;

�1 = 1; �2 = 2; T = 250

�01 �̂1 �̂1 �̂2

0.75 0.758 1.003 2.005
(0.142) (0.184) (0.071)

1.00 0.996 0.993 2.006
(0.133) (0.156) (0.086)

1.50 1.491 0.995 2.004
(0.096) (0.105) (0.105)

2.40 2.285 0.992 1.993
(0.286) (0.078) (0.261)

values since for models with richer dynamics, many of our analytical results would be
unfeasible to obtain.
We next concentrate on a similar speci0cation with three regimes given by

yt = �1I(yt−16 �1) + �2I(�1¡yt−16 �2) + �3I(yt−1¿�2) + 
t : (23)

Under the above true model and using standard but lengthy algebra we have

P(yt6 �1) =
�(�2 − �3)�(�1 − �2) + �(�1 − �3)�(�2 − �2)

"(�1; �2)
(24)

and

P(�1¡yt6 �2) =
�(�2 − �3)�(�1 − �1)− �(�1 − �3)�(�1 − �2)

"(�1; �2)
; (25)

where

"(�1; �2) = [�(�1 − �2)− �(�1 − �3)][�(�1 − �2) + �(�2 − �3)]

+ [�(�2 − �2) + �(�2 − �3)][�(�1 − �1) + �(�1 − �3)] (26)

and P(yt ¿�2) = 1− P(yt6 �1)− P(�1¡yt6 �2).
Our next objective therefore involves comparing the 0nite sample properties of the

joint and sequential estimation approaches when applied to (23). We concentrate on
DGPs given by (23) with �1=1; �2=2; �3=3 and 
t ≡ NID(0; 1). The chosen threshold
parameter structure encompasses a wide range of con0gurations leading to models with
approximately equally divided regime proportions as well as models in which a single
regime dominates. Speci0cally we consider (�01; �

0
2) = (1; 2); (1:5; 2:5); (1; 3) and (2; 3)

which using (23)–(26) imply regime proportions of approximately (10%, 20%, 70%),
(35%, 30%, 35%), (20%, 60%, 20%) and (70%, 20%, 10%), respectively. All our
experiments are performed using T = 200 across N = 2000 replications. The empirical
means and corresponding standard deviations of the sequentially and jointly estimated
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Table 2
Empirical mean and standard deviation of estimators
DGP : yt = �1I(yt−16 �01) + �2I(�01 ¡yt−16 �02) + �3I(yt−1 ¿�02) + 
t ;

�1 = 1; �2 = 2; �3 = 3; T = 200

(�01; �
0
2) �̂1 �̂2 �̂1 �̂2 �̂3

Sequential estimation
(1, 2) 1.244 2.230 1.183 2.211 3.002

(0.364) (0.539) (0.379) (0.445) (0.136)
(1.5, 2.5) 1.480 2.495 0.995 2.003 3.005

(0.127) (0.132) (0.125) (0.163) (0.128)
(1, 3) 0.996 2.973 0.998 2.001 3.002

(0.138) (0.146) (0.174) (0.104) (0.175)
(2, 3) 1.682 2.655 1.003 1.718 2.763

(0.581) (0.381) (0.144) (0.479) (0.396)

Joint estimation
(1, 2) 1.247 2.213 1.186 2.106 3.003

(0.360) (0.512) (0.372) (0.434) (0.143)
(1.5, 2.5) 1.479 2.493 0.992 1.997 3.011

(0.126) (0.124) (0.126) (0.152) (0.123)
(1, 3) 0.993 2.972 0.986 1.997 3.006

(0.144) (0.169) (0.175) (0.116) (0.181)
(2, 3) 1.686 2.711 1.013 1.715 2.699

(0.579) (0.391) (0.132) (0.472) (0.400)

threshold parameters together with the implied �̂’s are displayed in Table 2. Here
the sequential estimators have been obtained using two iterations. Speci0cally once
the second stage sequential estimator is obtained, we take it as given and use it to
reestimate the 0rst stage one once more. The latter is then taken as given in turn and
used to reestimate the second one.
As expected the precision of the estimates for both the joint and sequential ap-

proaches is highly sensitive to the location of the true threshold parameters with the
most favourable scenario occurring when all three regimes have an approximately
equal amount of observations. The increase in the variability of the threshold pa-
rameter estimators also translates into more imprecise estimated slopes with a quan-
titatively similar shift in magnitudes. When comparing both methods of estimation
it is immediately apparent that the 0gures corresponding to the sequential and joint
approaches are remarkably close, even for the moderately small sample size used in
the experiment. Both the point estimates and their corresponding standard errors are
virtually identical across all con0gurations of the true threshold parameters. Table 3
displays the results of a similar exercise using a SETAR(3; 1; 1; 1) model given by
yt=0:2yt−1I(yt−16−0:5)+0:8yt−1I(−0:5¡yt−16 0:5)−0:5yt−1I(yt−1¿ 0:5)+ 
t .
The choice of the true parameters is such that the regime proportions are approximately
(40%; 35%; 25%).
For this scenario, results based on both T = 200 and 400 are presented. Focusing

0rst on the relative behaviour of both estimation techniques, it is again clear that they
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Table 3
Empirical mean and standard deviation of estimators
DGP : yt = �1yt−1I(yt−16 �01) + �2yt−1I(�01 ¡yt−16 �02) + �3yt−1I(yt−1 ¿�02) + 
t ;

�1 = 0:2; �2 = 0:8; �3 =−0:5

(�01 =−0:5; �02 = 0:5) �̂1 �̂2 �̂1 �̂2 �̂3

Sequential estimation
T = 200 −0:582 0.483 0.179 1.028 −0:512

(0.519) (0.344) (0.096) (1.209) (0.125)
T = 400 −0:536 0.507 0.187 0.974 −0:509

(0.418) (0.207) (0.066) (0.683) (0.086)

Joint estimation
T = 200 −0:511 0.415 0.180 1.250 −0:508

(0.452) (0.340) (0.090) (2.037) (0.126)
T = 400 −0:502 0.492 0.188 0.985 −0:501

(0.409) (0.205) (0.071) (0.675) (0.082)

lead to estimates that remain very similar in terms of their 0nite sample variability and
bias even in the context of models with richer dynamic structures. When evaluating
the overall quality of the resulting estimators however and regardless of the estimation
technique it is important to note the drastic deterioration (in terms of loss of precision
and 0nite sample bias) of both the threshold and slope estimates when moving from
the simple threshold model with no conditional mean dynamics in each regime towards
a more general SETAR process. In the latter case, despite small 0nite sample biases the
threshold parameter estimators display a very high degree of variability which persists
even as we move from T = 200 to 400.

3. Estimation under an unknown number of thresholds: a sequential model selection
approach

In the preceding section our analysis was conducted under the assumption that the
number of regimes of the threshold models is known. In practice however economic
theory rarely oFers an intuitive rationale for an Va priori imposition of a speci0c number
of regimes in the data. Numerous empirical applications aiming to describe the dynam-
ics of macroeconomic variables have taken the ad hoc view that two regimes may be
appropriate for describing alternative dynamics for expansions and recessions. Others
(e.g. Koop and Potter, 1999) have argued that perhaps three regimes, encompassing
bad times, good times and normal times should be modelled. Given this uncertainty, it
is then natural to inquire about data-based methods for the determination of the number
of regimes.
The literature on threshold models does not seem to oFer any formal methodology

for detecting the number of regimes in threshold type speci0cations, beyond the case
involving testing single threshold versus linear models. In Chan (1990) for instance,
the author obtained the limiting distribution of an LR-type test statistic in the context
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of a general two regime SETAR model, but with the exception of a few special cases
the limiting distribution does not lend itself to conventional tabulations due to its de-
pendence on a large number of unknown parameters (e.g. moments of the regressors).
More recently Hansen (1996), developed a bootstrap-based procedure that allows the
construction of asymptotically valid p-values for a large number of test statistics for
the null of linearity versus two regimes. To our knowledge, Hansen’s (1996) asymp-
totic p-value-based approach is the only technique that allows the treatment of general
threshold type models such as SETAR’s of any order since its implementation is not
restricted to models with simple dynamics. Although its validity is established for the
treatment of the at most two regimes case it is not clear whether Hansen’s (1996)
approach can be legitimately extended to a framework that allows the sequential de-
termination of the number of regimes when the latter could be greater than two (see
Hansen, 1999a). Given the numerous unresolved diJculties arising in this context, our
objective here is to propose an alternative to sequential testing.
We propose to view the problem of specifying the number of regimes from a model

selection perspective in which our main task is to select the optimal model among a
portfolio of nested speci0cations and where the selection is made via the optimization of
a penalized objective function. The objective function is such that one of its component
is a monotonic function of the model dimension (e.g. the residual variance) and its
other component penalizes the increase or decrease of the 0rst component caused by
the increase in the model dimension. Within our threshold framework, the purpose of
the penalty term is to penalize over-segmentation as m is allowed to increase. Formally,
letting ST (�1; : : : ; �m) denote the concentrated sum of squared errors de0ned in (3), then
in the spirit of the traditional model selection literature (see Akaike, 1973; Hannan and
Deistler, 1988 and references therein) we introduce the following criterion:

ICT (�1; : : : ; �m) = log ST (�1; : : : ; �m) +
�T
T

[K(m+ 1)]; (27)

where �T is a deterministic function of the sample size (or a constant independent of T )
that is in turn multiplied by the number of free parameters. Clearly an increase in m
will lead to a reduction in ST (�1; : : : ; �m), a reduction that will be penalized due to
the resulting increase in the number of estimated parameters. It is also important
to observe that the minimization of the above objective function for given m will
lead to the same estimates of the threshold parameters as in (4) since the penalty term
does not depend on the magnitude of the threshold parameters. In a related study,
Liu et al. (1997) also considered a criterion similar to (27) for the estimation of the
number of threshold parameters. They used simulation-based evidence to introduce a
penalty term playing the role of �T . Their analysis however is based on a direct joint
estimation of the concentrated sum of squared errors function ST (�1; : : : ; �m) and diFers
from ours in its implementation and probabilistic framework. The use of a model selec-
tion approach to inferences with a criterion analogous to (27) has also been advocated
in numerous other areas of the econometric literature, including the detection of the
number of breaks in the mean of a stationary series (Yao, 1988), the estimation of the
rank of a matrix (Cragg and Donald, 1997), the estimation of the cointegrating rank
(Gonzalo and Pitarakis, 1998, 1999) among numerous others.
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Noting that under the linear speci0cation the objective function in (27), say ICT (0)=
log ST + (�T =T )K , does not depend on the threshold parameters we can introduce a
modi0ed criterion de0ned as

QT (m) = ICT (0)− min
�1 ;:::;�m

ICT (�1; : : : ; �m)

or more speci0cally as

QT (m) = max
�1 ;:::;�m

log

[
�̂2

�̂2(�1; : : : ; �m)

]
− �T

T
Km; (28)

with �̂2 = ST =T and �̂2(�1; : : : ; �m) = ST (�1; : : : ; �m)=T . The model selection based
estimator of the number of unknown threshold parameters can then be formally
de0ned as

m̂= arg max
06m6M

QT (m) (29)

for some upperbound M¿m0. Note that the threshold parameter estimates are implic-
itly obtained as a by-product of the above regime determination procedure. It is also
useful to observe that T times the 0rst component in the right-hand side of (28) is
the likelihood ratio statistic for testing linearity against m+ 1 regimes. Thus if we let
FT (�) denote any of the conventional LR- , Score- or Wald-type test statistics, we can
also consider alternative versions of the objective function in (28) by introducing

NQT (m) = max
�1 ;:::;�m

FT (�1; : : : ; �m)− �TKm; (30)

as a more general version of QT (m) in (28). This also suggests that the approach
can accommodate the presence of heteroscedasticity via the use of heteroscedasticity
robust versions of FT (·) in (30). We next concentrate on the theoretical and empirical
properties of the model selection based estimates obtained as a solution to (29).

3.1. m= 0 versus m= 1 case

When our objective is to select between a linear and a two regime speci0cation we
have m̂ = argmax06m61QT (m). Recalling that QT (0) = 0 by construction the model
selection procedure involves accepting the linear speci0cation (m=0) if QT (1)¡QT (0)
or equivalently if

ICT (0)6 min
�1∈�1

ICT (�1) (31)

and decide for the threshold model when

ICT (0)¿ICT (�1) (32)

for some �1 ∈�1. Using the expressions of ICT (0) and ICT (�1) given above it is useful
to note that the selection rule in (31) can be reformulated as

max
�1∈�1

T log

[
�̂2

�̂2(�1)

]
6 �TK (33)
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or equivalently as

max
�1∈�1

T (�̂2 − �̂2(�1))

�̂2(�1)
6T

(
exp
(
�TK
T

)
− 1
)
; (34)

where T [exp(�TK=T ) − 1] ≈ �TK . At this stage it is again interesting to note that
the quantities appearing on the left-hand side of (33) and (34) are conventional like-
lihood ratio and Wald-type test statistics for the hypothesis of linearity versus a two
regime threshold model. Their limiting distributions typically depend on unknown and
model speci0c moments and cannot be tabulated. An important advantage of the model
selection approach is that it does not rely on the critical values of the test statistics for
deciding between the linear and threshold speci0cations. Instead the decision rule is
based on the deterministic penalty term, solely function of the sample size multiplied
by the number of free parameters. Equivalently when seen from a conventional testing
perspective the above decision rule can be interpreted as using a test statistic in which
the signi0cance level is allowed to converge to zero as the sample size increases. Such
a strategy has often been advocated when one performs a sequence of nested tests so
as to avoid a build up of Type I errors or more generally to make the testing strategy
lead to consistent estimates of the number of thresholds.
We next show that the above model selection procedure leads to an estimator of m0

that is weakly consistent. The result is summarized in the following proposition.

Proposition 3.1. Letting m0 denote the true number of threshold parameters with
m0 ∈{0; 1}; m̂ de#ned as in (29) with �T such that (i) �T → ∞ and (ii) �T =T → 0
then under A1 and A2(i)–(iii) we have P(m̂= m0) → 1 as T → ∞.

The above proposition establishes that with probability tending to one and assum-
ing that m0 ∈{0; 1}, the model selection procedure leads to an estimated number of
threshold parameters that coincides with the true number provided that the penalty term
satis0es conditions (i) and (ii). A possible candidate for the choice of the penalty term
is �T = log T corresponding to a Schwarz type criterion but clearly the set of possible
choices is extremely wide making it diJcult to argue for an optimal penalty choice.
To our knowledge theoretical guidelines about speci0c choices of �T remain an open
question in most frameworks that advocate the use of model selection criteria.
Our next objective is to evaluate the 0nite sample performance of the alternative

criteria across a wider range of DGPs. We initially concentrate on linear models (i.e.
m0 = 0) and evaluate the performance (correct decision frequencies) of the various
criteria when used for distinguishing between linearity and single threshold type non-
linearity. We initially consider an AR(1) model given by yt = )yt−1 + 
t as our linear
DGP and a corresponding 0tted threshold model given by yt = )(1)1 yt−1I(yt−16 �1) +
)(2)1 yt−1I(yt−1¿�1)+ 
t . Table 4 presents the correct decision frequencies (i.e. choos-
ing m = 0 over m = 1) across three sample sizes (T = 200; 400 and 600) and where
BIC, AIC, HQ, BIC2 and BIC3 refer to the model selection criteria with penalty terms
�T = log T; �T = 2; �T = 2 log log T; �T = 2 log T and �T = 3 log T , respectively. The
main motivation for the inclusion of the less familiar penalty terms labeled as BIC2
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Table 4
Correct decision frequencies: linear model
DGP : yt = )yt−1 + 
t

) BIC AIC HQ BIC2 BIC3

T = 200
0.5 88.4 44.9 70.9 99.3 99.8
0.7 87.8 45.1 69.7 98.8 99.8
0.9 85.6 41.2 66.3 98.7 99.9
1.0 50.0 9.7 24.9 89.8 98.7

T = 400
0.5 92.4 44.9 72.5 99.2 100.0
0.7 91.1 44.7 71.9 99.5 100.0
0.9 90.9 42.0 70.7 99.4 100.0
1.0 56.9 9.7 27.4 93.2 99.7

T = 600
0.5 93.5 45.7 74.1 99.7 100.0
0.7 92.1 45.8 74.4 99.7 100.0
0.9 91.9 42.6 73.5 99.6 100.0
1.0 60.1 9.8 29.2 94.2 99.7

and BIC3 is to provide a suJciently general description of the sensitivity of the model
selection based decision frequencies to the magnitude of �T .

The frequencies corresponding to the AIC clearly highlight its inadequacy in this
framework, with the criterion shown to point spuriously to the threshold model more
than 50% of the times. This empirical frequency further deteriorates as the autore-
gressive parameter ) approaches the unit root region. Similarly the HQ criterion, de-
spite its ability to point to the true model asymptotically, is also performing poorly in
moderately large samples by wrongly selecting the threshold model close to 30% of the
times. As expected from Proposition 3.1, the criterion improves its ability to point to
the true model as the sample size grows but this latter improvement occurs very slowly
reUecting the weakness of the HQ penalty in this context. Among all model selection
criteria the best performance is displayed by the BIC and its variants, denoted BIC2
and BIC3. Under |)|¡ 1 for instance and for reasonably large sample sizes, the BIC
is able to point to the linear model more than 93% of the times with a deterioration
occurring only under the random walk model. Also, contrary to the linear regression
framework, the BIC does not appear to lead to spurious parsimonious choices. Both
the BIC2 and BIC3 are pointing to the correct model with an empirical probability
close to 1. At this stage however the BIC2- and BIC3-based frequencies must be inter-
preted with caution since a close to 100% correct decision frequency might be due to
a spurious choice of the most parsimonious structure due to the strength of the penalty
terms characterizing both criteria.
We next consider a threshold DGP (i.e. m0=1) of the form yt=)yt−1I(yt−16 0)−

)yt−1I(yt−1¿ 0) + 
t with )∈{−0:40;−0:25;−0:15;−0:10;−0:05}. Note that as the
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Table 5
Correct decision frequencies: threshold model
DGP : yt = )yt−1I(yt−16 0)− )yt−1I(yt−1 ¿ 0) + 
t

) BIC AIC HQ BIC2 BIC3

T = 200
−0:40 100.0 100.0 100.0 99.3 95.1
−0:25 94.2 99.7 98.9 72.4 43.4
−0:15 63.3 91.3 80.4 25.2 7.4
−0:10 38.7 78.2 58.9 9.9 1.8
−0:05 19.0 61.5 38.2 2.7 0.2

T = 400
−0:40 100.0 100.0 100.0 100.0 100.0
−0:25 99.9 100.0 100.0 97.0 84.2
−0:15 84.5 98.0 94.6 46.6 18.2
−0:10 53.2 88.6 75.2 16.5 3.5
−0:05 21.6 66.6 42.4 2.5 0.2

T = 600
−0:40 100.0 100.0 100.0 100.0 100.0
−0:25 100.0 100.0 100.0 99.6 97.1
−0:15 93.5 99.6 98.8 60.5 36.3
−0:10 66.5 95.2 86.3 25.4 6.0
−0:05 22.7 72.1 46.9 2.8 0.2

magnitude of |)| decreases, the existence of a two regime process will become more
and more diJcult to detect. The empirical correct decision frequencies corresponding
to this experiment are presented in Table 5.
Table 5 suggests that the BIC and to a lesser extent the BIC2 display the best

overall performance, with an excellent ability to point to the true model even for
moderately small sample sizes. As expected, the ability of all criteria to point to the
correct threshold model decreases with |)| but even under |)|= 0:15 and T = 600 the
BIC is still able to select the true speci0cation close to 99% of the times, compared
with 60% for the BIC2.

3.2. General case

Here we consider the case where there may be more than one threshold parameter
(i.e. more than two regimes) in the set of possible models. Taking advantage of our
general result on the consistency of the threshold parameter estimators in underspeci0ed
models, we propose a sequential model selection based strategy for the estimation of
the unknown number of threshold parameters, regardless of their number. Speci0cally
the idea involves 0rst proceeding as in the above section, deciding between a linear
model (m=0) and a two regime threshold speci0cation (m=1). If QT (0)¿QT (1) the
procedure stops and we decide that the data support the linear model. If QT (0)¡QT (1)
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we obtain the estimate of the 0rst threshold parameter, say r̂ (1) and conditional on this
0rst stage threshold parameter estimator we proceed with a second stage m= 0 versus
m = 1 decision process conducted on both subsamples in order to detect the eventual
presence of a second threshold. The procedure continues until the model selection
procedure leads to the choice m=0 on all subsamples. More formally, letting Q(i; j)

T (1)
denote the magnitude of (28) or (30) obtained in step i and subsample j, the stopping
rule involves concluding for the presence of m+1 regimes (or m threshold parameters)
when Q(m+1; j)

T (1)¡ 0 for all j = 1; : : : ; m + 1. The following proposition summarizes
the asymptotic properties of the sequentially estimated number of thresholds.

Proposition 3.2. Letting m̂seq denote the number of threshold parameters estimated
via the sequential procedure with (i) �T → ∞ and (ii) �T =T → 0 then under
A1–A2(i)–(iii) and A4 we have P(m̂seq = m0) → 1 as T → ∞.

At this stage it is also important to relate our analysis to the recent work on mul-
tiple structural breaks developed in a series of recent papers by Bai (1997) and Bai
and Perron (1998). Taking advantage of the T -consistency of the sequentially esti-
mated change points for instance Bai and Perron (1998) also proposed a sequential
change-point estimation=detection scheme under an unknown number of breaks. Rather
than relying on a model selection based approach however the authors considered a
stopping rule based on a sequence of supremum F-type tests, the limiting distribution
of which was shown to depend solely on the dimension of the parameter vector the
stability of which is being tested and the set of all possible values for the break frac-
tions. In a related set of companion papers (Bai and Perron, 2000a, b) the authors also
focused on the computational aspects that arise when estimating multiple change-point
models. This has allowed them to consider threshold models by reformulating the latter
in the form of a multiple change-point speci0cation via an appropriate change in the
time scale (see also Tsay, 1998). Besides diJculties that may arise when tied values
of the threshold variable are present, it is important to note that despite their sim-
ilarities threshold and change-point models have fundamentally diFerent probabilistic
properties. As pointed out in Hansen (2000) for instance the sorting operation when
the threshold variable is one of the regressors will induce a trend in the regressors
of the change-point counterpart, a framework for which distributional results are not
readily available. From a practical modelling perspective it is also not clear how the
change-point reparameterization may accommodate frameworks where the threshold
variable is composite as for instance in a SETAR model where the regime switches
are driven by the 0rst and second lags of the threshold variable. Regarding alternative
methods for the determination of the number of regimes a promising new approach
in the context of structural breaks is also presented in Altissimo and Corradi (1999)
where the authors focused on the estimation of the number of shifts in the mean of a
stationary process and designed a procedure that leads to a strongly consistent estimator
of the unknown number of breaks. Their procedure is also characterized by both Type
I and Type II errors that converge to zero asymptotically.
In order to evaluate the 0nite sample behaviour of the sequential model selection

based approach described above, we next conducted two sets of experiments using
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Table 6
Correct decision frequencies: threshold model (m0 = 1)

Sequential model selection

yt =

{
−3 + 0:5yt−1 − 0:9yt−2 + 
t ; yt−26 1:5;

2 + 0:3yt−1 + 0:2yt−2 + 
t ; yt−2 ¿ 1:5

m̂ = 0 m̂ = 1 m̂ = 2 m̂¿ 3

T = 400
BIC 0.8 80.5 18.7 0.0
BIC2 1.3 91.1 7.6 0.0
BIC3 1.3 91.5 7.1 0.0

T = 600
BIC 0.1 90.0 10.0 0.0
BIC2 0.2 96.3 3.5 0.0
BIC3 0.4 96.4 3.3 0.0

T = 800
BIC 0.1 94.4 5.4 0.0
BIC2 0.1 98.4 1.5 0.0
BIC3 0.2 98.5 1.3 0.0

models with m0=1 (two regimes) and m0=2 (three regimes). We concentrate solely on
the properties of the BIC and its two variants since our previous analysis demonstrated
the unreliability of alternative criteria such as the AIC or HQ. Results corresponding to
the two regime speci0cation are presented in Table 6. Note 0rst that the convergence
of m̂ to its true value m0 = 1 is clearly visible across the increasing sample sizes, with
the BIC detecting the true number of threshold parameters more than 90% of the times
under T = 600 and close to 95% of the times under T = 800.
It is also important to note that the procedure does not display any tendency to

under-segment in the sense that the wrong decisions are mostly clustered at m̂=m0+1.
An overall similar picture also arises from the results corresponding to a true model
with three regimes (see Table 7). Note that here although the chosen speci0cation is
globally stationary its corridor regime is characterized by a characteristic polynomi-
nal with roots that lie inside the unit circle. For this model, the BIC and its vari-
ants do not display any tendency to under-segment and the wrong decisions are again
clustered at m0 + 1. Overall the BIC displays desirable large sample properties and
a reasonably good 0nite sample behaviour. Obviously for the latter case one should
interpret any experimental result with caution since 0nite sample simulation based per-
formance can be highly DGP speci0c. Under our DGP in Table 6 for instance, our
choice of true parameter values is such that each regime has an approximately equal
number of observations (50%). If we were to modify the magnitude of the slope
and=or threshold parameters in such a way that one regime strongly dominates, then
it is natural to expect a deterioration in performance of the model selection criteria in
small samples.
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Table 7
Correct decision frequencies: threshold model (m0 = 2)

Sequential model selection

yt =




2:7 + 0:8yt−1 − 0:2yt−2 + 
t ; yt−26 5;

6 + 1:9yt−1 − 1:2yt−2 + 
t ; 5¡yt−26 12;

1 + 0:7yt−1 − 0:3yt−2 + 
t ; yt−2 ¿ 12

m̂6 1 m̂ = 2 m̂ = 3 m̂¿ 4

T = 400
BIC 0.0 79.7 20.3 0.0
BIC2 0.0 98.1 1.9 0.0
BIC3 0.0 99.1 0.9 0.0

T = 600
BIC 0.0 85.4 14.6 0.0
BIC2 0.0 99.0 1.0 0.0
BIC3 0.0 99.3 0.7 0.0

T = 800
BIC 0.0 88.1 11.9 0.0
BIC2 0.0 99.0 1.0 0.0
BIC3 0.0 99.8 0.2 0.0

4. Conclusion

In this paper our objective was to provide a model selection based framework
for estimating and conducting inferences in the context of multiple threshold models.
We formally established that estimating the threshold parameters one at a time leads
to T-consistent estimates of their true counterparts and subsequently investigated the
asymptotic and 0nite sample properties of a sequentially implemented model selection
based approach for the determination of the number of regimes.
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Appendix

We refer to the fact that a symmetric matrix A is positive (semi) de0nite by writing
A � (¡)0. More speci0cally matrix A is said to be larger than another symmetric
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matrix B if A − B¡ 0. Equivalently, A ¡ B ⇔ A − B¡ 0 ⇔ x′Ax¿ x′Bx together
with A � B ⇔ A − B � 0 ⇔ x′Ax¿x′Bx. By �min(A) and �max(A) we denote the
smallest and largest eigenvalue of matrix A.

Proof of Proposition 2.1. We reparameterize the true speci0cation in (2) as

y =W� + X�m+1 + U (A.1)

with W = [X�01
;X�02

; : : : ;X�0m ]; � = (�1; �2; : : : ; �m)′; X�0i
= X ∗ I(z6 �0i ) and �i = �i −

�i+1; ∀i = 1; : : : ; m. Next; de0ning M = I −∑m+1
i=1 Pi with Pi = Xi(X′

iXi)−1X′
i ; the

concentrated sum of squared errors function (3) obtained from the 0tted model (2)
can be written as ST (�1; : : : ; �m) = y′My. Using (A.1) and noting that MX = 0 we
reformulate ST (�1; : : : ; �m) as

ST (�1; : : : ; �m) = �′W′MW� + U′MU+ 2�′W′MU: (A.2)

From Assumptions A1 and A2(i)–(ii) we have U′MU=T=U′U=T+op(1) and �′W′MU=T=
op(1) uniformly over �i ∈�m; leading to

ST (�1; : : : ; �m)
T

− U′U
T

=
�′W′MW�

T
+ op(1): (A.3)

Letting RT (�1; : : : ; �m) = ST (�1; : : : ; �m)− ST (�01; : : : ; �
0
m) and using

ST (�01; : : : ; �
0
m)

T
=
U′U
T

+ op(1); (A.4)

we write

RT (�1; : : : ; �m)
T

=
�′W′MW�

T
+ op(1): (A.5)

Next; matrix M is symmetric idempotent and therefore positive semi-de0nite; W having
full column rank W� �=0 and (W�)′M(W�)¡ 0. We next write �′R∞(�1; : : : ; �m)� for
the nonstochastic continuous uniform probability limit of the left-hand side of (A.5)
and establish that it reaches its minimum value of zero uniquely if and only if �i = �0i
∀i=1; : : : ; m. Letting R‘‘∞(�1; : : : ; �m) denote the diagonal components of R∞(�1; : : : ; �m)
and using Assumption A2(i) we obtain

R‘‘∞(�1; : : : ; �m) =G(�0‘)−
m+1∑
i=1

[G(�0‘ ∧ �i)−G(�0‘ ∧ �i−1)][G(�i)−G(�i−1)]−1

[G(�0‘ ∧ �i)−G(�0‘ ∧ �i−1)] (A.6)

for ‘ = 1; : : : ; m and

R‘k∞(�1; : : : ; �m) =G(�0‘∧�0k)−
m+1∑
i=1

[G(�0‘∧�i)−G(�0‘∧�i−1)][G(�i)−G(�i−1)]−1

[G(�0k ∧ �i)−G(�0k ∧ �i−1)] (A.7)
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for ‘ �= k; k=1; : : : ; m and where G(�0i ∧�0) ≡ 0; G(�0i ∧�m+1) ≡ G(�0i ) and G(�m+1) ≡
G. As a direct consequence of (A.6) and (A.7) we have R‘‘∞(�1; : : : ; �m) ¡
R‘k∞(�1; : : : ; �m) ∀‘ �= k and

R‘‘∞(�1; �2; : : : ; �‘−1; �0‘; �‘+1; : : : ; �m) = 0;

R‘‘∞(�01; �
0
2; : : : ; �

0
‘−1; �‘; �

0
‘+1; : : : ; �

0
m) � 0 ∀�‘ �= �0‘; (A.8)

implying that R∞(�1; : : : ; �m) = 0 iF �i = �0i ∀i = 1; : : : ; m. Since (�̂1; : : : ; �̂m) =
argmin [RT (�1; : : : ; �m)=T ] and (A.5) converges uniformly in probability to the non-
stochastic continuous functional �′R∞(�1; : : : ; �m)� that is uniquely minimized at
(�01; : : : ; �

0
m); it follows from Theorem 2.1 in Newey and McFadden (1994) that

(�̂1; : : : ; �̂m)
p→(�01; : : : ; �

0
m).

Proof of Lemma 2.1. Using (8) we write

JT (r)
T

= (T̂2 − T̂1)′
(
Z′

2Z2

T

)(
X′X
T

)−1(Z′
1Z1

T

)
(T̂2 − T̂1):

Noting that Z′
2X=Z′

2Z2; Z′
1X=Z′

1Z1 together with (Z′
iZi)−1Z′

iU= op(1) for i= 1; 2
which follows from Assumptions A2(i) and (ii) we can express T̂2 − T̂1 obtained from
(5) as

T̂2 − T̂1 =
[
Z′

2Z2

T

]−1 [Z′
2W
T

]
� −

[
Z′

1Z1

T

]−1 [Z′
1W
T

]
� + op(1)

=
[
Z′

2Z2

T

]−1 m∑
‘=1

Z′
2X�0‘

T
�i −

[
Z′

1Z1

T

]−1 m∑
‘=1

Z′
1X�0‘

T
�i + op(1); (A.9)

where we used the same parameterization for y as in the Proof of Proposition 2.1.
Next; from Assumption A2(i) we have

sup
r

∣∣∣∣∣
(
Z′

1Z1

T

)−1 m∑
‘=1

Z′
1X�0‘

T
�‘ −G(r)−1

m∑
‘=1

G(�0‘ ∧ r)�‘

∣∣∣∣∣ p→ 0 (A.10)

and

sup
r

∣∣∣∣∣
(
Z′

2Z2

T

)−1 m∑
‘=1

Z′
2X�0‘

T
− (G −G(r))−1

m∑
‘=1

(G(�0‘)−G(�0‘ ∧ r))�‘

∣∣∣∣∣
p→ 0; (A.11)

which together with

sup
r

∣∣∣∣∣Z
′
2Z2

T

(
X′X
T

)−1 Z′
1Z1

T
− (G −G(r))G−1G(r)−1

∣∣∣∣∣ p→ 0 (A.12)

lead to the desired result in (10).
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Lemma A.1. For r ∈ (�01; �
0
2) and letting

K1 =G(�01)G(r)
−1(G(r)−G(�01));

K2 =G(�02)G(r)
−1(G(r)−G(�01))(G −G(�01))

−1(G −G(�02));

M1 =G(�01)G(�
0
2)

−1(G(�02)−G(�01));

M2 = (G(�02)−G(�01))(G −G(�01))
−1(G −G(�02));

we have

(i) M1 � K1 and M2 � K2;
(ii) ∀x �=0; 0¡x′K1x=x′M1x¡ 1;
(iii) ∀x �=0; z �=0 and x �= z; [x′M1x=x′K1x][z′K2z=z′M2z]6 1.

Proof of Lemma A.1. (i) From Assumption A2(i); G(r) is a continuous strictly in-
creasing function of r. Since r ∈ (�01; �

0
2) it follows that G(�02) � G(r) directly implying

that M1 � K1. The result M2 � K2 follows using the same argument. (ii) We use
the fact that �min(M−1

1 K1)6 (x′K1x=x′M1x)6 �max(M−1
1 K1) ∀x �=0. Since K1 ≺ M1 we

have K1M−1
1 ≺ I and therefore �max(M−1

1 K1)¡ 1 which together with
�min(M−1

1 K1)¿ 0 implies the desired result. (iii) First note that K2M−1
2 = (G(�02) −

G(�01))M
−1
1 K1(G(�02) − G(�01))

−1; implying that K2M−1
2 and M−1

1 K1 have the same
characteristic roots. Next we have

z′K2z
z′M2z

6 �max(M−1
2 K2)

and

x′M1x
x′K1x

6 �max(K−1
1 M1) = �max((M−1

1 K1)−1) = [�max(M−1
1 K1)]−1

which implies the desired result.

Proof of Lemma 2.2. With no loss of generality; we provide the proof assuming m=
2 and setting �0(1) = �01 in the context of the requirements of Assumption A3. The
proof is in three parts. Since J∞(r) takes diFerent expressions over the three re-
gions given by (�; �01); (�

0
1; �

0
2) and (�02; N�); the result will follow by showing that

the maximum of J∞(r) cannot occur in any of the three regions in the sense that
J∞(�01)¿J∞(r); J∞(�02)¿J∞(r); and the requirement that J∞(�01)¿J∞(�02). We start
by treating the case r ∈ (�01; �

0
2). Using the expression of J∞(r) in (10) and (11) and

setting m= 2 we have

J∞(�01)− J∞(r) = �′1G(�01)G(r)−1(G(r)−G(�01))�1
− �′2(G −G(�02))(G −G(r))−1(G(r)−G(�01))

×(G −G(�01))
−1(G −G(�02))�2: (A.13)
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Next; using the expressions of K1 and K2 de0ned in Lemma A.1 we can rewrite
(A.13) as

J∞(�01)− J∞(r) = �′1K1�1 − �′2(G −G(�02))(G −G(r))−1G(r)G(�02)
−1K2�2

= �′1K1�1 − �′2K2�2
+ �′2[I − (G −G(�02))(G −G(r))−1G(r)G(�02)

−1]K2�2

and observing that G(�02)G(r)
−1 ≺ (G −G(�02))(G −G(r))−1 since r ¡�02; we have

J∞(�01)− J∞(r)¿ �′1K1�1 − �′2K2�2

=
�′1K1�1
�′1M1�1

[
�′1M1�1 − �′1M1�1

�′1K1�1
�′2K2�2
�′2M2�2

�′2M2�2
]

¿
�′1K1�1
�′1M1�1

[J∞(�01)− J∞(�02)]¿ 0;

where the last inequality follows from Lemma A.1(iii) and the fact that J∞(�01) −
J∞(�02)=�′1M1�1−�′2M1�2 as established in (13). Thus; the maximum of J∞(r) cannot
occur in (�01; �

0
2). We next concentrate on the case r ¡�01. Using (10) and (11) and

standard algebra we can write

J∞(�01)− J∞(r) = w′(G −G(�01))
−1(G(�01)−G(r))(G −G(r))−1w (A.14)

with w=[(G−G(�01))�1+(G−G(�02))�2]. Next note that w=0 implies J∞(�01)¡J∞(�02)
which is ruled out by assumption; thus w �=0 and therefore the above quadratic form
is strictly positive; implying that the maximum of J∞(r) cannot occur for r ¡�01. The
treatment of the case r ¿�02 is identical.

Proof of Proposition 2.2. The result follows from Lemmas 2.1 and 2.2 and using
Theorem 2.1 in Newey and McFadden (1994).

Proof of Proposition 2.3. We proceed using the same simpli0cations as in the proof of
Lemma 2.2; setting m=2 and �0(1)=�01 with the true model given by y=X0

1�1+X
0
2�2+

X0
3�3+U. To establish the T-consistency of r̂ it suJces to show that ST (r)−ST (�01)¿ 0

for T |r − �01| suJciently large (see Chan; 1993). From Proposition 2.2; we operate in
a small neighbourhood of �01 and treat the case r ¡�01. Formally we establish that for
every ,¿ 0; there exists an 0¡M ¡∞ such that for all T large we have

P
[

min
M=T¡(�01−r)

ST (r)− ST (�01)6 0
]
¡,: (A.15)

We initially write ST (r) − ST (�01) = (ST (r) − ST (r; �01)) − (ST (�01) − ST (r; �01)) where
ST (r; �01) denotes the concentrated sum of squared errors function from the following
auxiliary speci0cation

y = Z1Q1 + Xr�01
Q2 + NX�01

Q3 + u (A.16)
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with Xr�01
=X∗I(r ¡ z6 �01) and NX�01

=X∗I(z¿�01). Here ST (r)−ST (r; �01) corresponds
to the diFerence in the sum of squared errors obtained from model (A.16) on which
the restriction Q2 = Q3 has been imposed and the unrestricted counterpart. Making use
of Xr�01

+ NX�01
= Z2 and standard algebra gives

ST (r)− ST (r; �01) = (Q̂3 − Q̂2)′X′
r�01
Xr�01

(Z′
2Z2)−1 NX

′
�01
NX�01

(Q̂3 − Q̂2): (A.17)

Similarly; ST (�01)− ST (r; �01) corresponds to the diFerence in the sum of squared errors
from (A.16) on which the restriction Q1 = Q2 has been imposed and the unrestricted
counterpart and since Z1 + Xr�01

= X0
1 we also have

ST (�01)− ST (r; �01) = (Q̂2 − Q̂1)′Z′
1Z1(X0

1
′
X0

1)
−1X′

r�01
Xr�01

(Q̂2 − Q̂1): (A.18)

Note that by Assumption A1(i); X′
r�01
Xr�01

is positive de0nite for large T implying

that X′
r�01
Xr�01

(Z′
2Z2)−1 NX

′
�01
NX�01

≡ [(X′
r�01
Xr�01

)−1 + ( NX
′
�01
NX�01

)−1]−1 and Z′
1Z1(X0

1
′X0

1)
−1

X′
r�01
Xr�01

≡ [(X′
r�01
Xr�01

)−1 +(Z′
1Z1)−1]−1 are positive de0nite. Using (A.17) and (A.18)

we write

ST (r)− ST (�01)
T (�01 − r)

= (Q̂3 − Q̂2)′

X′

r�01
Xr�01

(Z′
2Z2)−1 NX

′
�01
NX�01

T (�01 − r)


 (Q̂3 − Q̂2)

−(Q̂2 − Q̂1)′

Z′

1Z1(X0
1
′X0

1)
−1X′

r�01
Xr�01

T (�01 − r)


 (Q̂2 − Q̂1): (A.19)

Since (X′
r�01
Xr�01

) � [(X′
r�01
Xr�01

)−1 + (Z′
1Z1)−1]−1 and noting that X′

r�01
Xr�01

(Z′
2Z2)−1

NX
′
�01
NX�01

=Xr�01
(I− PZ2 )Xr�01

which follows from NX�01
=Z2 −Xr�01

and X′
r�01
Z2 =X′

r�01
Xr�01

when r ¡�01 we have

ST (r)− ST (�01)
T (�01 − r)

¿ (Q̂3 − Q̂2)′
[
X′
r�01
Xr�01

T (�01 − r)

]
(Q̂3 − Q̂2)

− (Q̂3 − Q̂2)′
[
X′
r�01
PZ2Xr�01

T (�01 − r)

]
(Q̂3 − Q̂2)

− (Q̂2 − Q̂1)′
[
X′
r�01
Xr�01

T (�01 − r)

]
(Q̂2 − Q̂1): (A.20)

From (A.16) and noting the orthogonality of the relevant regressors we write

Q̂1 = �1 +
(
Z′

1Z1

T

)−1 Z′
1U
T

;
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Q̂2 = �1 +
(
X′
r�01
Xr�01

T

)−1 X′
r�01
U

T
;

Q̂3 =
(

NX
′
�01
NX�01

T

)−1(
X0

2
′X0

2

T
�2 +

X0
3
′X0

3

T
�3 +

NX
′
�01
U

T

)

and using Assumptions A2(i) and (ii) it follows that

Q̂2 − Q̂1 = op(1) (A.21)

and

Q̂3 − Q̂2 = (�2 − �1) + (G −G(�01))
−1(G −G(�02))(�3 − �2) + op(1) (A.22)

uniformly over r ¡�01. From (A.21) and since under our assumptions ‖X′
r�01
Xr�01

=T (�01−
r)‖ = Op(1); the third term on the right-hand side of (A.20) can be made arbitrarily
small. Similarly since we are operating with r in a small neighbourhood of �01; the
second term on the right-hand side of (A.20) can also be made arbitrarily small. This
follows by writing

X′
r�01
PZ2Xr�01

T (�01 − r)
=

(
X′
r�01
Z2

T (�01 − r)

)(
Z′

2Z2

T

)−1
(

Z′
2Xr�01

T (�01 − r)

)
(�01 − r);

from which we have∣∣∣∣∣
∣∣∣∣∣
X′
r�01
PZ2Xr�01

T (�01 − r)

∣∣∣∣∣
∣∣∣∣∣6

∣∣∣∣∣
∣∣∣∣∣
X′
r�01
Z2

T (�01 − r)

(
Z′

2Z2

T

)−1
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ Z′

2Xr�01

T (�01 − r)

∣∣∣∣∣
∣∣∣∣∣ (�01 − r):

Finally for the 0rst term on the right-hand side of (A.20) we write

(Q̂3 − Q̂2)′
[
X′
r�01
Xr�01

T (�01 − r)

]
(Q̂3 − �̂2)¿ �min

[ Xr�01
Xr�01

T (�01 − r)

]
‖Q̂3 − Q̂2‖2: (A.23)

From (A.22); ‖Q̂3 − Q̂2‖ converges to a nonzero limit; thus ‖Q̂3 − Q̂2‖2 is no less than
C‖(�2 − �1) + (G − G(�01))

−1(G − G(�02))(�3 − �2)‖2 for some positive constant C
and T suJciently large. Since by Assumption A1(i) the minimum eigenvalue of the
normalized moment matrix taken in the neighbourhood of �01 is also strictly positive
for T suJciently large it follows that ST (r) − ST (�01)¿ 0 on the relevant set; thus
establishing the required result.

Lemma A.2. Consider the objective function in (16) but conditioned on h − 1 true
threshold parameters; say JT (r|�0s1 ; : : : ; �0sh−1

); with (�0s1 ; �
0
s2 ; : : : ; �

0
sh−1

) denoting a con-
#guration of h− 1 true threshold parameters ranked in ascending but not necessarily
consecutive order. Also; let J a:b∞ (r) denote a truncated version of J∞(r) in (10) with
‘ = a; : : : ; b and the convention J a:b∞ (r) ≡ 0 for a¡b; then as T → ∞ and under
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Assumptions A1 and A2(i)–(ii) we have

sup
r

∣∣∣∣∣JT (r|�
0
s1 ; : : : ; �

0
sh−1

)

T
− J∞(r|�0s1 ; : : : ; �0sh−1

)

∣∣∣∣∣ p→ 0; (A.24)

where J∞(r|�0s1 ; : : : ; �0sh−1
) is a nonstochastic continuous function given by

J∞(r|�0s1 ; : : : ; �0sh−1
) =

h∑
‘=1

J s‘−1+1:s‘−1
∞ (r)I(�0s‘−1

¡r¡�0s‘) (A.25)

with the notational conventions �0s0 ≡ �; �0sh ≡ N�; s0 ≡ 0 and sh − 1 ≡ m.

Proof of Lemma A.2. Here we have Z1; ‘ = X ∗ I(�0s‘−1
¡z6 r) and Z2; ‘ =

X ∗ I(r ¡ z6 �s‘) and write Ẑ‘ = Z1; ‘ + Z2; ‘ = X ∗ I(�0s‘−1
6 z6 �0s‘) ∀‘ = 1; : : : ; h.

Since Ẑ
′
iZ1; ‘ = 0 and Ẑ

′
iZ2; ‘ = 0 ∀i �= ‘ we have Q‘Z1; ‘ = Z1; ‘ and Q‘Z2; ‘ = Z2; ‘

and from (17) we can write T̂2; ‘− T̂1; ‘=(Z′
2; ‘Z2; ‘)−1Z′

2; ‘y− (Z′
1; ‘Z1; ‘)−1Z′

1; ‘y. Using
the same parameterization of the true speci0cation for y given in (A.1) together with
Assumptions A2(i) and (ii) we can also write

T̂2; ‘ − T̂1; ‘ = (Z′
2; ‘Z2; ‘)−1Z′

2; ‘W� − (Z′
1; ‘Z1; ‘)−1Z′

1; ‘W� + op(1)

= (Z′
2; ‘Z2; ‘)−1

m∑
i=1

Z′
2; ‘X�0i

�i

− (Z′
1; ‘Z1; ‘)−1

m∑
i=1

Z′
1; ‘X�0i

�i + op(1): (A.26)

Using the orthogonality of indicator functions for disjoint sets we next note that
Z′
j;‘X�0i

= 0 ∀i6 s‘−1; Z′
j;‘X�0i

= Z′
j;‘Zj;‘ ∀i¿ s‘ and j = 1; 2. This leads to

T̂2; ‘ − T̂1; ‘ =
(
Z′

2; ‘Z2; ‘

T

)−1 s‘−1∑
i=s‘−1+1

Z′
2; ‘X�0i

T
�i

−
(
Z′

1; ‘Z1; ‘

T

)−1 s‘−1∑
i=s‘−1+1

Z′
1; ‘X�0i

T
�i (A.27)

and the required result follows by proceeding exactly as in the proof of Lemma 2.1.
Note that here Ẑ

′
‘Ẑ‘ is analogous to the term X′X appearing in the context of Lemma

2.1 (see (A.12)); both corresponding to the entire coverage of the relevant region.

Proof of Proposition 2.4. We 0rst consider the case h = 2 in (14)–(18). Since from
Proposition 2.3; r̂ (1) is T -consistent for �0(1); it follows that as T → ∞; the uniform

probability limits of JT (r|r̂ (1))=T as de0ned in (16) and JT (r|�0(1))=T will be the same;
say J∞(r|�0(1)). It therefore suJces to show that J∞(r|�(1)) is uniquely maximized at
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r=�0(2). Letting �
0
(1) ≡ �0s1 for any s1 ∈{1; 2; : : : ; m}; Lemma A.2 applies and J∞(r|�s1 ) is

given by expression (A.25). Since from Assumption A4 �0(2) is the dominant threshold
among {�01; : : : ; �0m} \ {�0(1)}; the result then follows by proceeding as in Lemma 2.2.
Using the reparameterizations presented in (14)–(18) and proceeding conditional on
�0(1) it is also clear that the T -consistency of r̂(2) can be established following steps
that are virtually identical to the proof of Proposition 2.3. The arguments extend to
any h via a repeated use of Lemma A.2.

Proof of Proposition 3.1. We 0rst consider the case m0=0 and prove that P(m̂=1) →
0 as T → ∞; which by (32) is equivalent to P[ICT (0)¿ICT (�1)] → 0 for some
�1 ∈�1; thus implying that the procedure does not over-segment asymptotically. Using
(31)–(34) we write

P[ICT (0)¿ICT (�1)]6 P[ICT (0)¿ min
�1∈�1

ICT (�1)]

= P

[
max
�1∈�1

T log

(
�̂2

�̂2(�1)

)
¿�TK

]

= P

[
max
�1∈�1

T (�̂2 − �̂2(�1))

�̂2(�1)
¿T (e�TK=T − 1)

]
: (A.28)

Next note that when m0 =0 (i.e. the true model is linear; say y=X�+U) and the 0tted
model is given by (2) with m= 1 (i.e. two regimes); (3) together with X = X1 + X2

give

�̂2(�1) =
U′U
T

− U′X1

T

(
X′

1X1

T

)−1 X′
1U
T

− U′X2

T

(
X′

2X2

T

)−1 X′
2U
T

(A.29)

from which it follows that �̂2(�1)
p→�2
 ≡ E(
2t ) using Assumptions A2(i) and (ii).

Under m0 =0 and when the 0tted model is given by (2) with two regimes (i.e. m=1)
we also have

T (�̂2
 − �̂2
 (�1)) =HT (�1)′
[
X′

1X1

T
− X′

1X1

T

(
X′X
T

)−1 X′
1X1

T

]−1

HT (�1) (A.30)

with

HT (�1) =
X′

1U√
T

− X′
1X1

T

(
X′X
T

)−1 X′
1U√
T
: (A.31)

Using Assumptions A1 and A2(i)–(ii) we obtain

sup
�1∈�1

∣∣∣∣∣∣
[
X′

1X1

T
− X′

1X1

T

(
X′X
T

)−1 X′
1X1

T

]−1

− [G(�1)−G(�1)G−1G(�1)]−1

∣∣∣∣∣∣
p→ 0



350 J. Gonzalo, J.-Y. Pitarakis / Journal of Econometrics 110 (2002) 319–352

with [G(�1) − G(�1)G−1G(�1)]−1 � 0. Assumptions A2(i)–(iii) applied to (A.31)
further imply that max�1∈�1 |HT (�1)| = Op(1) leading to max�1∈�1 FT (�1) = Op(1) and
thus P[max�1∈�1 FT (�1)¿�TK] → 0 since �T → ∞.
Next, we concentrate on the case m0 = 1 and show that P(m̂= 0) → 0 as T → ∞,

implying that the procedure does not undersegment asymptotically. We have

P[m̂= 0] = P
[
ICT (0)¡ min

�1∈�1

ICT (�1)
]

6 P[ICT (0)¡ICT (�01)]

= P

[
�̂2 − �̂2(�01)

�̂2(�01)
¡ (e�TK=T − 1)

]
: (A.32)

Using A2(i) and (ii) and standard algebra leads to

�̂2 =
U′U
T

+ �′1
X0

1
′X0

1

T

(
X′X
T

)−1 X0
2
′X0

2

T
�1 + op(1):

Since �̂2(�01) = U′U=T + op(1), it is then straightforward to establish that

�̂2 − �̂2(�01)
p→�′1G(�01)G−1(G −G(�01))�1 � 0:

Since when �=T → 0 we have (e�TK=T − 1) → 0 and given that the left-hand side in
(A.32) converges to a strictly positive constant it follows that P[m̂ = 0] → 0 when
m0 = 1, as required.

Proof of Proposition 3.2. We 0rst show that the event {m̂¿m0} cannot occur as T →
∞. Let Q(i; j)

T (1) denote the value of (28) evaluated in step i for subsample j. For the
sequential model selection procedure to stop at m0 (assuming all previous decisions
to be correct since m̂¿m0) it is required that Q(m0+1; j)

T (1)¡ 0 ∀j = 1; 2; : : : ; m0 + 1.
Thus the occurrence of the event {m̂¿m0} implies the existence of at least one
j∈{1; 2; : : : ; m0 + 1} for which Q(m0+1; j)

T (1)¿ 0. We can therefore write

P[m̂¿m0]6
m0+1∑
j=1

P[Q(m0+1; j)
T (1)¿ 0]

and

P[m̂¿m0]6
m0+1∑
j=1

P
[

max
r∈(r̂( j−1) ;r̂( j))

F ( j)
T (r)¿�TK

]
→ 0 (A.33)

provided that �T → ∞ and where it is understood that r̂(0) ≡ � and r̂(m0+1) ≡ N�.
The case {m̂¡m0} follows in exactly the same manner as in Proposition 3.1 since
in any subsample that has at least one ignored threshold say � we have �̂2 − �̂2(�)

p→
C¿ 0.
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