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SUMMARY

A semiparametric changepoint model is considered and the empirical likelihood method
is applied to detect the change from a distribution to a weighted distribution in a sequence
of independent random variables. The maximum likelihood changepoint estimator is
shown to be consistent. The empirical likelihood ratio test statistic is proved to have the
same limit null distribution as that with parametric models. A data-based test for the
validity of the models is also proposed. Simulation shows the sensitivity and robustness
of the semiparametric approach. The methods are applied to some classical datasets such
as the Nile River data and stock price data.

Some key words: Changepoint; Empirical likelihood; Exponential family; Limit theorem; Power; Resampling;
Robustness; Semiparametric changepoint model; Weighted distribution.

1. INTRODUCTION

In parametric models and linear models, the test statistics for a changepoint are generally
related to the likelihood ratio statistic. The general results about parametric changepoint
models can be found in Csdrgd & Horvath (1997).

Nonparametric changepoint models have also been studied by many authors, such as
Diimbgen (1991), Carlstein (1988) and Darkhovskh (1976), and again much discussion
can be found in Csdrgd & Horvath (1997). However, unlike in the parametric cases, most
nonparametric changepoint models assume no relationship between the two population
distributions, whereas in practice it is often very natural to assume that there is some such
link. This scenario is similar to the assumption of some link function, such as the logistic
link, to relate case and control population distributions. The logistic link corresponds to
the semiparametric exponential model of the proposed semiparametric changepoint model
in this paper. This exponential model is used frequently in epidemiology just as logistic
regression is used in case-control studies.

We consider the following semiparametric changepoint model and focus on the
estimation of and testing for a changepoint to a biased sample. Using the empirical
likelihood method (Owen, 1988; Qin & Lawless, 1994; Zhang, 1997), we can make
efficient use of auxiliary information about the relationship between the two population
distributions. We assume that x,, ..., X, are independent vectors in R™. We wish to test
between the following hypotheses:

Hy: x4,...,x, is a random sample from a population with distribution function F;

H,: for some n”1<6,<1, x4,..., X, is a random sample from F and X,g +1,..., X,

is a random sample from a weighted G,
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where

1 y
G(y)=-u—]J. w(x, f)dF(x), w(.,.)>0, (1-1)
in which w= [ _w(s, B)dF(s) < co is the normalising constant and the weight function
w(x, f) is of known form, but may depend on an unknown parameter feR? We
assume that w(x, §) is positive and differentiable with respect to B. If 840, w(x, )+ 1
and w(x,0)=1 for all x. Here 6, is an unknown parameter taking a value from
®,={k/n:k=1,...,n}. In the asymptotic theory of this paper, it is assumed that
f,—0,e(0,1] as n - o0.

A slight but significant extension of H is the so-called epidemic alternative (Levin
& Kline, 1985; Yao, 1993) that, for some 1<k, <k, <n, xq,... s Xiys Xigb1s -+ - > Xg 18 @
sample from F and x; 4+4,..., X, 1S a sample from G. Results corresponding to epidemic
alternatives will be reported in a separate paper.

In this semiparametric model, the distributions F and G are treated nonparametrically
except that the ratio of the density or probability functions has a known parametric form.
We will focus on the change from F to the weighted G. Although most of the technical
results of this paper are given for a general weight w(x; f8), the most important model in
practice is the semiparametric exponential model, with weight w(x, 8) = exp {87 t(x)}.
In this case, the log ratio of the two density or probability functions, f and g say, is of
the form

g(x)
log =— =a+ BTt(x), 12
where o = —log w. Typically, we use 7(x)=x, or 7(x) is chosen to contain second- or

higher-order powers of x. These choices correspond to the first-, second- or higher-order
approximation of log {g(x)/f(x)}. Of course, if we believe that both f and g belong to a
parametric exponential family, then (1-2) is an exact parametric expression and we also
have other choices for t(x) such as t(x)=1log x. We shall show that this exponential
model can be used to detect a possible change in E{t(X)}. In fact, from (1-2), it follows
that the symmetrised Kullback-Leibler information distance I(f,g) between the two
distributions in the exponential changepoint model measures the change in E{z(X)}, that
is I{f, 8 = 3BT [Ep{t(X)} — E¢ {t1(X)}]. The quantity 2I(f, g) is also called J-divergence
(Jeftreys, 1946). In § 7 we show that the model perfectly fits some classic changepoint
datasets. Diimbgen (1991) also considered this model as an example of a general non-
parametric model, but did not use information about the relationship between F and G.
The general parametric exponential family changepoint model, studied by Worsley (1986),
covers most of the parametric models used in applications.

2. METHODOLOGY

Let xy,..., Xn, and X, +1,-..,X, be independent and identically distributed
observations from population F and a weighted population G as in (1-1) respectively. The
likelihood L of the data is

n

n n —n(1~86,)
L=1]p I W(xj){ ) piW(xi)} ; (21)
i=1 i=1
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where p;=dF(x;) (i=1,...,n). For each fixed 6,€©®,n(0,1), let I(8,,w, B) be the
maximum value of log L + n log n with respect to p; (i=1, .. ., n) subject to the constraints

Z piw(x;) = w, Z pi=1 (p;=0,i=1,...,n).
i=1 i=1

As in Qin (1993), see also Vardi (1982), the Lagrange multiplier method leads to

n

16, w, )= — 3 log {0uw+(1— 0, w(x B)} + 3 log {wixs, B)} + 6, log w.

i=1 i=nd,+1
(2:2)
Therefore, the score functions are
BB w B 0(1—0) & Wik, B)—w
P DR (8 T ETXTY 23
_ 0l(B. W, B) roowg(x, B) & (11— 60,)wp(xi, B) _
Vo P == = X e h) B =G B G Y
where wi(x, B) = ow(x, B)/0p. Let (W, BT) = (W(6,), B7(6,)) be the solution to
ll’l(em w, .B) =0, '1[/2(6715 W, ﬁ) =0. (25)
Consequently, |
1 W _
pi= ‘ i=1,...,n (2:6)

| n (1= 8,)w(xi, B+ 6,
and the profile loglikelihood function of the unknown changepoint 8, is given by

1(0,) = 1{6,, W6,), B(6.)}
(x,,m " W
= — Z log{(l—ﬂ) }— Y log{1—0”+g"w(xi,,8)}’ (2:7)

i=ng,+1

with [(0)=1(1)=0.
The changepoint estimator 9 can be defined as

9,, = min [arg max {{(8,):0,€ O, }]. (2-8)

When w(x, f) = exp {fT(x)}, this model includes the exponential family and the ‘partially
exponential’ family of the form dG(x) = exp {BT1(x) + c(x, ¢) + b(B, $) }dx. Write w=e""
If 6, €(0, 1) is known, this is a two-sample semiparametric model related to the logistic
regression model

exp {a* + pT7(x)}
1+ exp {a* + BTt(x)}’

where Z is a binary response variable. Based on case-control data and the empirical
likelihood method, Qin & Zhang (1997) and Zhang (1999) respectively proposed a
Kolmogorov—-Smirnov-type test and a chi-squared-type test for testing the goodness-
of-fit. Let z;=01ifi=1,...,nf,, and z;=1if i=nf,+ 1,...,n For each fixed 6,, data
(z;, x;))(i=1,...,n)can be ﬁtted by the model (2-9). Using statlstxcal packages such as R
and S-Plus, one can easily obtain estimates &*(6,) and ﬁ(B,,) of the coefficients of the
logistic regression so that w(0,) = exp { —4&(6,)}, where &(8,) = a*(8,) +log {6,/(1 —6,)}.

priZ=1X=x)= (29)
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As pointed out by Albert & Anderson (1984), if, for some k, x4, ..., x, and x, ;. g Xn
are completely or quasi-completely separated, the maximum likelihood estimate S(k/n) in
the above logistic regression does not exist. This may well happen if F and G are very
different. The methods of Albert & Anderson (1984) and Santner & Duffy (1986) can be
applied, for each k=1,...,n—1, to check the separation status. If there exist some k’s
such that there is a complete or quasi-complete separation, we can use a two-sample test
method to see whether the change is significant or not and define the changepoint as
the smallest k for which a significant change has occurred. Other methods such as non-
parametric methods can also be used to locate the changepoint in this case. Iterative
methods are usually required to find the maximum likelihood estimates in the semi-
parametric model. When the true value of 6, is close to 1/n or 1, the convergence of
the iteration is not guaranteed. However, the simulation study of § 5 shows that the
semiparametric maximum likelihood ratio test performs very well in this case.

A significantly large value of the empirical log likelihood ratio statistic

S,=21(6,)=2 max I(6,) (2:10)

will lead to rejection of H, in favour of H,, as in § 1.

The algorithm for finding the changepoint estimate and calculating the test statistic is
very simple. First, for each 6, = k/n (1 < k <n) solve the system of equatlons (2'5) to obtain
w(f,) and ﬂ(@ ). Secondly, calculate the profile loglikelihood I(6,) as in (2-7) for each 6,.
Finally, obtain 9 as in (2-8) and S, as in (2:10). R and S-Plus libraries for exponential
changepoint models are available from the author upon request.

3. SOME ASYMPTOTIC RESULTS

Define Ag=A,=0and,fork=1,...,n— 1, nA,=I(k/n) so that S, = 2 maxo<s<na {nAs}-
For k=1,. n—l write W, = w(k/n) and ﬂ,,— B(k/n) the maximum semiparametric
likelihood estlmators of w and B, respectively, when 6, =k/n.

Let n=(6,w, §7), a(x,n)=(1~0w(x, B)+ 6w and a(x, 1) = (1 — Oo)w(x, Bo) + oWo,
where wy = Ex{w(X, Bo)}, and B, is the true value of B. Clearly, under H,, wo=1 and
Bo=0. For 0 <8< 1, define

_8(1=-06) [ alx, no) {w(x, B) —w} e
g:1(0, w, p) = - J o dF (x), (31)
1 {(Bo— o A )wo + (1 — 6o V O)w(x, Bo)}wp(x, B)
20, w, B)= e Jm o B) dF(x)
_1-6 [ a(x, no)wp(x, B) ,
o Lo o dF(x).. (32)
Set
_ 6g1(9a w, ﬁ) _ agl(gs w, ﬁ)
B ow opT
| 020w B8)  3g.(6,w p)
ow opT

We need the following assumptions for our main theoretical results.
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Assumption 1. The function w(x, p) is twice differentiable with respect to f and

EF{ZS:;; d'w(X, B) ¥'w(X, B) } <o,

aB., o}
for 1<u,v<d,i+j<2and §e(0,1).

Assumption 2. The matrix A is positive definite, that is 4 > 0.

Assumption 3. There are functions M;(x) such that {w(x, B)} ~'10'w(x, B)/0fi| < M,(x),
and Ep{M(X)} < o0, EF{M3(X)} <o and Ep{M,(X)M,(X)} < oo, where 1<i<3,
1<j<d.

It is easy to see that Assumption 2 is satisfied for exponential changepoint models
when 7(x) is a nonconstant vector of real-valued functions. The following result about the
approximate null distribution of the test statistic is the same as that for the parametric
case (Csorgd & Horvath 1997, Theorem 1.3.1). Proofs of the theorems are given in the
Appendix.

THEOREM 1. Suppose that Assumptions 1-3 are fulfilled. If H, is true, then

lim pr{C(logn)Z, <t + D,(logn)} =exp(—2e~"), (3-3)
for all t, where Z,=5S%, C(x)=(2log x)}, Dy(x)=2logx+1dloglog x —log I'(3d) and
I'(t) is the gamma function.

Define t(x) = wp(x, o) and 7;=1(x;) (i=1, ..., n). The proof of this theorem indicates -
that the proposed test statistic S, is asymptotically equivalent to the nonparametric test
statistic

~

S,= max

max k(n )GT(k)Z 1G(k) (34)

which in turn is equivalent to the statistic

-~

Sy =

1<k<n k(n . k) GT(k)Zk 1G(k) (35)

(Cs6rgd & Horvath, 1997, p. 76, eqn (2.1.66)) for the change of E{t(X)} with unknown
constant var {t(X)}, where

5 _{n‘l{Zi-‘:l(ri,—fk)(ri—fk)T+Z?=k+1(ri—fk)(ri—fk)T}, if k<n, (36)
' nd12?=‘-1 (Tl' - fn)(Ti - fn)Ta if k= n,
1 & n k k »n
—k=']€ > T H= Y owu GR=Y u——Y 1 (37)
i=1 i=k+1 i=1 n;=

For example, if w(x, f) = exp {#71(x)}, then t(x) = wj(x, B,) with B, = 0. Unfortunately, as
in the parametric case, (3-3) only gives a conservative rejection region, because of the slow
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convergence rate of (3:3). However, in § 4, Theorem 1 plays a key role in obtaining the
approximation of critical values as in Theorem 1.3.2 and Corollary 1.3.1 of Csérgé &
Horvath (1997).

THEOREM 2. Suppose that Assumptions 1 and 2 are satisfied. If 0<6,<1 and
kin— 6€(0, 1), then, as n — o, Ay = A(6) almost surely, where the function A(8) is strictly
convex on (0, 6,) and (0, 1), maxgeo,1;4(0) = AUb,) and A(6) < A(6,) for any 0 % 6.

This theorem shows that the maximum likelihood estimator é,, is asymptotically unique
when 0 < 0, < 1. Consistency is established in the following result.

THEOREM 3. Suppose that Assumptions 1 and 2 are satisfied.
(i) Under Hy, as n— oo, 8, — &, in distribution and pr(£,=0)=pr(&,=1)=4.
(i1) If H, is true, then, as n — oo, 8, — 6, — 0 in probability.

4. CALCULATION OF CRITICAL VALUES OF THE LIKELIHOOD RATIO TEST STATISTIC

Let 0 <a <1, and define Z, , = sup {x:pr(Z, < x) <1 — a}. Similarly to Theorem 1.3.2
and Corollary 1.3.1 of Csorgd & Horvath (1997), it is easy to see that the critical value
Z, . can be approximated by

u(h, 1, d; 1 — o) = sup [:x sr(x?; d){(x2 —d)log g——%—l—) + 4} = oc] ,  (41)
for suitable h and I, where k(t; d) is the y*(d) density function. From a simulation study,
we found that a good choice for h and [ is h,(n) = I,(n) = (log n/n)?¢* VU-2/2,

As pointed out by Csorgdé & Horvath (1997), (4-1) usually provides very good
approximations of critical values for small a«. Tables 1 and 2 compare the critical
values u*, which are determined by Theorem 1, and @ =u{h,(n),l,(n),d; 1 —a} with
empirical critical values based on 10000 replicates from certain distributions, namely
normal, exponential, binomial and Poisson distributions with change in mean. The model
used corresponds to d=1 and w(x, ) =exp(fx). Table 2 displays critical values when

Table 1. Comparison of critical values of the likelihood ratio
statistic, with d =1 and w(x, ) = exp ( fx)

* "
n {—a u U Znorm Zexp Zpinom Zpois

20 090 31133 28290 2-8179 28179 2-8179 28179

0-95 35993 31146 31062 31298 3-0306 3-0306
099 46996 36519 36061 36246 3-6060 3-6060

50 0-50 31813 29440 "3-1311 3-1311 28841 2-8944
095 36171 32177 3-1311  3-1647 31311 31311
099 4-6039 37386 3-6840 3-6931 36173 3-6280

100 0-90 32256 3-:0140 30560 30004 29375 2:9032
0-95 36374 3-2808 3-3467 33467 3-1895 3-1886
0-99 45701 37921 37954 37123 36901 3-7552

500 090 3-3096 3-1401 30037 30401 29957 3-0287
0-95 36862 3:3954 32768 33087 3-2501 32573
099 45389 3-8897 3-7985 3-7985 37042 3-7984
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Table 2. Comparison of critical values of
the likelihood ratio statistic, with d =2 and
w(x, f) = exp {fT(x)}

Py

*
n 1—a u u Znorm . Zbinorm

20 0-90 35310 3-4994 36061 3-6061
0-95 40169 37482 37234 3-6601
0-99 51173 42290 42037 42589

50 0-90 3-6218 3-5980 3-6656 3-3701
0-95 40576  3-8381 4-0980 3-7184
0-99 50444 43061 42702 42152

100 0-90 36742 36594 36613 3-3731
0-95 40861 38944 39855 3.6283
0-99 50187 43548 44283 42312

500 0-90 37667 37715 3-7983  3-5448
0-95 41432 39977 40203 3-7983
0-99 49960 44446 46138 4-7488

d=2 and w(x, B)=exp {fTt(x}}, where 7(x)=(x, x*)T, when samples are drawn from
univariate normal distributions and both mean and variance may have changed, and
where 7(x) = x = (x,, x,)T when samples come from bivariate normal distributions with a
fixed covariance matrix and only the means may have changed.

Since the null hypothesis H, is equivalent to F=G for any 0<#6,<1, both per-
mutation and bootstrap methods could be used to compute p-values. Clearly, the
permutation method is preferred for small sample size since it provides an exact p-value
if the number of permutation repetitions is sufficiently large (Efron & Tibshirani,
1993, Ch. 15). The permutation (bootstrap) algorithm is as follows. First, for each
b=1,...,B, independently choose a permutation (bootstrap) sample X8, ..., x¥ which
is obtained without(with) replacement from x,, ..., x,. Then calculate the permutation
(bootstrap) version S¥ = Sa(X31, ..., x}) of S,. The p-values of S, can be approximated
by P=# {S3» = S,}/B. Examples of using resampling methods to approximate p-values can
be found in § 7.

5. POWER COMPARISON: A SIMULATION STUDY

Consider a change in the mean. The proposed semiparametric test is compared with
the nonparametric test $* in (3-5) based on the tied-down partial sum (Csérgd & Horvath,
1997, §§ 1.4, 2.1). The latter is equivalent to the parametric maximum likelihood ratio test
when samples are drawn from normal distributions with unknown constant variance.
Again normal, exponential, binomial and Poisson distributions were considered, with
changes in the mean value at k = né, =0, 10, 20, 30, 40 and 50, respectively, and 5000
samples are drawn from each of the four distributions. Using the critical values given in
Table 1 with observed p-value 0-05, we simulated powers of the tests. The results are
presented in Table 3, which shows that the semiparametric test is sensitive and robust. If
samples are from normal distributions, then the proposed test is a little less powerful than
the nonparametric test S*, but otherwise the semiparametric test is more powerful
than S*.
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Table 3. Comparison of powers of the tests, with n=100, a« =005 and
Ep(X)=1, Eg(X)=2

Normal Exponential Binomial Poisson
nb, Semip Nonp Semip Nonp Semip Nonp Semip Nonp

0 0-0500 0-0500 0-0500 0-0500 00500 0-0500 00500 0-0500
10 0-5076  0-5860 0-1746 00370 0-4302 0-2884 03690 0-1862
20 08222 08822 0-3552 00806 07680 0-6990 0-6624 0-5312
30 09304 09582 05398 02078 0-8900 0-8628 0-8236 07460
40 09628 09778 06358 03666 09314 09218 0-8724 08356
50 09676 09814 06846 0-5030 09456  0-9408 08994 0-8792

z 3-3467 31821 3-3467 3-7108 3-1895  3-2805 3-1886 3-3301

Semip, the semiparametric test; Nonp, the nonparametric test

6. TEST OF VALIDITY OF THE CHANGEPOINT MODEL

Foreachk=1,...,n—1,let F,(t) and G,() denote the empirical distribution functions
of samples x;,...,x; and X;4y,...,X, respectively. Define semiparametric empirical
distribution functions

n

Fk(x) 25 I[x,-sx}a Gk(x)=

i=1 14

g

q‘kiI[x,-ijy (61)

"

1
where

e o M B
(n — k)w{x;, Bk/n)} + kw(k/n)’ Qa = w(k/n) P (=1,...,n).

Let k = né,,. Similarly to Qin & Zhang (1997), we propose to use the statistic

A

Pri =

K,=/n {é,, sup [Fi(t) — Fi(0)l + (1~ 6,) sup Gi() - G,e(tn} (62)

to test the validity of the semiparametric changepoint model. A significantly large value
of K, would indicate the invalidity of the model. To obtain p-values of K,, the followmg
bootstrap method can be used. If 6, =0 or 9 =1, then a bootstrap sample xf, ..., x;
i1s drawn from x,,..., x, with replacement. Otherw1se if 0< 6 <1, bootstrap samples
xf,...,xy and x,,e +1,--+,X%¥ are drawn independently as samples from F ué, and G,,,,
respectlvely By replacmg the original sample x,...,x, with the bootstrap sample
x¥, ..., x¥, we can obtain the bootstrap version K* of K,, and p-values of K, can be
approximated by those of K}¥. From the consistency of 6,, the validity of the bootstrap
method follows easily.

For univariate distributions, a visual diagnostic is to plot {Fi(1), Fx(t)} and
{Gi(2), Gk(t)} If the changepoint is detected in the middle of the observations, substantial
discrepancy in one of the plots would indicate the inadequateness of the model. If k is
close to 1 or n, we may have to use the bootstrap method to approximate the p-value for
the test.

7. APPLICATIONS TO SOME WELL-KNOWN DATASETS

Example 1. The Nile Rivér data (Cobb, 1978) have been studied by, among many others,
Cobb (1978), Diimbgen (1991) and Cso6rgd & Horvath (1997). All these authors obtained
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k= né,, = 100 x 0-28 = 28, which corresponds to the year 1898. The loglikelihood function

I(k/n)—nlog n and the estimated distribution functions Fi(t), F;(¢), G;(¢) and Gi(¢) are
plotted in Fig. 1. Figure 1 (b) indicates that the selected model fits the data perfectly.

~Based on 10000 bootstrap replicates, the observed p-value of the model test with

w(x, ) =exp(fx) and d =1 is 0-6264, also indicating that the model is valid. We obtain
the same changepoint estimate as above. The test statistic Z,=7-2085 is also highly
significant, with p-value 99907 x 10> from Theorem 1. From Table 1, Z, is significant
at level a=001. An approximation of the p-value from (4-1) is 1-:3608 x 10~ 1°, Since
Theorem 1 always gives a conservation rejection region, the actual p-value is not greater
than 99907 x 10>, :

(a) Loglikelihood (b) Model diagnostic
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Fig. 1: Nile River data. (a) shows loglikelihood function and (b) estimated distribution
functions, F;, solid, F;, dash-dotted, G;, dashed, and Gj, dotted plotted against Nile River
annual volume of discharge (10% m?).

Example 2. The stock-market price data, first studied by Hsu (1977, 1979) and then by
Lee (1996) and Chen & Gupta (1997), consists of weekly closing values, n =162, of the
Dow Jones Industrial Average from 1 July 1971 to 2 August 1974. Based on a gamma
distribution model and a nonparametric model for the rates of return, all these authors
treated the rates of return as a series of independent random variables and arrived at the
same conclusion that one variance shift has occurred, during the 89th week, 19-23 March
1973. The independence assumption was examined by Hsu (1977, 1979). We have fitted
three exponential models with different 7(x) to this dataset. All these models have passed .
the model test. Figure 2 shows that this semiparametric model fits the data perfectly.
Model 1, with t(x) = x, aims at detecting a possible change in the mean value. Model 2
is the same as Model 1, but is based on the data x3, ..., x2 instead of x;, ..., x,. It tests
whether or not E(X?) has changed. Model 3, with 7(x) = (x, x?), can detect changes in
mean and variance. The results are summarised in Table 4. The number of repetitions is
5000. Table 4 shows that there was no significant change in the mean rate of stock return
but that the variance changed significantly.
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Fig. 2. Stock price data. (a), (c) and (¢) show loFglikelihood functions and (b), (d) and (f) show estimated
distribution functions, F;, solid,
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Table 4: Stock price data. Results of data analysis

Model K, Pv-K, nb, Z, Pv{33) Pv{(41) Pv-P Pv-B
1 02882 04314 153 19516 0-6674 05263 06318 06410
2 0-5851 04584 89 55493 00017 10x10"% 0 0
3 05529 02760 89 56269 00033 62x107° 0 0

Pv-K,, p-value of bootstrap test of the model; Pv-(3-3), Pv-(4-1), Pv-P and Pv-B are
the p-values based on (3-3), (41), the permutation test and the bootstrap test

respectively.
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APPENDIX
Proofs
Define
A1(0) = —wq *Ep{a(X, no) log a(X, 1)} + 6 log w(6),
Xy
A2(0) = (0o — 6 A 8p)Ep[log wiX, B(0)}] + (1 — 0, V O)Ef [E(_W;ﬁo_) log w{X, B(6)} }

and A(0) = 4,(6) + A,(0), where, for fixed §, € (0, 1] and 8 € (0, 1), w(6) and p(6) satisfy the equations
8116, w(0), (0)} =0, 2216, w(0), B(6)} =0. (A1)

The existence, uniqueness and differentiability of w(f) and B(6) are ensured by the implicit
function theorem and Assumption 2. Thus we can define {w(0), 87(0)} = {w(0+), B¥(0+)} and
{w(1), BT(1)} = {w(1-), B7(1—)}. In the above and the following notation, we suppress the
dependence of quantities on 6,. It is evident that A(0) is a continuous function of § and is also
twice differentiable with respect to 6 on (0, 1) except at 6,.

In order to prove Theorem 1, we need the following lemmas whose proofs are similar to, but a
little less tedious than, those of Lemmmas 1.2.1 and 1.2.2 of Csorgd & Horvath (1997), respectively,
and are therefore omitted.

LEMMA A-1. If H, holds, then for any ¢ >0 and 6 > O there exist K, = K,(¢, §) and N; = N,(g, 8)
such that, if K> K, and N > N,,

pr{ max |(wk,B)—(1,0)|>a}<5. (A2)

K<k<sn—K

LEMMA A-2. If H, and Assumptions 1-3 hold, then for all § >0 we can find C,= C;(d),
K, = K,(0) and N, = N,(J) such that

pr{(n/log logn)'? max |W,—1|> Cl} <0, (A-3)
K<k<n—-K

pr{(n/log logn)? max |B,~0> Cl} <94, (A-4)
K<k<n-K

a Cl 5 Cl
Pt Kslllclgf—lclwk—- 1|>;1/—2 <o pr Ksl?saf—lclﬁk_ol>;ﬁ/—2 <9, (A3)
if K=K, and n=N,. Also '
0B, Bo) — (1, 0)] = Op(n™2). (A6)

Proof of Theorem 1. Two-term Taylor expansion of Y, (k/n, Wy, ) and y(k/n, W, By) at
(@, Bo) =(1, 0) yields

Wy, — Wo n~ Y, (k/n, wo, Bo) + €
A =A;1 k s s ( ), A'7
(ﬁk~ﬁo) e, o Bo)\ -1y, wo, o) + (A7
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where both ¢, and e, || are k/n(1 — k/n)op(IW, — wo| + || ﬁk~ Boll) and
(0, w, ) O1(6, w, B)

a0 1 ow opT
O == s m ) 00w p) |
ow op*

Define D(x) = A(x, o) — Er{A(x, Bo)} and

1 T
B,=|_ ,
T, N i= I’E‘L’ +I‘,,k

where ;= {nX;_ D(x;) ~ kL], D(x;)}/{kin—k)},
82w(x, B)

A(x, ﬁ) — wb’ﬁ(x’ ﬂ)w(x’ ﬂ) — Wk(x, ﬁ){W;;(x, ﬂ)}T, Wﬁﬂ( ﬁ) aﬁ aﬂT .

It is easy to see that
k k k U U,TTU.
ArI(_’WO,ﬂO):—(l_—)Bm Bn‘lr'( ' ' : ),
n n n UpTUy (Zp+r) 7t

1 -1
Uy={1-7,0,%,} %, U2={;; Y riT,T-D-rnk}
i=1

where

and Z, is given in (3-6). Thus

Wy, — W n NEpy
A = B! , A8
( B — Bo ) kin — k) (G(k) + ns;.’k) (A8)

where G(k) is defined in (3:7). It is also easy to see that, for any ¢ > 0, there exists a K = K(g) such
that, when n > n(e), maxg<p<n-x|("m)ul <& for 1 <u, v <d. Three-term Taylor expansion of 2nA,
at (wy, Bo) = (1, 0), (A-7) and some tedious algebra yield

2nAk =

n -1 .
K — k) GT(K)Z; G (k) + Ry, (A9)

where

k(. k , ‘
Ry = ;(1 - ;)C’P(M’k— wol? + 11 Bx — Bo ).

This together with Lemma A-2 ensures that, for all 0 <7y <1,

k AN K n
n - o - T -1 — .
n Irggfn {n<1 n)} 2nA, "n — k)G k)X, G(k)' 0p(1), (A-10)
k(n — k) T 1 1/2 3/2

max ———|2nA, — G'(K)Z; ' G(k)| = Op {n~'"?(log log n)>?}. (A-11)

1<k<n N? k( —~k)
Using the same arguments as used in the proof of Theorem 1.3.1 of Csdrgd & Horvath (1997), we
can prove the-theorem. O

Proof of Theorem 2. Based on one- and two-term Taylor expansions of A, as a function of ( ﬁk, Wie)
at (B, wi) = {B(k/n), w(k/n)} and very extensive algebra, we can show that

At [Zlg{k kw(xv;;ﬁ"}Jr > o {“"J “ = oo

k+1 n n w(x;, Bi)

v
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By the law of large numbers and the central limit theorem, the almost sure convergence of A,
follows from the above expansion. From g, {w(6), f(6), 8} =0, it follows that

[a<X, no)ww)] _E [a(X, no)WiX, /3(9)}] —
a{X,n(6)} F a{X, n(6)} o

Clearly, w(8y) = w, and B(6,) = B,. For fixed 6,, we write w, = w(k/n) and B, = B(k/n). From the
implicit function theorem, it follows that w'(f) and £(6) are determined by

(W’(e)> =A‘1<ag1/69). (A'13)
£'(6) 0g,/06

o1L—0)  {alX, o
e g o).

(A12) |

Since A > 0,

1=

6(1 —6) {a(X, fo)

wow | a*(X,n)

w(X, B)} , Ay = A12 ==

T [ o1 — e)EF{“(X o) e (x, B)} —EF{B(X)}} >0

aﬁT 2(X ) ﬂﬁ
where
_ f(6o— 00 A OYwo +(1 =6, V OW(X, B) (1 —6)a(X, no)
= { VX, B) ) }A(X’ P
Thus
0g1(6, w, B) 1 { w2(6) }
— = 1— A-14
00 |vewors=se WO (1 — e)A“ (A14)
and consequently
w() [ a(X, no) w3(6) _
1> "o EF[GZ(X, ") wiX, B( )}] (1~ G)A (A-15)
From (A1), (A-12), (3-2) and simple algebra, it follows that
oy WO Ty ,
A"0) = W0 +{pO)}"V, (A-16)
where
C T H6 < 8o)wo + (8> B)W(X, Bo)IWh(X, B) ,
F=-F [ wow(X, f) } (A17)
Clearly
og,0.w ) wih)  [aX,no) , O ‘
20 =V+ e EF{aZ(X,ﬂ)wﬁ(X,ﬂ)}-—V—- O(I—G)AZI' (A-18)

Combining (A-14)—(A-18), we obtain

ES e\ 1 L
“9)“( @ VT) < v >”9(1—6)>w2<9)A“1’9(1—9)20'

Thus 4"(6) =0 on (0, 6,) and (,, 1). It is easy to see that A(0) = A(1) =0 and A(6,) > 0. Therefore,
the theorem is proved. O
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Proof of Theorem 3. (i) The proof is based on Theorem 2 and is similar to the proof of
Theorem 1.6.1 of Csdrgd & Horvath (1997, p. 51).

(i1) It follows from Theorem 2 that max, <, ., Ay — A(6,) almost surely as n — oo and, for any &
such that 0 <d <min {f,, 1 — 6},

max A;— malx A(0) < A(6,)

|k —n6g] > én 166

almost surely. Therefore, lim,,_, ., pr {l@,, — 8] > 6} =0. This proves that §,— 6, - 0 in probability
since we have assumed that lim,_ ., 8, = 6,. O
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