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Abstract—The problems of analysis of the nonstationary time series with explicit and implicit
changes in their properties were discussed. The main approaches and methods of analysis of the
nonstationary processes were described. Consideration was given to the trend-stationary and
difference-stationary processes. The algorithms to determine the process type hinge on verifying
hypotheses like “initial process is a DS-process (TS-process)” against the alternative ones. The
notions of false regression and cointegration were discussed. The problems arising at analysis of
the varying-property processes and methods of their solution were reviewed. Consideration was
given to the cases of explicit and implicit changes and algorithms of detection in the current
and a posteriori modes.

1. INTRODUCTION

Studies of the observation time series describing economic and social processes represent an
important part of analysis aimed at elucidation of the regularities in the processes under consider-
ation, construction of models for prediction, monitoring, and control of the process dynamics, and
generation of alarms at undesirable consequences. Prediction, monitoring, detection of the inter-
connections between individual process components, and analysis of the consequences of possible
changes are topical in diverse fields such as macroeconomics, sociology, finances, and marketing
studies. The nonstationary time series are exemplified by the series describing dynamics of the
stock market, the macroeconomic indices, and the indices characterizing the state of the social
sphere. The majority of the economic and social processes that obey the nonstationary time series
include changes in the properties or a set of states described each by a certain model. The pas-
sages between states are characterized by changes in process behavior, may occur under the action
of environmental factors at arbitrary, unknown-in-advance time instants, and are not necessarily
noticeable without special statistical processing.

The nondetected changes give rise to erroneous conclusions at process analysis. In the case
of possible changes, the process analysis differs from that in the case of no changes. The recent
interest to analysis of the varying-property processes is due to the following reasons:

(1) Availability of an adequate1 model of the observation time series describing system behavior
is the necessary condition for analysis. If properties change within the model interval, then a model
disregarding them is no more adequate.

(2) If the process properties may change, then, after constructing the model over a no-change
interval, for successful prediction and monitoring one must check it for adequacy.2

(3) The power of the tests for process type and cointegration drops dramatically in the presence
of changes in the processes.
1 A model is regarded as adequate if it corresponds to the original process in what concerns reflection of its given

properties. The error of such a model should not exceed the predefined limit values.
2 In the sense of constraints on the model error.
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The following section presents the main notions used to analyze the nonstationary time series
and overviews the tests for cointegration and process type in the absence of changes in properties.
Section 3 discusses different approaches to detection of changes and considers the methods of
a posteriori and current detection of changes and process analysis.

2. ANALYSIS OF THE NONSTATIONARY TIME SERIES
IN THE ABSENCE OF PROPERTY CHANGES

2.1. Trend-stationary and Difference-stationary Processes

2.1.1. Necessary definitions. In the general case, the random process is a function of two dis-
similar variables, the random variable w and time t: y(w, t), t = 0,±1,±2, . . . ,±t, . . . . The time
series results from the observations of the random process at a fixed time intervals. It is as-
sumed that the time series is a sample yt, t ∈ T , from a sequence of random variables y(w, t),
t = 0,±1,±2, . . . ,±t, . . . .

The following problem is solved at modeling the real processes: given is a realization of a series,
needed is to select a model capable of generating such a realization (data-generating model).

The properties of a stationary process do not vary in time. Its values oscillate about a constant
mean value, the oscillation variance is constant, and the values of the autocorrelation function
decrease with increase in the inter-observation time.

The mean value and/or variance of the nonstationary process depend on time, its variance
with time tends to infinity, the autocorrelation function does not decrease with increased inter-
observation time, and on the finite samples the sample autocorrelation function slowly fades out.

The typical time series may have four components [1]:
(1) trend or systematic motion;
(2) oscillations about the trend;
(3) seasonal changes;
(4) “nonsystematic” or “irregular” “random” component.
The mathematical description of the time series is a sum of one or more components. The

present review does not discuss the seasonal changes. According to [1], by the trend is meant the
stable systematic change in series direction over a long time period.

To describe processes with trends, the following representations were widely used till the 1970’s:

yt = f(t) + zt, (1)

where f(t) is a purely deterministic component, zt is a random stationary process representing a
sum of the oscillatory and random components

zt =
k∑

j=1

ajzt−j +
q∑

l=1

blεt−l + εt,

where aj and bl are constant coefficients and εt is a white-noise process with zero expectation and
variance σε.

Lack of a random factor in the mechanism of trend origination is the disadvantage of the mod-
els like (1). The processes where the trend can be both deterministic and stochastic obey the
autoregression models with unit root:

yt = µ + ρyt−1 + zt, (2)

where µ is a constant value defining the drift, ρ = 1, and zt is a stationary process.
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Relative to the deterministic trend, processes like (1) are called the trend-stationary processes
(TS-processes). The stationary process is a special case of the zero-trend TS-process (f(t) = 0).
Processes (2) are called the difference-stationary or integrated processes (DS-processes) [2, 3].

Definition. The time series yt is called the stationary series relative to the deterministic trend f(t)
or trend-stationary if the series (yt − f(t)) is stationary. The series that is stationary relative to
some deterministic trend is called the TS-series.

Definition. The nonstationary process yt is called the integrated process of the order of d ≥ 1,
(DS-series) if

(1) yt is not stationary or stationary relative to the deterministic trend;
(2) the series ∆dyt resulting from the d-times differentiation of the series yt is a trend-stationary

series;
(3) the series ∆d−1yt resulting from the (d − 1)-times differentiation of the series yt is not a

trend-stationary series.
The integrated process of the order d is denoted by I(d).

2.1.2. Need for determining the process types and the attendant problems. Memory about the
random actions of process (1) depends on the orders k and q of the process zt, process (2) retaining
infinitely long the memory of each random action εt:

yt = µt +
t∑

i=1

zi + z0 = µt +
t∑

i=1

 k∑
j=1

ajzi−j +
q∑

l=1

blεi−l + εi

+ z0.

Therefore, in the TS-series the effect of random actions fades out with time, whereas in the
DS-series there is no decay, and each individual random action εt influences with identical force all
the subsequent values of the series.

Determination of the type of process is a necessary step in constructing cointegration, stationary
linear combination of nonstationary processes, because it is possible only if both processes are
integrated processes of the same order.

Particular processing scenarios are used for each of the process types. Erroneous determination
of the process type at analysis leads to undesirable consequences [4].

Construction of a parametric model of the nonstationary series is usually preceded by series
“stationarization” done either by extracting the stationary trend, which lies in estimation of the
trend function parameters by the LMS method and subtraction of its value from the original series,
or by applying to the original series the difference operator

∆yt = (1 − D)yt, ∆2yt = (1 − D)2yt, . . . ,∆dyt = (1 − D)dyt,

where Dyt = yt−1, . . . ,D
dyt = yt−d, D being the delay operator. Choice of the series “stationariza-

tion” procedure depends on the type of the nonstationary process. If the operation of extraction
of the deterministic trend is applied to the DS-process, then, as was shown in [5, 6], it may result
in false periodicity of the detrended series.

As follows form the definition of the DS-series, the series ∆d−1yt, which is the result of the
(d − 1)-times differentiation of yt, becomes stationary. However, if differentiation is applied to a
stationary or trend-stationary process, then one may get as the result a process like the sliding
mean for which no autoregression representation exists. In this case, the differentiated series is
autocorrelated despite the fact that the original series is a sum of the deterministic linear trend
and white noise (the Slutsky effect) [7].
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The majority of the existing methods of determination of the process type are based on verifying
the hypothesis that the original series is a DS-process or the “unit-root hypothesis” that can be
formulated as follows.

Let the observation time series y1, y2, . . . , yt, . . . be described by the model

yt = µ +
k∑

j=1

ρjyt−j + εt, (3)

where εt is a stationary process, ρj are constants, and µ is the constant defining the value and
direction of drift. Model (3) can be rearranged in

∆yt = µ + αyt−1 +
k∑

j=1

αj∆yt−j + εt, (4)

where α =
k∑

j=1
ρj − 1. If the coefficient α = 0, then yt has a unit root and is a nonstationary or

integrated first-order process (I(1)); if α < 0, then it is an integrated zero-order, that is, stationary,
process (I(0)). If α > 0, then it is called the “explosive” process.3

The point estimate of regression in the case of processes I(1) has four essential differences from
the estimates of the processes I(0) [8]:

(1) The estimates converge with the rate T and not
√

T as in the case of stationary process.
If α < 0 and εt is a stationary process, then the limit distribution of the estimate α̂ is the normal
one [9]:

√
T (α̂ − α) → N(0, α2). (5)

If α = 0, then the limit distribution of the estimate α̂ has the form

T (α̂ − 1) ⇒

{∫
WdW − 1

2
(k − 1)

}
∫

W 2dW
, (6)

where W (t) is the standard continuous-time Brownian motion. This estimate was first established
for the AR(1) model [10] and later for the general case [11]. Therefore, α is a “superconsistent”
estimate converging with the rate T instead of

√
T .

(2) The limit distribution (6) was tabulated by Dickey [12] and Fuller [13]. It is a nonstandard
asymmetrical distribution with asymptotic lower and upper 5% quantiles: 8.1 and 1.28.

(3) For the I(1) process, the estimate α̂ is a consistent estimate α even if the errors of regression
of yt to yt−1 are serially correlated and correlated with the regressors or their differences.

(4) The limit distribution of the estimate depends both on the true trend and the trend function
and its estimated parameters.

Since the point estimates of the regression coefficients have different statistical properties, they
prevent from discriminating the processes I(0) and I(1).

2.1.3. Criteria for process type. Many criteria such as those of Dickey–Fuller, Perron, Park,
Kwiatkowski, et al. [14] were developed to determine the order of process integration.

Extended Dickey–Fuller criterion. Most popular is the set of Dickey–Fuller criteria [15, 16].
For model (4), verified is the hypothesis H0: α = 0 against the hypothesis H1: α 6= 0. If the

3 Processes with α > 0 are disregarded here.
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hypothesis H0 is rejected, then the process cannot be regarded as stationary. The t statistic t =
α̂

σ̂α
obeying the Dickey–Fuller distribution is used to verify the hypothesis H0. If |t| > tcrit, then the
zero hypothesis is rejected and the series is regarded as belonging to the TS type; otherwise, the
zero hypothesis is accepted. The form of the Dickey–Fuller distribution, its quantiles and critical
values are essentially dependent on whether the estimated model includes a constant or trend.
There exist different procedures of using the Dickey–Fuller test of which that suggested in [17] is
best known. Since it was described in detail in [2] and [3], we confine ourselves only to its main
steps. It begins with analysis of the fullest model including the constant and trend:

∆yt = µ + αyt−1 + βt +
k∑

j=1

αj∆yt−j + εt.

For this model, one first verifies the hypothesis H0 : α = 0. If it is rejected, the series is classified
with the TS type; if it is not rejected, then the parameters are estimated and significance of the
coefficient β is verified for the equation

∆yt = µ + βt +
k∑

j=1

αj∆yt−j + εt.

If the coefficient is significant, then the verification procedure is completed; otherwise, the hypoth-
esis H0 : α = 0 is verified for the model of the form

∆yt = µ + αyt−1 +
k∑

j=1

αj∆yt−j + εt.

If this hypothesis is rejected, the series is an autoregression process belonging to the type TS; if
the hypothesis is not rejected, then the parameters are estimated and significance of the free term
is verified for the equation

∆yt = µ +
k∑

j=1

αj∆yt−j + εt.

If the free term is significant, then the type determination procedure is completed; otherwise, the
hypothesis H0 : α = 0 is verified for the models like

∆yt = αyt +
k∑

j=1

αj∆yt−j + εt.

If this hypothesis is rejected, then the series is an autoregression process belonging to the type
TS; if the hypothesis is not rejected, then the series is classified with the DS-series.

The above procedure of determining the process type does not come only to a single application
of the test, but includes verification of correct determination of model specification—availability of
the free term and trend.

Low power which often leads to confirmation of the zero hypothesis in the cases where this is not
true is the main disadvantage of the Dickey–Fuller and many other similar criteria. The power of
criteria decreases with availability of structural changes in the processes. If in the course of process
analysis the instants of such changes are determined and the intervals without them are extracted,
then the power of Dickey–Fuller criteria is increased.
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Phillips–Perron criterion of membership of the series yt to the DS class [18] comes to verifying
the hypothesis H0 : ϕ = 0 for the model

∆yt = ϕyt−1 + α + βt + εt, t = 2, . . . , T, (7)

where the parameters α and β may be zero. However, in contrast to the Dickey–Fuller criterion,
the random components εt with zero expectations can be autocorrelated (with sufficiently fast
decrease of the autocorrelation function), have different variances (heteroskedasticity), and have
distributions that need not be normal but are such that E|εt|δ ≤ C < ∞ for some δ > 2.

The Phillips–Perron criterion is based on the t-statistic for verification of the hypothesis H0 :ϕ=0,
but uses a variant of this statistic Zt corrected to possible autocorrelatedness and heteroskedasticity
of the series εt. At calculation of the statistic Zt, estimated is the “long-term” variance of the
series εt defined as

λ2 = lim
T→∞

T−1E(ε1 + . . . + εT )2,

where E(∗) is the expectation of ∗.
If εt are the residues of the estimated model (7), then the following estimate [19] can be taken

as (λ2)∗ for λ2:

(λ2)∗ = γ∗
0 + 2

l∑
j=1

[
1 − j

l + 1

]
γ∗

j , (8)

where

γ∗
j = T−1

l∑
t=j+1

ε∗t ε
∗
t−j

is the jth sample autocovariance εt. If l and T tend to infinity so that (l/T )1/4 → 0, then,
as was shown in [20], (λ2)∗ is the consistent estimate of λ2 and the asymptotic distributions of
the statistic Zt coincide with the corresponding asymptotic distributions of the statistic tϕ in the
Dickey–Fuller criterion. The critical values of Zt are either taken from tables [20] or calculated
from formulas [21, 22].

Kwiatkowski–Phillips–Schmidt–Shin (KPSS) criterion [23] considers series membership to the
TS type as the zero hypothesis. The series is assumed to follow the model

yt = βt + wt + εt,

where wt = wt−1 +υt is the random walk with υt ∼ N(0, σ2
υ) and εt being a stationary process that

meets the same assumptions as the series εt in the Phillips–Perron criterion. The zero hypothesis
assumes that the process variance εt is zero. The alternative hypothesis assumes that this variance
is other than zero, therefore the series under consideration belongs to the class of DS series. The
proposed criterion is that of maximum likelihood for verification of the zero hypothesis. Application
of this criterion gives rise to the problem of choosing the window width l in the estimate [19] because
the values of the criterial statistic are rather sensitive to l.

DF-GLS criterion [24] is more powerful asymptotically than the Dickey–Fuller criterion. It ver-
ifies the zero hypothesis for the model

∆yd
t = α0yt−1 + α1∆yd

t−1 + . . . + αp∆yd
t−p + εt,

where yd
t is a locally “detrended” series.
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Despite the great diversity of the existing and developed methods, it deserves noting that the
problem of discriminating the TS and DS processes in analysis of the actual series has not yet
been solved once and for all, which is due to the low power of the developed procedures on short
samples as well as to the presence of structural changes in the series under study which also make
for reduction of the test power. Use of more than one criterion for analysis is not always a good
issue because on the same series they mostly provide similar results.

2.2. Cointegration

2.2.1. A new approach to analysis of nonstationary series. The traditional approach to the prob-
lem of nonstationary data lay in formulating statistical models as relations between the first-order
differences, that is, the growth rate. Yet the statistical model based exclusively on the differences
can catch only the short-term process dynamics and does not allow one to analyze the long-term re-
lations between the variables. The problem of developing methods following the possible long-term
relations masked by the noise of short-term oscillations was solved in 1986 by Granger [25] who
established that a certain combination of two or more nonstationary series can be stationary. The
economic theory often makes predictions exactly of this kind: if there exist equilibrium relations
between two economic variables, on short terms they can deviate from the equilibrium, but tend
to equilibrium on longer terms.

For example, according to the theory of purchasing power parity, the motion of the exchange
rates is defined by their tendency to establish equilibrium between different currencies on the
assumption of their purchasing power. Therefore, the percentage rate of changes in the exchange
rate must be equal to the difference between the percentage rates of changes in the process levels
for the domestic and foreign commodities [26].

Stability of the demand for money is very important for carrying out an effective monetary
policy. By the demand for money is meant the demand for real money remainders

Md

P
= f(I,R),

where Md is the demand for the nominal money remainders, P is the level of process, I is the
real income, and R is the vector of profitability indices. In the empirical studies, various money
aggregates are used as Md, the values of GNP as I, the profitabilities R being represented by the
interest rates. A large body of literature [27–29] exists on the empirical studies of relations between
the money supply and the process level confirming or questioning the theoretical studies.

The notion of “cointegration” was introduced by Granger to denote a stationary combination
of nonstationary variables. His studies initiated new approaches to the time series. The checks for
stationarity and cointegration are mow standard procedures beginning specification of the dynamic
econometric models. The cointegration analysis proved to be especially valuable for analysis of
systems where great random disturbances affect the short-term dynamics, whereas the long-term
oscillations are bounded by the general economic equilibrium relations.

Cointegration can exist only between nonstationary processes of the same order of integration,
correlational bonds are possible between stationary processes, between processes of different types
there are no bonds, and an attempt to establish them may result in a false regression [3, 26, 27].

2.2.2. False regression and cointegration. Granger and Newbold [30] estimated regression models
like

yt = β0 + β1xt + εt, (9)
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Indices DJI and RTSI.

where xt and yt are unrelated random walks:

∆xt = ε1t,

∆yt = ε2t.

Since xt is not related with yt, one may expect that the coefficient β1 and the determination
coefficient R2 vanish. However, they established that often the zero hypothesis of no relation
between the variables is not rejected for a very high value of R2 and small values of the Durbin–
Watson statistic, which suggested [30] that for small values of the Durbin–Watson statistic high
values of R2 may signal false regression. The fact established in [30] was explained analytically
by Phillips [31] who demonstrated that the t-statistics in model (9) do not follow the Student
distribution but tend to infinity with the sample volume. Whence it follows that any critical value
of the t-statistic for rejection of the zero hypothesis β1 = 0 increases with the sample volume. It was
shown also in [4] that the Durbin–Watson statistic vanishes with increased sample if the variables
are not interrelated or converges to a nonzero value, otherwise.

Preliminary stationarization of the DS-series by taking a finite number of differences renders
impossible the analysis of long-term relations between the variables, although various researchers
noted the fact that there exists a long-term relation between the nonstationary series. In particular,
this concerns the financial indices and series of macroeconomic activities. We consider by way of
example the graphs of the DJI (upper graph) and RTSI (lower graph) from June 1996 to Octo-
ber 1997. As can be seen from the figure, both indices increase and decrease actually synchronously.
Over the period under study, the DJI and RTSI indices were related cointegrationally.
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Cointegration was discovered by Granger [25, 32, 33], and the formal statistical analysis of the
cointegrated processes was developed by R.F. Engle and C.W.J. Granger [34], S. Johansen [35, 36],
and P.C.B. Phillips [37–40].

Definition ([2]). If a linear combination of integrated random processes of the order d is an
integrated process of the order d − 1, then they are referred to as the cointegrated processes, and
the vector of linear combination coefficients, as the cointegrating vector.

The basic Granger’s result lies in that in the case of cointegration I(1) of the series yt and xt

there exists a vector representation

xt = c1 +
k∑

j=1

(a1jxt−j + b1jyt−j) +
q∑

k=0

dkε1,t−k,

yt = c2 +
k∑

j=1

(a2jxt−j + b2jyt−j) +
q∑

k=0

dkε2,t−k

and a representation in the form of the error correction model (ECM):

∆xt = µ1 + α1zt−1 +
∞∑

j=1

(y1j∆xt−j + δ1j∆yt−j) +
∞∑

k=0

θkε1,t−k,

∆yt = µ2 + α2zt−1 +
∞∑

j=1

(γ2j∆xt−j + δ2j∆yt−j) +
q∑

k=0

θkε2,t−k,

(10)

where zt = yt − βxt − E(yt − βxt) ∼ I(0) is a stationary series with the zero expectation and
a2

1 + a2
2 > 0. If the vector series (xt, yt)T ∼ I(1) is generated by the ECM, then the series xt

and yt are cointegrated because in this case all components of the ECM, except for the series zt−1,
are stationary. Consequently, the series zt−1 is stationary as well. Therefore, if xt, yt ∼ I(1) and
cointegrated, then there exists a long-term relation represented by yt = α + βxt and short-term
dynamics represented by model (10), both models being coordinated with each other.

2.2.3. Vector autoregression models. To construct models of multidimensional time series,
C.A. Sims [41] developed a construction named the vector autoregression (VAR) models. Three dif-
ferent types of the VAR-models—reduced, recursive and structural—are distinguished. They are all
of them dynamic linear models relating the current and past values of the n-dimensional vector Yt

of the time series. No economic-theoretical constraints, except for the choice of variables, are used
to construct the reduced and recursive VAR-models; construction of the structural VAR-model is
based on the constraints established by the macroeconomic theory. The reduced VAR-model is a
system of n equations representable in the matrix form as

Yt = A0 + A1Yt−1 + . . . + ApYt−p + Et, (11)

where A0 is the constant vector, A1, . . . , Ap are the coefficient matrices, and Et is the vector of
serially noncorrelated errors which are assumed to have mean zero and the covariance matrix ΣE .

To estimate the parameters of the reduced VAR-model, the least squares method (LSM) is
applied separately to each equation. The error covariance matrix ΣE is estimated consistently by
the sample covariance matrix of the residues obtained by LSM. The model order is determined using
the Akaike information criterion (AIC) or the Schwatz information criterion (BIC) [42]. Watson
considered four representations of model (11) with integrated variables [43].
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(1) Vector model of error correction

∆xt = Πxt−1 +
p−1∑
i=1

Φi∆xt−i + εt,

where Π = I −
p∑

i=1
Πi = Π(1) and Φi = −

p∑
j=i+1

Πj, i = 1, . . . , p − 1. Equations of this kind were

introduced in [44].
(2) Representation in the form of moving average of the first-order differences

∆xt = C(L)εt.

Equivalence of the vector model of error correction and the representation as moving average which
was shown in [33] underlies the Granger theorem of representation [34].

(3) Representation in the form of common trends:

xt = C(1)ξt + C∗(L)εt + x0, (12)

where ξt =
t∑

s=1
εs and C∗(L) = (1 − L)−1[C(L) − C(1)] =

∞∑
i=0

C∗
i Li, where C∗

i = −
∞∑

j=i+1
Cj and

εi = 0 for i ≤ 0. Equation (12) is a multidimensional Beveridge–Nelson decomposition [45] into
the “long-term,” C(1)ξt + x0, and the “short-term,” C∗(L)εt, components representable as

xt = Aτt + C∗(L)εt + x0,

where A is the full-rank n × k matrix of (τt − k) “long-term” components.
(4) Triangular representation (in the case of cointegration):

∆x1,t = µ1,t,

x2,t − βx1,t = µ2,t,

where xt = (x1,t, x2,t), x1,t of size k × 1, x2,t of size r × 1, µt = (µ1t, µ2t)T = D(L)εt.
2.2.4. Procedures for verifying cointegration. Procedures for verification of cointegration were

developed by Engle and Granger as well as by Johansen.
Engle–Granger Procedure [34]. Step 1. Determination of the order of process component inte-

gration using the Dickey–Fuller criterion.

Step 2. If the processes are established to be integrated and of the same order, then regression
is calculated by the ordinary LS method.

Step 3. The order of integration of the regression residues is checked.

To verify the residue integration order, the Dickey–Fuller can be used. However, other critical
values of the test tables are used because the tested process was obtained using the LS method.
The tables can be found in [20].

Johansen Procedure [35, 36]. Let us consider n cointegrated vectors Yt = {y1
t , . . . , y

n
t } described

by model (11) in the form of the error correction model

∆Yt = −ΠYt−1 + B1∆Yt−1 + . . . + Bp−1∆Yt−p+1 + Et,

where Π = I −A1 − . . .−Ap and the matrices B1, . . . , Bp−1 are expressed in terms of the matrices

A1, . . . , Ap as Bj =
p∑

i=j+1
Ai. The number of cointegrated vectors is equal to the matrix rank Π.

An exact proof of this fact can be found in [36].
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Step 1. The VAR(p) model is estimated for the k-dimensional time series Yt:

Yt = α + tβ + A1Yt−1 + . . . + ApYt−p + Et.

Step 2. The matrix Π = I − A1 − . . . − Ap is estimated in the representation

∆Yt = α + tβ − ΠYt−1 + B1∆Yt−1 + . . . + Bp−1∆Yt−p+1 + Et.

Step 3. The zero hypothesis H0 : rankΠ < k is verified against the alternative hypothesis
H1 : rankΠ = k or H0 : rankΠ = k + 1.

3. ANALYSIS OF THE NONSTATIONARY PROCESSES WITH STRUCTURAL CHANGES
IN PROPERTIES (STRUCTURAL DISCONTINUITIES)

3.1. Problems Caused by the Structural Discontinuities in Processes

The majority of the existing methods of verification of process type and cointegration assume
that over the observation interval the process is constant. However, in the physical systems the
process regularities may vary with time under the environmental actions. The changes in process
properties will be referred to as the structural discontinuities. This term is widely used by the
researchers who define it in different ways. We introduce the following definition.

Definition. The structural discontinuities are changes in the process properties reflected in the
changes of the coefficients of the parametric process model and/or in the parameters of the distri-
bution of the random component. The structural discontinuities can modify the type of process,
the mean value of process or its differences, the process trend inclination, and the coefficients of its
parametric model.

In the presence of structural discontinuities in the process,
—the parametric system model is modified; if the changes in the model parameters are disre-

garded, then the parameter estimates become insignificant, and the predictions lose precision;
—verification of the criteria for determination of process type become more complicated;
—verification of cointegration becomes more complicated.
In the presence of structural discontinuities, the standard procedures distort the conclusions

about existence of the unit root. Perron [46] demonstrated that for the extended Dickey–Fuller
criterion the unit-root zero hypothesis needs not be rejected if in the process a discontinuity occurs
in the linear trend or the mean value is shifted. It was shown [47, 48] that, depending on the
form of structural discontinuity, the zero hypothesis can be accepted even if it is not true. The
discontinuities in the cointegration equation were shown to reduce the power of the cointegration
test [49, 50].

Owing to the aforementioned reasons, much attention is paid by the analysts to the algorithms
to determine the instants of occurrence of the structural discontinuities and analyze the processes
in real conditions. Under the action of diverse, and often opposite, random factors, the process
structural discontinuities can be masked by these random factors and, therefore, not necessarily be
detectable from the observed variables.

Detection of structural discontinuities can be based either on a posteriori procedures detecting
the structural changes after completion of the observations or on the real-time procedures detecting
changes with the rate of current observations. Choice of procedure is defined by the requirements
of application.
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Specification of the instants of origination of the structural discontinuities with subsequent
decomposition of the process into subprocesses where the properties do not change is a natural
way of analyzing such processes. The existing procedures for change detection are intended only
for the processes that are stationary within the intervals between the structural discontinuities.
Therefore, prior to using them for analysis of nonstationary processes, the original process must be
first stationarized. Another approach to analysis of the processes with changes in the properties
is represented by the algorithms for analysis of the nonstationary processes (verification of the
process type and cointegration) with regard for changes in the properties. Let us first consider the
a posteriori procedures detecting structural discontinuities.

3.2. Methods of A Posteriori Detection of the Instants of Process Structural Discontinuities

The problem of specifying the no-change intervals in a process can be posed as that of verifying
the no-change hypothesis H0 against the hypothesis H1 changes. If H0 is satisfied, then the observed
process has no changes in the properties; if H1 is satisfied, then the process has at least two intervals
and is described by an individual model over each interval.

If the instant of possible change in the process state is known, then the hypothesis that there
are no changes in the properties at this instant is verified against the hypothesis of changes for the
fixed-length (N) time series under study. If no assumptions about the process model exist, then
verification of changes is carried out using the tests for comparison of two samples. The two-sample
Kolmogorov–Smirnov test or other nonparametric tests [51] can be used, for instance.

The Kolmogorov–Smirnov test makes use of the statistic

KS =

√
N1N2

N1 + N2
max

x
|F1(x) − F2(x)|,

where N1 and N2 are the numbers of points in the time series, respectively, before and after the
postulated property change and F1(x) and F2(x) are the empirical functions of distribution of the
time series segments, respectively, before and after the change.

If the distribution F0 before the change instant is known, then the tests for concordance such as
the χ-square and Kolmogorov–Smirnov tests [51, 52] are used to verify that the distribution before
and after the postulated change instant is F0.

Different strategies for verification of discontinuities exist for the case where the series is de-
scribed by the regression or autoregression model:

(1) test for a change in the regression coefficients using the F -statistic [53–60];
(2) determination of the boundaries of the uniformity interval where the process model can be

regarded as constant [61–65];
(3) tests for generalized changes by residue analysis (the so-called CUSUM and MOSUM tests)

[66–70].
3.2.1. Test for change of the regression coefficients using the F -statistic. Test for discontinuity

at the known time instant τ . The original model is as follows:

Yt = XT
t βt + µt. (13)

The zero hypothesis is as follows:

βt = β for all t.

The alternative hypothesis is as follows:

βt = β t ≤ k and βt = β + γ, t > k, where k is the date of discontinuity.
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After getting the estimates of coefficients, the Chow test [53, 54] for equality of the regression
coefficients in two samples is used. In the Wald form, this test is as follows:

FT

(
k

T

)
=

(u′u − u′
1u1 − u′

2u2)/k
(u′

1u1 + u′
2u2)/(T − 2k)

,

where k is the instant of postulated discontinuities and u, u1, and u2 are the sums of square residues
of model (13) as estimated from the full sample, k first and n − k last observations, respectively.
This test statistic has an F -distribution with k and n − 2k degrees of freedom.

Test for discontinuity at the unknown time instant. To take into account the discontinuities in
the constructed models at the unknown time instants, the dummy or “empty” variables are used
which assume 0 before and 1 after the change. Let it be known that the discontinuity lies within
the interval between τ0 and τ1.

After estimating the coefficients, the Chow test for equality of the regression coefficients in two
samples is applied: the zero hypothesis of no-change is verified by the F -statistic for the hypothesis
that the coefficients of all additional variables are zero. For detection of changes on average, the
dummy variables are introduced directly in the equations, and for detection of changes in the trend,
the dummy variables are added to the regression coefficients.

If the process has one possible instant of state change and this instant is unknown, the test is
carried out for each point of the time series. The Chow test is constructed at each instant of the
postulated discontinuities and the maximum F -statistic is taken. The distribution of this test is
called the Quandt Likelihood Ratio [55, 56]

QLR = MAX[F (τ0), F (τ0 + 1), . . . , F (τ1)]

which depends on the number of tested constraints and on the positions of the end points τ0 and τ1

in the sample T . The limit distribution of the QLR-statistic is as follows [8, 57, 58]:

QLR = sup
λ∈[λ0,λ1]

{
Bµ

k (λ)′Bµ
k (λ)

λ(λ − 1)

}
,

where

λi = lim
T→∞

ri

T
, i = 0, 1.

The critical values of the functional QLR as calculated by means of statistical modeling can be
found in [57]. A method of calculating the critical values was developed in [59] together with a
function of their dependence on the number of model parameters and availability of trend and free
term.

Estimation of the instant of discontinuity by maximizing the Chow criterion provides an accept-
able accuracy only in the case of linear regression with homoskedactic covariance matrix. LSM is
the most suitable method for estimation of the parameters, including the discontinuity date, in the
regression models. For each possible discontinuity point, the model parameters are estimated by
the least-squares method for each of the subsamples, and the sum of square errors is calculated and
accumulated. A point where the sum of square errors is minimal over the entire sample is used as
the estimate of the discontinuity instant. The algorithms to estimate the discontinuity instant by
the least-squares method were suggested and examined in [50–63]. The works [61, 62] established
the asymptotic distribution of the discontinuity estimator and demonstrated how to construct the
confidence interval for the date of discontinuity.

Detection of more than one discontinuity. The majority of the classical methods of detection
and modeling of structural changes assume that there exists only one discontinuity. Methods for
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determination of the number and instant of occurrence of multiple discontinuities were developed
in [63, 65, 66]. The idea of the algorithm of [65] is as follows. At the first step, existence of
a single discontinuity is verified. If the zero hypothesis of no discontinuity is rejected, then the
original sample is divided in two parts and the test is applied again to each of the samples. These
steps are repeated until the test ceases to determine existence of discontinuities. Processing of the
date of structural discontinuity as an unknown parameter provides both the date of discontinuity
and its confidence interval. Successive procedures for estimation of multiple discontinuities were
developed in [63, 66]. Their key concept lies in that in the presence of multiple discontinuities the
sum of square errors may have a local minimum near each discontinuity. Consequently, the global
minimum can be used as the discontinuity date, the rest of the local minima can be regarded as the
candidates for estimation of the discontinuity date. Then the sample is decomposed in two parts at
the point of estimation of the discontinuity date, and analysis is continued for each of the samples.

Specification of the uniformity intervals in context of the given linear model. Another approach
to specifying the process states lies in determining the boundaries of the interval where the model
may be regarded as invariable.

Let the time series Yt follow the model

Yt = XT
t θ + σεt, (14)

where t = 1, . . . , N , Xt = (x1, . . . , xpt)T, and θ = (θ1, . . . , θp)T, σ is a constant defining the process
variance.

Needed is to estimate the coefficients θ in (14), provided that their values are piecewise-constant
functions over the interval [1, . . . , N ]. We follow [67] is calling the intervals of constant θ the
uniformity intervals. The problem of determining the time interval where the model is adequate
was solved in [68–70].

The basic concept of the adaptive estimation algorithm is as follows. Obviously, if θ is constant
over the interval I, it is also constant over any interval J ⊂ I. The algorithm relies on specifying
the greatest interval and estimating θ over it by the least-squares method.

The procedure of adaptive estimation includes a set of tests verifying whether the difference
between θ̂I and θ̂J is appreciable, where θ̂I and θ̂J are the estimates of θ over the intervals I and J ,
respectively. If I is a uniform interval, then the following condition is met:∣∣∣θ̂i,I − θ̂i,J

∣∣∣ ≤ µδ
√

wii,I + λδ
√

wii,J ,

where θ̂i,I and θ̂i,J are the estimates of θi obtained, respectively, over the intervals I and J ; wii,I

and wii,J are the diagonal elements of the matrix W =

(
N∑

t=1
XtX

T
t

)−1

for x ∈ I and x ∈ J ,

respectively, λ and µ are positive constants, and σ is the variance.
Tests for generalized deviations (CUSUM, MOSUM). In the tests for generalized changes, the

parametric model is constructed by the ordinary least-squares method or the maximum likelihood
method, and a statistic is generated which verifies availability of significant deviations in the pa-
rameter residues or estimates [71–73] or in the estimates constructed in the moving window from
the estimates based on the full sample [74–76].

Consideration is given to the regression model

Yt = XT
t β + εt,

where εt is an independent normally distributed variable with the zero mean. The tests for struc-
tural changes are concerned with verification of the no-change zero hypothesis

H0 : H0 : βi = β0, i = 1, . . . , n,
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against the alternative hypothesis that the coefficient vector changes at some time instant t.
CUSUM tests. The cumulative sum of recursive residues is discussed in [72]. The coefficients β

are estimated successively from the increasing volume of the sample

β̃

(
r

T

)
=

(
r∑

t=2

Xt−1X
′
t−1

)−1( r∑
t=2

Xt−1Yt

)
, (15)

wt =
Yt − β̃

(
t−1
N

)
Xt−1

ft
,

where

ft =

1 + X ′
t−1

(
t−1∑
s=2

Xs−1X
1
s−1

)−1

Xt−1


1
2

.

The algorithm is as follows:

CUSUM (λ) =
1

σ̃
√

T

[Nλ]∑
i=k+1

wi, (16)

where

σ̃ =


N∑

t=k+1
wt − w

N



1
2

.

For the zero hypothesis, the limit process is a standard Brownian motion [77, 78]. If there exists
a single point t0 of structural change, then the recursive residues will have the zero mean only
until t0. The critical values for the statistic

sup
λ

|CUSUM (λ)/(1 + 2λ)|

were obtained in [72].
W. Ploberger and W. Kramer [73] proposed to study the cumulative sums of the LSM general

residues:

W 0
n(t) = max

k∈[1,T ]

1
σ̂
√

T

k∑
i=1

ε̂i.

For W 0
n(t), the limit process is a standard Brownian bridge W 0(t) = W (t) − tW (1) having for

one structural discontinuity the peak at the point t0.
MOSUM tests. Another method to detect the structural changes lies in analysis of the moving

sum of the same residues, that is, the sums of fixed numbers of residues h taken into consideration
until the current time instant t. As was shown in [74], the sum of residues in the moving window
(empirical MOSUM process) tends to the Brownian bridge.

To detect changes in the time series variance, C. Inclan and G.C. Tiao [79] proposed to use the
statistic

∆ = sup
k

∣∣∣∣∣
√

N

2Dk

∣∣∣∣∣ ,
AUTOMATION AND REMOTE CONTROL Vol. 66 No. 12 2005



1886 GREBENYUK

where

Dk =
Ck

CT
− k

N

and Ck =
k∑

i=1
ε2
i , k = 1, 2, . . . , N , is the cumulative sum of the square εt. If εt are normally

distributed random variables with zero mean εt ∼ N(0, σ2), then the asymptotic distribution of
the test obeys

IT ⇒ sup
r

|W ∗(r)|,

where W ∗(r) = W (r) − rW (1) is the Brownian bridge and W (r) is the standard Brownian mo-
tion. The main disadvantage of the IT test lies in the dependence of its asymptotic distribution
on the assumption of normality, independence, and similarity of the distributions of the random
variables εt.

Main types of a posteriori algorithms for determination of the structural discontinuities. The
present review discusses the main types of the methods for detection of structural changes from the
historical data. Numerous methods that can be classified with one or another of the aforementioned
types are developed in this area. The proposed algorithms differ in the methods of their realization
and the original models. For example, [80, 81] consider the CUSUM test for the case of dynamic
model with serially correlated errors:

yt = αyt + X ′
tβ + µt,

where

µt = ρµt−1 + εt, |ρ| < 1.

The main types of the methods for determination of the structural discontinuities are tabulated
below.

3.3. Methods of Current Detection of the Instants
of Structural Discontinuities in the Process

The above methods of analysis in the presence of property changes and estimation of the instants
of origination of these changes are retrospective because they verify the accomplished events from
the historical data. To detect changes in process properties from the current observations, methods
of successive analysis are used. They are popular in engineering problems, yet, except for [82, 83],
their application to econometrics is unknown. Two tests for monitoring the possible structural
changes were proposed in [82]. In these tests, after getting a current observation, the estimates are
calculated over all data and compared with the similar estimates obtained without this observation.
The no-change hypothesis is rejected if their difference is too great.

The class of tests for monitoring of changes which includes the algorithms of [82] as a special case
was considered in [83]. The distributions of these tests were shown to be defined by the increments
of the generalized Brownian bridge, and the corresponding boundary functions for the proposed
tests were shown to grow with the rate

√
log t.

However, the algorithms of current detection [82, 83] are anything but optimal. To detect
changes in the properties of stationary processes, the successive analysis theory and algorithm that
are optimal under certain conditions were developed [84]. The algorithms rely on the procedure of
successive verification of the hypotheses. The hypothesis H0 of “the process distribution density
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Methods for determining structural discontinuities

Methods Input information Brief description Result Author

Kolmogorov–
Smirnov test

Data Empirical distributions are con-
structed on the subsamples and
the maximum of difference is
sought

Point of change
(one disconti-
nuity)

Kolmogorov–
Smirnov

Tests for concor-
dance: Kolmogo-
rov–Smirnov,
χ square

Data, original dis-
tribution

Verification that the statistics of
different samples have no signifi-
cant differences

Probability of
meeting the
hypothesis

Chow test Data, discontinuity
instant, regression
variables

Two models are constructed, F -
statistic is calculated and ana-
lyzed

Test for discon-
tinuity at the
given time
instant

Chow

Data, regression
variables

Two models are constructed for
all possible instants of discon-
tinuities, F -statistics are calcu-
lated and the maximum one is
taken

Test for discon-
tinuity and de-
termination of
the discontinu-
ity instant

Determination of
the model para-
meters and the
discontinuity date
by the generalized
LSM

Data, regression
variables

Models are constructed at each
possible point of discontinuity
by the generalized LSM method
and the residues are calculated,
the discontinuity point minimiz-
ing the sum of square residues

Test for discon-
tinuities and
determination
of the discon-
tinuity instant
and the model

Bai,
Andrews

Specification of
uniform intervals

Interval of model
constancy (rated)

Model is constructed over the in-
terval, model constancy is tested
over the extended interval

Instant of
model prop-
erty change

Liptser,
Spokoiny

Test for general-
ized fluctuations
(oscillations)
CUSUM

Residues of the
model constructed
over the analyzed
interval

Model is constructed, residues
are calculated, exceedance is
tested

Interval where
the deviations
of model from
the mean value
are observed

Brown,
Durbin,
Evans,
Ploberger,
Kramer

CUSUM in the
moving window

Residues of the
model constructed
over the analyzed
interval

Model is constructed, residues
are calculated, exceedance is
tested

Interval over
which model
variance devi-
ations are
observed

Inclan, Tiao

MOSUM Residues of the
model constructed
in the moving
window

Model is constructed in the
moving window, window is
shifted, residues are calculated,
exceedance is tested

Interval over
which model
deviations from
the mean value
are observed

MOSUM in mov-
ing window

Model is constructed in the
moving window, window is
shifted, residues are calculated,
exceedance is tested

Interval over
which model
variance de-
viations are
observed

Chu, Hornik,
Kuan
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is P1” is verified against the alternative hypothesis H1 of “the process distribution density is P2.”
A vast majority of the successive detection algorithms were developed for the cases where the
distribution functions P before and after detection differ only in their parameters:

P1 = p(θ1) = pθ1, P2 = p(θ2) = pθ2 .

To explain the formulation of the current detection problem, we define the main notions [85].

Definition. The random variable τ is called the stop instant or the Markovian instant for the
process yt if it assumes only integer values and the event {τ = n} is defined by the sequence
y1, y2, . . . , yn.

Definition. The successive criterion for verification of the hypothesis H0 against the alternative
hypothesis H1 is defined as the pair (g, τ), where τ is the stop instant and g(yτ

1 ) is the decision
function.

Definition. The criterion (g, τ) is called the successive probability ratio criterion (SPRC) for
verification of the simple hypothesis H0: P = P1 against the alternative hypothesis H1: P = P2

if, as the result of applying it to the sequence y1, y2, . . . , yn, . . . , executed at each step is the test
a < st

k < b, where

st
k =

t∑
i=k

ln
fθ2(si)
fθ1(si)

(17)

and a and b are thresholds such that −∞ < a < b < ∞, and either of the following decisions is
made:

—the hypothesis H0 is accepted if st
k ≤ a,

—the hypothesis H1 is accepted if st
k ≥ b,

—observations are continued if a < st
k < b.

Quality of the statistical criterion is estimated by the probabilities of errors of the first and
second order:

α0 = P
(
g(yN

1 ) 6= H0 | H0

)
, α1 = P

(
g(yN

1 ) 6= H1 | H1

)
,

where yN
1 is the sequence of observations y1, . . . , yN .

Let Y1, Y2, . . . , Yta , Yta+1, . . . be a random sequence of independent variables, where Y1, Y2, . . . , Yta

are distributed identically with the distribution function Pθ1 , Yta+1 , Yta+2, . . . are distributed iden-
tically with the distribution function Pθ2 , and θ1 and θ2 are the known distribution parameters
before and after the property changes. Each observation is tested for changes by the SPRC. The
following characteristics are used to estimate the quality of the successive criterion:

—mean time between the false alarms E1(τ | τ < ta),
—mean time of detection delay E2(τ − ta | τ ≥ ta).
The value of these characteristics depends on the chosen values of the thresholds a and b,

parameters θ1, θ2 and the given confidence level defined by the probabilities α0 and α1.
There are two alternative formulations of the optimal compromise between the rate of detection

and the level of false alarms:
(1) Lorden’s formulation which requires to minimize the worst-case delay

τ = sup
ta≥1

essSupEθ2(t − ta + 1 | yta
1 , t > ta), (18)
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under a constraint on the minimal time between false alarms

T = Eθ1(t | t < ta) < γ, (19)

where τ is the instant of detection of changes and Eθi
(∗) is the expectation of (∗) under the

distribution fθi
(yt), i = 1, 2.

(2) Shiryaev’s Bayesian formulation according to which the instant of change has a geometrical
distribution and the mean expected delay

τ = sup
ta≥1

E2(τ − ta | τ ≥ ta) (20)

must be minimized under a constraint on the minimum time between false alarms.
The Shiryaev–Roberts algorithm has the form

τ = min(t > 1 : Rt ≥ h), (21)

where Rt =
t∑

i=1
exp(∆t

k), the statistic Rn satisfies the recurrent representation

Rt = (1 + Rt−1)
fθ2(yt)
fθ1(yt)

, R0 = 0. (22)

Algorithm (21), (22) minimizes the mean delay in detection (20) under constraint on the minimum
time between the false alarms (19).

For the case where the parameters θ1 and θ2 are known precisely before and after the change
in properties and the time of change ta is unknown, E.S. Page [86] developed a SPRC-based
algorithm of cumulative sums that was named CUSUM. Its basic idea lies in using b = 0 as the
lower threshold and resuming SPRC each time as st

k reaches the lower threshold until the upper
threshold a is exceeded. The instant of changes in properties is defined as the solution of the
optimization problem:

τ = inf
{

τ ≥ 1 : g = max
1≤k≤t

sr
k ≥ a

}
, (23)

where sτ
k obeys (17).

The decision function g admits the recurrent representation

gt = max
(

0, gt−1 + ln
fθ1(yt)
fθ2(yt)

)
, g0 = 0.

The algorithm is representable as a set of SPRC’s activated each at time t with the upper
threshold a.

For the case of precisely known parameters before and after detection, algorithm (17), (23) was
shown [87] to be optimal in the sense of the criterion for minimization of the mean “worst-case”
detection delay (18) for the mean time before the false alarm T satisfying condition (19).

For all real θ2, the mean detection delay time follows

Eθ1(τ(γ)) ∼ ln(γ−1)
K(θ2, θ1)

, (24)

where K(θ2, θ1) is the information measure called the Kullback–Leibler information which is defined
as follows:

K(θi, θj) = Eθi

[
ln

fθ2(yt)
fθ1(yt)

]
, i, j = 1, 2, i 6= j. (25)
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CUSUM optimality in the sense of (23) was proved for the nonasymptotic formulation in [88, 89].
Algorithms of current detection of changes in nonstationary processes whose decision rules are
based on the decision rules (17), (23) optimizing the mean time of delay in detection (18) under
constrained minimum time between alarms (19) were considered in [90–92].

3.4. Methods of Verifying Process Type and Cointegration
in the Presence of Structural Discontinuities

The problem of analysis of a process with structural discontinuities was solved above by speci-
fying in the process the intervals where no changes in properties occur. After their determination,
the problem comes to the ordinary problem of analysis without changes in properties. Yet almost
all the above methods of specifying the no-change intervals, except for [90–92], started from the
assumption that within the interval the process is stationary. One has to perform series “station-
arization” before applying them to the nonstationary processes. Choice of the “stationarization”
method depends on the original process that can be unknown at the initial stages of econometric
study. In this section we consider another approach to analysis of processes with varying proper-
ties: determination of the process type and verification of cointegration in the presence of structural
discontinuities.

It was assumed in [46, 93] that at a certain time instant tb there is a discontinuity and the zero
hypothesis presupposed that the process obeys one of the following models.

(1) Model with discontinuity on the average

yt = µ + δ1DV It + yt−1 + εt,

where

DV It =

{
1 if t = tb + 1
0 if t 6= tb + 1.

(2) Model with drift change

yt = µ + δ2DVt + yt−1 + εt,

where

DVt =

{
0 if t < tb + 1
1 if t ≥ tb + 1.

(3) Model with discontinuity on the average with simultaneous change in drift

yt = µ + δ1DV It + δ2DVt + yt−1 + εt.

The following hypotheses are alternatives to each of the above models.
(1a) Model of trend-stationary series with level change

yt = µ + δ2DVt + βt + εt.

(2a) Model of trend-stationary series with change in trend level

yt = µ + δ3DV T ∗
t + βt + εt,
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where

DV T ∗
t =

{
0 if t < tb + 1
t if t ≥ tb + 1.

(3a) Model of trend-stationary series with change in trend inclination and drift

yt = µ + δ2DVt + δ3DV Tt + βt + εt,

where

DV Tt =

{
0 if t < tb + 1
t − tb if t ≥ tb + 1.

To verify the zero hypothesis, corresponding regression models are constructed, and then the
Dickey–Fuller test is applied to the regression residues. Perron proved that in the presence of
structural changes the magnitudes of the critical values of the Dickey–Fuller criterion are greater
and depend on the position of jump in the series. He calculated these critical values.

The asymptotic critical values of the t-statistic of the Perron criterion depend on the type of

structural changes, the parameter λ =
tb
T

, and on the postulated model—either that with an
additive outlier where the structural change occurs unexpectedly or that with an innovative outlier
where the structural change occurs gradually.

Zivot and Andrews proposed, instead of the conditional Perron criterion, a criterion determining
the discontinuity date by calculating the t-statistic for verification of the unit-root hypothesis for
every possible instant of discontinuity, the instant of the minimum tmin of this statistic being taken
as that of discontinuity [94]. In extension of the results of Zivot and Andrews, Perron [95] studied
the critical values of the statistic tmin vs. the choice of the number of retarded differences and
developed an estimation procedure integrated in the RATS package.

The problems arising at determination of the series type are apparent from the example of
statistical analysis of the 13 basic USA macroeconomic series based on the annual data and the
quarterly series of GNP for the post-war period 1948–1987. For these series, C.R. Nelson and
C.I. Plosser [96] verified the unit-root hypothesis and used the critical values of the Dickey–Fuller
criterion [15]. At that they established that the unit-root hypothesis is not rejected for 13 of
14 series, the only exception being the series of employment rate logarithms. Perron [46] analyzed
the same series considering a series with linear trend whose inclination changes at a certain time
instant as an alternative to the DS-series and obtained results opposite to those of Nelson and
Plosser: the unit-root hypothesis was rejected for 11 of 14 series. To determine the type of 14 series
of macroeconomic indices, Zivot and Andrews [94] used an algorithm which determines the instant
of change in trend inclination by selecting every possible instants of changes and calculating for
each variant the t-statistic for verification of the unit-root hypothesis. The date for which the
value of statistic is minimal is accepted as the estimated date. With this method of analysis, the
unit-root hypothesis is not rejected for 11 series.

The problem of testing cointegration in the presence of structural changes in processes was con-
sidered in [50]. The power of the traditional test for cointegration was shown to drop dramatically
in the presence of discontinuities.

Tests for cointegration in the presence of structural discontinuities were considered in [97], that is,
consideration was given to a new type of cointegration, that in the presence of discontinuities. The
zero hypothesis of no cointegration (existence of the unit root) was verified against the alternative
hypothesis of existence of cointegration in the presence of changes either in the process mean or in
the cointegration vector, the instant of change being assumed to be unknown.
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Consideration was given to the model

y1t = µ + αy2t + et,

where y1t and y2t are, respectively, one-dimensional and m-dimensional vector processes of the type
I(1) and et is a process of the type I(0).

The zero hypothesis assumes lack of cointegration.
Consideration is given to the following hypotheses regarded as alternatives:

y1t = µ + µ2ϕtτ + αy2t + et (26)

—change in the level;

y1t = µ + µ2ϕtτ + βt + αy2t + et (27)

—change in the level in the presence of trend;

y1t = µ + µ2ϕtτ + α1y2t + α2y2tϕtτ + et (28)

—change in the level and cointegration vector, where

ϕtτ =

{
0 if t ≤ [nτ ]
1 if t > [nτ ]

is a dummy variable defining the instant of change occurrence and [∗] is the integer part of ∗.
Depending on which of the alternative hypotheses is verified, the residues of models (26), (27)

or (28) are estimated for every possible instant τ of change and are used to calculate the standard
statistics for cointegration analysis without changes in the models. The value of τ for which the
chosen statistic has the minimum value is taken as the possible instant of change. If the calculated
statistic is smaller than its tabular value, the hypothesis is rejected.

It deserves noting that this type of hypothesis does not bear out occurrence or nonoccurrence
of a structural change in the process because the alternative hypothesis includes as a special case
the standard model of cointegration without structural change. Since the structural changes in one
or more cointegrated processes violate the cointegration relations and may cause changes in other
cointegration components, timely detection of these changes is an important problem.

4. CONCLUSIONS

The present review analyzed the state-of-the-art in the studies of stationary and nonstationary
time series in the presence of changes in their properties, the structural discontinuities, defined the
structural discontinuities, and specified the main stages of analyzing the processes with property
changes. An analytical review of the methods for detection of process structural discontinuities,
determination of the process type and analysis cointegration in the lack and presence of process
structural discontinuities, and current detection of structural discontinuities was carried out.

As the result of this review, one can conclude that for successful prediction and preventive mon-
itoring the process under study must be analyzed, the prehistory analysis including the following:

—determination of the instants (periods) of changes in the process properties or the process
uniformity intervals;

—determination of the process type (stationary, nonstationary);
—construction of the process models (model bank) within the uniformity intervals;
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—adjustment of the algorithms of current detection and verification of process uniformity.
Analysis of the current process state includes:
—application of the procedures of current detection of process changes to all new observations;
—analysis of the current observations after the last property change and construction of the

process model or choice of a model from the bank.
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