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We analyze the modifications that occur in indirect inference when a nuisance parameter is nol identified
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1. INTRODUCTION

This article considers inference when a nuisance parame-
ter 1s not identified under the null hypothesis in the context
of simulation-based cconometric methods. Simulation-based
econometric methods are increasingly used in economics and
finance for models which were previously thought to be too
complex for a proper estimation. The reason is that they allow
the estimation of models where the optimizing function takes
no simple analytical form. In such models, the difficulty may,
for example, arise from the presence of multidimentional inte-
grals in the likelihood function or in the moment conditions.
In this context, conventional econometric methods cannot be
directly used since they require an explicit form for the opti-
mizing function. Simulation-based econometric methods are
designed to overcome such a numerical difficulty through an
approach based on simulated data. The only requirement to
implement these indirect methods is that the model can be
simulated. They include the simulated method of moments
(Duffie and Singleton 1993), indirect inference (Gouriéroux,
Monfort, and Renault 1993), and the efficient method of
moments (Gallant and Tauchen 1996).

In this article, we examine the problem occurring when
a nuisance parameter is not identified under the null in the
context of indirect estimation methods. This problem is well
studied in the direct estimation context [see Andrews and
Ploberger (1994), Hansen (1996), among others]. Indirect esti-
mation methods are characterized by the use of an auxiliary
model and simulation paths from the structural model. The
purpose of our article is Lo analyze the problem of a nuisance
parameter, which is not identified under the null in this setup.
In the case of structural change tests with unknown break-
point, Ghysels and Guay (2001a,b) show, for simulation-based
estimation methods, that the asymptotic distribution of stan-
dard tests is free of nuisance parameters. In that setting, the
parameter that appears under the alternative, but not under the
null, is the tme of structural change. However, the asymp-
totic distribution of standard tests generally depends upon
unknown parameters. In this article, we analyze the modifi-
cations that occur in indirect methods in the general case. To
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do so, we modify the strategy proposed by Hansen (1996)
in the direct estimation context. In particular, we show how
to deal with inference when additional uncertainty is intro-
duced due to simulations. The general framework is developed
for estimation by indirect inference. As shown by Gouriéroux
and Monfort (1995a), indirect inference contains the simu-
lated method of moments (SMM) and the efficient method of
moments (EMM) as special cases. The results derived in this
article are thus directly applicable to these methods.

The general setting is applied to threshold moving average
(TMA) models in the context of an analysis of the persis-
tence of shocks to output. By relaxing the hypothesis of sym-
metry, Beaudry and Koop (1993) and Elwood (1998) allow
the disentanglement of effects of positive shocks versus neg-
ative shocks. Beaudry and Koop (1993) use an exogenous
proxy to represent shocks, and provide evidence of asymmet-
ric effects of innovations to the gross national product (GNP)
[see Elwood (1998) for a critic of the specification used by
Beaudry and Koop (1993) to identify positive and negative
shocks]|. Negative shocks to GNP seem to be less persistent
than positive shocks. In contrast to Beaudry and Koop (1993),
Elwood (1998) identifies directly positive and negative shocks
by using an unobserved component model corresponding to
a threshold moving average model. He finds no evidence of
asymmetry in the persistence of shocks to output. However,
his modeling excludes an a priori asymmetric effect of con-
lemporaneous shocks, and imposes a threshold depending on
the sign of shocks.

In this article, we consider a more flexible model to analyze
the persistence of shocks to output. This model takes the form
of the following threshold moving average model [TMA(])]:
Y, =p+ dﬁl- E:]la,_-,-p + dl‘;Ern‘E;E'}'

+ - +dle, ] +dre, 1, ., (1)
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where 1, takes the value 1 if A is true and 0 otherwise. In
model (1), successive shocks are not transmitted symmetri-
cally through time, but their influence does depend on their
exceedance of the threshold y. The main feature of model
(1) is thus its ability to capture asymmetric effects induced
by the random shocks. As opposed to Elwood (1998), we do
not impose a threshold value, and we introduce contempora-
ncous asymmetry. Such an asymmetry, if present, will affect
the measurement of persistence of shocks.

Threshold moving average (TMA) models have already
been considered in Tong (1990), but without any contem-
poraneous asymmetry [see also related work by Wecker
(1981) and De Gooijer (1998)]. This extension parallels
the construction proposed for the conditional variance by
El Babsiri and Zakoian (2001) in a generalized autore-
gressive conditional heteroscedastic (GARCH) context. The
contemporaneous asymmetry induces second moments, which
differ depending on the threshold. The introduction of the
contemporaneous asymmetry in model (1) prevents a direct
approach by maximum likelihood. Therefore, we need to pro-
ceed by indirect methods to estimate the parameters of this
type of TMA model.

In empirical work, the presence of contemporaneous and
lagged asymmetries needs testing. The inference is not stan-
dard because a nuisance parameter (the threshold) is not iden-
tified under the null hypothesis. We apply the general results
developed in the first part of the article to test for the presence
of asymmetry in the moving average representation.

The article is organized as follows. In Section 2, we present
the general framework and testing problem. The setting is suf-
ficiently large to cover a broad category of dynamic models. In
Section 3, we describe how to accommodate the indirect infer-
ence procedure of Gouriéroux, Monfort, and Renault (1993)
in the presence of a nuisance parameter. The general frame-
work and results are then applied to TMA models in Section 4.
Properties, estimation, and tests for such models are therein
detailed, the threshold being the nuisance parameter. Some
Monte Carlo results are also proposed. An empirical applica-
tion is delivered in Section 5, and consists of an analysis of
the persistence of shocks to U.S. GNP growth rates. Section 6
contains some concluding remarks. All proofs are gathered in
the Appendix. The usual notational conventions are used in
the article. ||-|| denotes the Euclidean norm of a vector or a
matrix, |||, denotes the L" norm of a random vector, that is,
1X|l, = (E||X||")"", and the symbol = denotes weak conver-
gence as defined in Pollard (1994).

2. GENERAL FRAMEWORK AND
TESTING PROBLEM

We consider a multivariate stationary process: w, = (y,, x,)’
where y, is a G-dimensional vector and x, is a K-dimensional
vector. We assume that the true conditional pdf of w,
given w,_, = (w,_,,w,_5,....} (WLl some measure )
only depends on w, ,,...,w, ., for some k. This pdf is
denoted fy(w,|w,_,), and can be written as f,(w,|w, ) =

Foy (el X, w,_;) fo. (x,|x,_,), where foy and f,, are pdf w.rt.
some measures u, and w,, respectively.
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We are interested in modeling f, ., and consider M =
{(f(y|x,w,_;;60,7),0 € ©,y € I'}, a parametric family of
pdf, where @ and I" are compact and bounded subsets of R?
and R™, respectively. In short, M is a parametric model for the
conditional distribution of the process y, given the process x,,
where 6 will be the parameter of interest and y the nuisance
parameter. The parameter 8 is decomposed into 8 = (8], 6,)’,
where 6, € R", 6, € R®, and g = g, + ¢,. For notational con-
venience, f(y,|x,, w,_;: @, v) is denoted hereafter as f,(6, y).

Our testing problem can be described as follows. The null
hypothesis 1s

while the alternative hypothesis is
H, : {6, # 0}, and the model M depends on the parameter 7.

We let 6, denote a parameter vector in the null hypothe-
sis. Under the null, we assume that f, = f,(6,,y) does not
depend on the parameter y. The parameter ¥ 1s not identified
under the null, and has to be treated as a nuisance parame-
ter. The testing procedure is therefore not standard as we treat
vy as unknown. As usual, in this setting, we adopt a local-to-
null reparameterization 6, = ¢/+/T, and the null hypothesis
becomes H,, : {¢ = 0}.

3. INDIRECT INFERENCE WITH
NUISANCE PARAMETER

We consider a situation where maximum likelihood esti-
mation or estimation by a method of momenlts are not fea-
sible, and an indirect procedure is called for. Indeed, maxi-
mum likelihood estimators are not always available, and one
should then rely on auxiliary or instrumental models through
indirect procedures. The terminology auxiliary model versus
instrumental model can be used interchangeably [see Dhaene,
Gouriéroux, and Scaillet (1998) for interpretation]. We mod-
ify here the results of Hansen (1996) to account for this indi-
rect estimation, and derive the asymptotic distribution theory
under H, : {¢ = 0}. In the following, we sketch briefly the indi-
rect inference procedure, and refer the reader to Gouriéroux,
Monfort and Renault (1993) and Gouriéroux and Monfort
(1995a) for details [see also Smith (1993)]. As already pointed
out, SMM and EMM can be viewed as particular cases of
indirect inference.

Let us assume that we can draw freely some paths from
the conditional model for a given value of the paramelers.
We denote by y/(8,y),t=1,...,T,n=1,...,N, the com-
ponents of the N drawn paths. To assist us in the estima-
tion, we choose an instrumental criterion characterized by
Qr(yrlxr, wr_is B) = X,y 4, (3] x,, w,_; B), B€B with B a
compact subset of R” and p > ¢. This criterion may, for exam-
ple, correspond to a likelihood function. Further, let us intro-
duce the M-estimators of B:

By = arﬁ _rgin Qr(yrl|xz, wr_;; B)
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and

Bi(8, y) = arg min Q7 (y1(0, ¥)|xr, wi_ (6, 7): B, ¥)

BeR

BY(0,7)=— ):HT(H Y)

r:—l

computed from the data and the simulated values, respectively.
The binding function b(8, y), for a given value of y, will
be the limiting value of B"(0, y) (Gouriéroux and Monfort
1995a). Under the null, the binding function does not depend
on the parameter v, and is denoted B, = b(f,). The indirect
estimator l‘i*"’{'f} is defined as

ﬁ”{ﬂ-argrgm(ﬁ — BY(0, 7)) Q0 (v)(Br — BY (6, 7))

where ﬁ,-{‘}f} IS a positive-definite matrix converging to a
deterministic positive matrix {2(-y) for a fixed 7y. Optimal indi-
rect estimators are obtained with a weighting matrix corre-
sponding to an estimator of {)*(y) defined below in assump-
tion (p).

The scores associated with the instrumental model are
denoted by

50.(B) = Ysq,(B). 1 ,(B.6.7)=Ysq!(B.0.7)

with ¢,(B) = q,(y,|x,, w,_,; B), and (B, 8, v) = ¢,(¥/(6, )|
x,wy 1(0,y):B.v).,n=1,..., N. We require the following
high-level assumptions.

Assumption 1.

(a) B,. BY(0, ), and Q,(y) do not depend on v for all 6
in the null hypothesis.

(b) B, = B, under the null for some B, in the interior of B.

(c) sup,, ||)§‘;‘f{ﬂ y) — b(6, y)| % 0 under the null for
some nonrandom function b(#, y) and for 8 € ©, where 0, is
some neighborhood of @,

(d) 5’?{6‘, y) is continuously partially differentiable in ¢ for
all € ®, and y € I' with probability 1 under the null.

(e) b(B,y) is continuously partially differentiable in # for
all 0 e ®, and y €I

(f) sup,cr |VaBY (8, ¥) — Vyb(6, ¥)|| = O under the null
for 8 € ©,.

(g) Vyb(8,, v) has full column rank for all y € I" and B, =
b(f, y) only when 8 = 8, for all y e[

(h) ¢,(B) is twice continuously partially differentiable in 3
for all B € B, with probability | under the null, where B, is
some neighborhood of G,,.

(i) q"(3, 0, vy) is twice continuously partially differentiable
in B for all B € B, 8 € ®, and y € I' with probability 1 under
the null.

gy EL] Vs, (B) 5 J,(B. y) uniformly over y e T,
and B € B, under the null for some nonrandom function
J,(B, v) uniformly continuous in (3, y) over B, x I.

(k) T-' X0, Vgs?,(b(8,y),0,7) = J,(b(6,7),y) uni-
formly over y € I', and # € ®, under the null forn=1, ..., N,
and for some nonrandom function J (b(8, ), ¥) uniformly
continuous in (b(@, y), y) over ©, x I.
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(1) J,(Bs, '}') 15 uniformly positive definite over y € I.

(m) T‘”z 31 15,.(Bo) => S,(Bo.) under the null as
Gaussian processes indexed by ¥ € I' with mean zero and
covariance matrix / (3, -).

() T8 !(,Gu, %+ ) = 57 (By, -) under the null as
Gaussian processes indexed by y € I' with mean zero and
covariance rnatri:-: I,(Bo, )

(0) Q: +(y) £ Q*(B,, y) uniformly for some nonrandom
function over y € I

(p) Q*(Bo.y) = J,(Bo» YV, (Bo. ) 'J,(By.¥) is uni-
formly positive definite over y € I', where I(B,,y) =

Vu:[gq (ﬁﬂ! T) ] y

Assumption (a) gives an indirect estimator, which does not
depend on the nuisance parameter under the null. Assump-
tions (b)-(g) are classical in indirect inference, and are only
slightly modified to handle the presence of a nuisance param-
eter. They concern the behavior of the estimators and their
limits. In particular, the injectivity of the binding function and
the rank condition on its derivative embodied by assumption
(g) are global and local identifiability conditions for indirect
inference (Dhaene, Gouriéroux, and Scaillet 1998). Note that
we only require differentiability w.r.t. the parameter of inter-
est 6, and nor w.r.t. the nuisance parameter y. Assumptions
(h), (1), (k), and (1) are standard in the context of M esti-
mation. In assumption (j), the probability limit of the score
function for the data is indexed by the nuisance parameter y
since the derivative of the limit criterion of the instrumental
depends on @ and 7y |see Gouriéroux, Monfort, and Renault
(1993)]. Assumptions (m) and (n) are relative to the weak con-
vergence of the score functions. In particular, assumption (n)
corresponds Lo the score of the M estimator for the simulated
path n. Assumptions (0) and (p) on the weighting matrix lead
to optimal indirect estimators.

The Wald statistic W,.(y) for the null hypothesis H, : {¢ =
0} is given by

Wr(y) = TO} () R(R'V,(y)R)™ R0} (y)

where R is the selector matrix R= (0 /d, ), and

Vrn = (1+3)
[vﬂB; (ﬂh{'}") ¥ ﬂ' (Y)Y, IBT{HN(T) T}]

The score statistic is the gradient of the objective function
w.r.t. 6 evaluated at the constrained estimator 7 obtained by
fixing 6, =0 in the simulations:

= Vo BY (67 . 1) (v) (B — BY (6}, 7).

The test statistic 1s

Cr(y)

LMp(y) = TCr(y) Ve (y)Cr(y)

where V() is the variance-covariance matrix of Cr(y) [see
Gouriéroux, Monfort, and Renault (1993) for the expression
of this matrix]|.
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Finally, the LR-type test is based on the difference of the
optimal values of the objective function for the constrained
and unconstrained estimators:

TN com |z, s A _ AN(A
LR, (y) = 5 [(Br ~ B} (B))) Q5 (v)(Br — B (97)]
TN
" I+N

X [(Br _ﬁ?(é?- T])rﬁ;('}’)fﬁr —ﬁﬁ(é¥~ T))]

The following theorem gives the asymptotic distribution of
the concentrated indirect estimator and the Wy (y), LM,(y),
and LR,(y) statistics.

Theorem I.  Under Hy : {c =0} and Assumption 1,

VT (8} (-) — 6,) = —K,(Bos 00, )52 (Bos *)

and

Wr(-), LMz (-), LRT(') =='5_:(.8u *}rfq (Jﬂuv By, )R
% [R'V,(By. 00, )R] RK,(By:0.")SY (Bo.-)

as processes indexed by y € I', with

E?(ﬁu- Y)= -fq(ﬁu- ¥)~ (Sqiﬁﬂ* y)-N"" ZS;{:G[P T))

K,(-) = [Vyb(Bp, ) @ (Bo,-) Vi b6, )]
xvﬂb{_ﬂﬂr ‘]"ﬂ'* (.Bﬂ' }

and

_— |
V() = (l + 'ﬁ)[vﬂb(gm ), (Bo, ¥, (Bo, y)™

x J,(Bo» ¥) Ve b(6,, )] |

Proof. See Appendix.

The asymptotic distribution of W, (y), LM:(y), and
L.R;(7y) statistics is a chi-square distribution for a given y. For
v € I', one can then build statistics such as g(W;(vy)), where
g maps functionals on I' to R. Davis (1977, 1987) suggested
using the supremum (Sup), and Andrews and Ploberger (1994)
show that superior local power can be obtained by the average
(Ave) of the statistics on I' or by an exponential transforma-
tion. However, the asymptotic null distribution of these map-
pings depends in general on the true parameter value 6, and
critical values cannot be tabulated.

Hansen (1996) proposes a nice remedy, namely, a p-value
transformation, based on a simple simulation technique in
order to obtain empirical estimates of asymptotic p val-
ues. His methodology can be easily adapted to our frame-
work. It consists of working conditionally on the sample
and simulated paths and using iid N(0,1) draws to build
conditional mean zero Gaussian processes with appropriate
second-moment characteristics. Let v,, v/, n=1,... N, be

i?

N +1 independent standard normal variables. We set S, , =
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T2 Yt Sqates Sy (¥) = T 2, 8 ()07, where
and §) ,(y) denote the estimates of the scores. The differ-
ence between direct and indirect estimation lies in the pres-
ence of the N estimates of the scores corresponding to the N
simulated paths. The four steps described in Hansen (1996)

can then be performed by using ﬁz':r(?) =J, 1 (V)7'(S, 1+ —

#Ei’;lﬁj('}f}) at the second step, and the finite sample
statistic corresponding to the asymptotic distribution of the
tests statistic (Theorem 1) at the third step to obtain the empir-
ical p values. Since we operate conditionally on the sample
and the simulated paths, all randomness appears in the iid vari-
ables v, and v}, n=1, ..., N. Therefore, as in Hansen (1996),
we may conclude that .E;_T and §:’;T() converge weakly in
probability to S,(B,,-) and S;(B,, -), respectively, as Gaus-
sian processes indexed by y € I' with mean zero and covari-
ance matrix [ (B, ). By the Glivenko-Cantelli theorem, the
simulated p values converge in probability to the true one.
It is important to note that the asymptotic covariance matrix
'u_*'q,{ﬁﬂ, y) is scaled by a factor (1 + 1/N), which contrasts
with the direct estimation case. This scale factor depends on
the number of simulated paths. In Section 4.2, a small sample
study examines the impact of the number of simulated paths
on the estimation and testing properties for our application.

4. THRESHOLD MOVING AVERAGE MODELS

In this secuon, we outline the threshold moving average
model which will be used 1n the empirical section to measure
asymmetry in the persistence of shocks to output. Basic prop-
erties of this model are presented before developing estimation
and testing strategies.

Testing procedures involving a nuisance parameter have
already been used to detect a threshold effect in threshold
autoregressive models [see, e.g., Chan (1990), Hansen (1996)]
or parameter instability [see, e.g., Andrews (1993), Andrews
and Ploberger (1994), Ghysels, Guay, and Hall (1998),
Ghysels and Guay (2001a,b), and Sowell (1996)]. In this arti-
cle, we want to study the threshold model:

Y, =+ D (L)e "+ D (L)e, (2)
with € =¢l, .., € =¢€l, ... and € ~ iid N(0, 1). The
nuisance parameler y corresponds to the threshold govern-
ing the asymmetric effects of the random shocks. The poly-
nomials of order /: D'(L) =dj +d{L+---+d/L" and
D-(L)y =dy +dyL+---+d;L" drive the moving aver-
age dynamics of the error term. The introduction of dg
and d; leads to the presence of a contemporaneous asym-
metry [see Zakoian (1994) for ARCH asymmetries and
El Babsiri and Zakoian (2001) for similar contemporaneity
in the conditional variance]. The parameter of interest # =
(udgad s ovl] vdg 87 e 0os 81 ) 1§ made of the mean
and the coefficients of the moving average polynomials.

Wecker (1981) proposes asymmetric moving average mod-
els with a threshold depending on the error term, but the case
with contemporaneous asymmetry is not considered, and the
threshold is arbitrarily fixed to zero. Elwood (1998) employs
the asymmetric moving average model proposed by Wecker to
study the asymmetry in the persistence of shocks to output. In
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contrast to Elwood, we allow for contemporaneous asymme-
try, and we do not restrict the threshold to be equal to zero. In
the following, we describe how to estimate asymmetric mov-
ing average models with contemporaneous asymmetry, and
how to test the presence of asymmetry without a priori impos-
ing the value of the threshold. De Gooijer (1998) also con-
siders threshold moving average models with a contempora-
neous effect. However, his threshold depends on the observed
variable [self-exciting threshold moving average (SETMA)
models|.

Let us first examine the basic features of model (2) before
moving to the estimation and lesting procedures.

4.1 Basic Properties

In model (2), the conditional distribution of ¥, is a mixture
of the distributions of € and €. This will lead to skewed and
leptokurtic (or platykurtic) conditional distributions. To quan-
tify this effect, one needs to define an information set to yield
truly iid errors. The required information set must include past
values of €,. Indeed, the information set including only past
values of the observed process is not sufficient to obtain iid
errors. The required information set at time r—1,/, , is then
defined as [, | = |e,_,}. Let us introduce the strong inno-
vation process U, of Y,, defined by U, = Y, — E[V,|¢,_,] =
dym; +dym;, where 77 =€/ — E[€/], and n; = €] — E[€]]
are 1id centered processes, independent of the past, and where
dy and d, are the first coefficients of the polynomials D* (L)
and D (L).

Proposition 1. In model (2) when ¥ = 0, the conditional
skewness of ¥, 1s given by

’E'[ Urj lE_'I]
E[U}e,_, PP

E [(di)} —(dy V)7 +2)+3[(d))*d; “f"rT(dﬁ. Y —2)
[[(dﬁ}’ﬁ-# (dﬁ']zl{ﬂ'— 1) +2d§d§]jﬂ

and the conditional kurtosis of ¥, by

E[U}€,]
E[U}]e,_, ]
[(dy ) +(dy)* (67 — 107 —3) +4[(dy ) dy +dg (dy)*]
x (m+3) +6(dy)*(dy)* (27 - 3)
[[(d3 2+ (dg )*)(7 — 1) +2d] d5 |

Proposition 1 gives the conditional skewness and kurtosis
of ¥, when the threshold vy is equal to zero. Expressions for
any y can also be computed thanks to the general forms given
in the Appendix. Eventually, unconditional skewness and kur-
tosis can also be derived, but the computations involve tedious
algebra. The conditional moments w.r.t. the information set
I, =Y,_, can be computed by simulations. The marginal and
conditional skewness and kurtosis of ¥ based on the informa-
tion set /,_,(/,_, D I"_,) will imply marginal and conditional
skewness and kurtosis of ¥ based on the information set I ,.

The next proposition is related to the autocovariance struc-
ture of a TMA(/) model with y = 0.
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Proposition 2. In a threshold moving average model with
[ lags and y = 0, the autocovariances y(u) are given by

7T — |

l—u
v — dr dTdds g —
) = (@8 df +drd))

i=0
N s s o)
+(d} d7 +d d. )E) i
=l

From this proposition, it transpires that the autocorrelation
function (ACF) {p(u) = y(u)/y(0);u=1,2,...) of a series
following a TMA(/) model is zero for lags u > 1. Thus, it will
be difficult to separate this model from an MA(/) model on
the basis of the cutoff point of the sample ACF. Even though
second-order features are not relevant to distinguish between
TMA(/) and MA(/) models, possible skewness and excess
kurtosis in the series will lead to favoring the former instead
of the latter. The threshold testing procedure developed in the
next section will also be of further help in making such a
decision,

4.2 Estimation and Tests

The g-x 1 parameter @ = (p;dy, disicovdlds di s,
d, )’ cannot be estimated by maximum likelihood. Indeed, due
to the contemporaneous asymmetry, we cannot adopt a direct
approach, and we need to rely on indirect estimation.

We consider here simple linear instrumental models in esti-
mation by indirect inference. Indeed, Gouriéroux, Monfort,
and Renault (1993) have shown in the case of an MA(1) pro-
cess that the indirect inference estimator obtained with an
AR(3) instrumental model has good finite sample properties,
and outperforms the asymptotically most efficient estimator.
Since a TMA model boils down to a standard MA model
under the null, that is, the absence of a threshold effect, we
also choose linear autoregressive processes as instrumental
models. The first one 1s a pure linear AR(p) process with the
following log-likelihood function:

(T=p) (I'—-p)

In o*
2

In2m7—

)
T (Y, —a—®dY,_, —e=@ Y, )
r=p41 20’1

This type of instrumental model is particularly appealing
since the PML estimator of the parameter 8 = (a, ¢, ...

,» %) of dimension larger or equal to ¢ corresponds to the
OLS estimator. Regularity conditions concerning the behavior
of the binding and score functions are further met (see The-
orem 2 below) since the instrumental model is a regression
type model, and Y, takes a linear form in @ (a pure MA model
under the null).

The second instrumental model tries to capture nonlinear-
ity in the observed process in order to obtain more precise
estimates of the parameters of interest. To do so, we intro-
duce the second and third polynomials for the lags of Y, in the
AR representation as proposed by Michaelides and Ng (2000).
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The log-likelihood function is

_(T-p) (T =p)

In2m— In o’

r(Y,—a— @, - O, ¥, —D Y~ ¥

2 - — s

fmpt] 20+

In order to evaluate the performance of these instrumental
models, we execute a simulation study. Two dimensions are
of interest in the design of experiments: the order of the AR
process and the number of simulated paths.

The model of interest for the simulation study is the fol-
lowing threshold moving average model of order |:
Y,=djel, o +dyel

&=l

+d.|+Ef—|]lEr—l':‘n +dl_E! Ill."'r-l*—:u (3)

where the threshold is fixed to zero, and d] =.5,d; =1,d| =
.2, and d = .8. In this representation, the negative shocks
have a stronger impact than the positive ones. The sample size
is equal to 200, and the number of replications is 500.

How can we know whether we should take into account
a threshold eftect in the dynamics of the shocks in model
(3)? By writing 6, = (dg, d)'0, = (d7,d7) —(dy,d[)’, we
see that the answer i1s given by testing the null hypothesis
H, : {6, = 0}. The following theorem justifies the application
of results in Section 3 to the model of interest and instrumental
models under consideration.

Theorem 2. Under the model of interest and the instru-

mental models defined above, assumptions (a)—(p) hold. The
asymptotic distribution of Wald, LM, and LR statistics is given
under the null by Theorem 1, and under the alternative by

VTR (8} (-) — 8) => (—R'K,(By, 85, IS (Bos ) + ¢
and

W.(:), LM.(), LR;(-) = ((R;fq{ﬁﬂ! 0y, ')E;N(Bn- ')}'HT]’
x [R'V,(Bo, 0y, )R]
X ((RJEH-(JBH- Oy, )E?r(ﬁu ) +¢)

as processes indexed by y eI,
Proof. See Appendix.

For the first instrumental model, we consider AR(4), AR(6),
AR(8), and AR(10) processes. The results for the bias and the
root mean square errors (RMSE’s) are reported in Table 1.
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Table 2. Instrumental Model | With AR(4)

N=1 N=2 N=5 N =10

Parameters Bias RMSE Bias RMSE Bias RMSE Bias RMSE

d;  -.0874 .2689 —.1089 .2466 —.1084 .2394 —.1237 .2479
d;  —.0964 .2523 —.0640 .2145 —.0693 .1996 —.0666 .1930
d; 1126 3281 .1159 .2855 .1086 2569 .1016 .2496

dy 0360 2611 .0406 .2210 .0686 .2164 .0651 .2087

We note that the estimates are not very precise. While the
increase of the order of the AR process decreases the bias, the
extra parameters included in the instrumental model increase
the variance of the estimates. Indeed, the smallest RMSE is
obtained with an AR(4) process.

Table 2 reports the results for various number of sim-
ulated paths with the instrumental model corresponding to
an AR(4) process. The precision of the estimates is greatly
improved when increasing the number of simulated paths. The
bias decreases for the parameters corresponding to the nega-
tive shocks. It increases for the parameters corresponding to
the positive shocks. The importance of the reduction gain for
RMSE appears particularly important for N =2 and N = 5.
The difference between N =5 and N = 10 is negligible.

The results for instrumental model I are gathered in
Table 3. Introducing nonlinearity in the conditional mean
decreases the bias for the parameters corresponding to the pos-
itive shocks, and slightly increases the bias for the parameters
corresponding to the negative shocks. In all cases, the pre-
cision of the estimates is significantly improved. The AR(2)
representation seems to give the best results in terms of bias
and RMSE.

In conclusion, parsimonious representations give the best
results in light of the rool mean square error criterion,
Accounting for nonlinearity by the introduction of polynomi-
als in the autoregressive instrumental model improves the pre-
cision of the estimates.

We consider a third instrumental model which is a mix
of the two previous instrumental models. The model 1s the
following:

=91, +¢'1er I+¢JE3_1 +(ll4}"_:—|—([)5}f':l_l

+ DY, + Y, + DY, +e,.
This representation includes the specifications which yields the
best performance for the first and second instrumental models.

Table 4 reports the results for various number of simulated
paths. For N = |, we see that this instrumental model clearly

Table 3. Instrumental Model Il

Table 1, Instrurmmental Model |

AR(4) AR(8)

Parameters Bias RMSE Bias RMSE Bias RMSE Bias RMSE

AR(6) AR(10)

AR(1) AR(2) AR(3) AR(4)

Parameters Blas RMSE Bias RMSE Bias RMSE Bias RMSE

dy 0874 .2689 —.0864 .2912 —-.1040 .3432 —-.0903 .3601
dy —.0964 2523 -.1037 .2843 —.0871 .3171 —-.0915 .3417
dy 11268 3281 0987 .3628 .0661 .4058 .0492 4168

dy 0360 .2611 .0255 .3022 .0125 .3484 .0008 .3759

dy —-.0010 .2100 —-.0134 1953 .0087 .2142 .0180 .2073
d; —.1561 .2874 -.0925 .2366 —.1159 .2541 -.1201 2534
d;y 1373 3938 .0104 2238 .0147 .2468 .0286 .2360
d, 0503 .2592 .0336 2697 .0121 .2667 .0160 .2461




128

Table 4. Instrumeantal Madel Il
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Table 6. Sample Powar of the Tests for 200 Observations

N=1 N=2 N=25 N=10

Parameters Bilas RMSE Bias RMSE Bias RMSE Bias RMSE

dy —.0324 .1561 —-.0154 .1550 —.0105 .1440 —.0070 .1336
d, —-.0431 .1830 —.0578 .1781 —-.0646 .1816 —.0616 .1722
d, 0196 2028 .0048 .1571 —.0069 .1479 —.0072 .1410

1874

d; 0118 .2142 .0204 .2077 .0270 .1937 .0161

outperforms the two other instrumental models in terms of
RMSE with a large reduction in bias. We observe the same
pattern as that of the other instrumental models when the num-
ber of simulated paths increases. In conclusion, the bias is
small with this instrumental model, and the precision of the
estimates is acceptable for a sample of 200 observations.

Let us now perform a simulation study to evaluate the small
sample properties of the adaptation of the Hansen (1996) strat-
egy Lo indirect inference. In this assessment of the size and
power of the testing procedure, we keep the model given by
Equation (3). Under the null, it corresponds to an MA(1) pro-
cess. The parameter d, is fixed to 1 and d, to .5, while sam-
ple sizes are equal to 200. Due to the large computational
requirements of the simulation design, only 200 simulated
samples are generated. The interval for the threshold was set
to | —.5,.5], with evaluation points spaced by .05.

Two mappings of the Wald and LM statistics are examined:
supremum (Sup) and average (Ave). The asymptotic distribu-
tion of these statistics under the null is approximated with 500
replications.

Table 5 contains the results where N equals 1, 2, and 5.
For the case of a single simulated path, the estimation is too
imprecise. Consequently, the null hypothesis is never rejected.
However, the results with N =2 and N = 5 are more encour-
aging. The functions based on the Wald statistics reject the
null too frequently. The functions based on the LM statistics
give results close to the corresponding size. In particular, the
average LM statistic seems to reject the null with accurate size.

To evaluate the power of the tests, we consider Equation (3)
with dg = .5,d; = |,d] = .2, and d; = .8, and the threshold
fixed to zero. Table 6 shows the results. When N = 1, the tests
have no power to detect the threshold effects in the MA part.
For N =2, and particularly for N =5, the power is very good.
For example, the average LM statistic rejects the null with a
probability of .91 at a size corresponding Lo .05.

In conclusion, for a sample of 200 observations, the func-
tions based on the LM statistics have good size for a number
of simulated paths equal to or greater than 2. Moreover, the
power for N equal to or greater than 2 is high and increasing
in N.

Table 5. Sample Size of the Tests for 200 Observations

N=2

Tests o1 05 .0 01 05 .10 .01 05 .70
SupWald 00 00 00 068 .12 20 .09 A7 .20
AveWald 00 00 00 05 09 .16 08 .14 19
SupLM 00 00 .00 .01 04 07 06 .1 15

00 .00 .00 .01 07 10 05 .08 .13

AvelM

N=1 N=2 N=35
Tests 01 05 .10 01 05 .10 .01 058 .10
SupWald 00 .00 00 55 14 B85 86 93 96
AvaWald 00 00 O00 B3 75 B85 @86 93 .95
SupLM 00 01 D5 46 61 66 85 91 94
01 03 05 48 B4 70 B84 91 94

AvelLM

—r

5. APPLICATION TO THE PERSISTENCE
OF SHOCKS

In this section, we apply the estimation and testing strategies
developed in the previous lines to measure the persistence of
shocks to the real U.S. GNP growth rate (seasonally adjusted)
for the period corresponding to the first quarter of 1947 to
the first quarter of 1991. We use this sample to compare our
results to the results obtained by Elwood (1998).

To assess the ARMA specification for the GNP, we exam-
ine the autocorrelation and partial autocorrelation functions.
The first two autocorrelations and the first partial correlation
are significant. Thus, an AR(1) or an MA(2) process could
possibly fit the series. For the AR(1) process, the residuals
are still correlated (the p value for the Breusch-Godfrey serial
correlation LM test with two lags is equal to .04). In con-
trast, the residuals for the MA(2) process are not correlated,
whether we look at the Breusch-Godfrey serial correlation LM
test (p value equal to .46 with two lags) or the Q statistic
(Box—Pierce statistic). Also, the sum of squared residuals is
smaller for the MA(2) process compared to that of the AR(1)
process. Therefore, the MA(2) model is adopted.

We run a RESET test to detect nonlinearity for the MA(2)
process. The null hypothesis of linearity 1s highly rejected with
a p value equal to .000024. This is confirmed by the skewness
(—.15) and excess kurtosis (3.45) of the series. Besides, no
ARCH effects are detected on residuals. Hence, a threshold
moving average model seems to be an interesting alternative
to the traditional moving average model.

To implement the estimation of the TMA model, we need
an instrumental model. We choose instrumental model 1,
including six lags for the first-order polynomial and three lags
for the second- and third-order polynomials. Under this model
of interest and this instrumental model, Theorem 2 can be
directly evoked to justify the estimation and testing strategy.
To assess the performance of this instrumental model, we have
compared the estimation of the MA(2) model by maximum
likelihood and by indirect inference. The estimates obtained
with both estimation methods were very close. This instru-
mental model 1s thus adopted for the estimation of the TMA
model. The interval for the threshold is set to [—1, 1] with
evaluation points spaced by .01.

Table 7 shows the results for the supremum and the aver-
age of the Wald and LM statistics. The MA(2) model is highly

Table 7. Tests for Threshold Moving Average Effect in U.S. GNP

SupWald AveWald SuplM

Avel M

p values 000 000 .039 032
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Table 8. Results of the Estimation

Constant d, d, d; d, d, d,

Estimates 0025 .0118 .0033 .0058 .0047 —.0004 —-.0014
Standard errors  .0029 .0007 .0012 .0025 .0012 .0050 .0048

rejected against the threshold moving average model for all
stauistics. The minimum of the global specification test [see
Gouriéroux, Monfort, and Renault (1993)] is obtained for a
threshold equal to a recession value of —.85. The minimum
of the specification test allows judging the fit of the model.
This statistic 1s equal to 8.56, which has to be compared with
the critical value of a chi-square with six degrees of freedom
(12.59). The asymmetric moving average model is thus not
rejected. The results of the estimation are given in Table 8.
We see that the contemporaneous asymmetry is important,
and therefore justifies our modeling strategy. A shock with
a value greater than —.85 has an impact almost three times
larger than a shock smaller than —.85. We can now exam-
ine the persistence of a shock depending on its value. The
persistence of shocks above and below the threshold is mea-
sured by the sum of the moving average coefficients indexed
by + and —, respectively. A shock greater than the thresh-
old has a persistence equal to .0209 compared to .0019 for a
shock smaller than the threshold. This result corroborates the
result of Beaudry and Koop (1993) obtained with an alter-
native estimation strategy. Obviously, we get different results
from Elwood (1998) by considering contemporaneous asym-
metry and without restricting the threshold value to be zero.

6. CONCLUSION

In this article, we have analyzed how to adapt the testing
procedure in indirect inference when a nuisance parameter is
not identified under the null hypothesis. This testing procedure
has been illustrated on threshold moving average models to
measure the persistence of shocks to output. A more advanced
study of various TMA models and a comparison with com-
peting nonlinear models such as TAR and regime-switching
models is left to future research. Indeed, this requires further
developments that are beyond the scope of this article, namely,
the design of testing procedures for nonnested models in a
dynamic setting when a nuisance parameter is involved.
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APPENDIX
Proof of Theorem 1

The expansions of the M estimators Br and ﬁ?{ﬂ, v) follow
from standard asymptotic arguments, and are given by

ﬁ{ﬁr —Bo) = _‘fq, r(Bas ‘,Ii’)'li'"'”2
x 3 5,.(Bo,¥) +0,(1),

VT(B}(8,7)—b(8,y)) = —J, (b8, y), 0, y)" 17

x 2 s, (b(8,7),6,7)+0,(1)

where J, +(Bo, ¥) =T~ Z..) Vg3,.(Bo, v) and J;. 1 (b(6, ),
0.y) = L. Vpsj,(b(8,7),0,7).

From the first-order condition of the indirect estimator crite-
rion and the above expansions [see Gouriéroux, Monfort, and
Renault (1993)], we may deduce the asymptotic behavior of
the indirect estimator. Indeed, as 8, = b(8,, y) under the null
for all ¥ € I', we have

VaBY (00, Y)Y Q5 (Y)((Br = Bo) — (BY (B, ¥) — b(6,. 7))
— VB (B0, ¥) Q5 (¥) Ve BY (B, ¥) (B} (¥) — 0,) = 0,(T™'2)

and obtain

VT (6 (y) - 6,)
= ~[VaB5 (00, 7) B3 (1) W BY (B, )]

T
% VoBT (60, ¥) Q3 (¥, +(Bos ¥) ' T35, ,(Bos ¥)

r=|

+[VaBY (B0 ¥) Q3 (¥) Vo BY (66, ¥)] ' VB (6, v) Q5 (y)

w"g(-f:.r(ﬁu, 0.7) " T2t (B y))+ap(1).

Hence, by Assumption | and the weak convergence of the
score functions,

VT (05 () — 00) = ~[,b(8. ) Q" (By, )V b(6p, )]
x Vab(6,, -) 2" (B,, ), (B, )~

X (Sq(ﬁu, )= N7 Y S3(Bo, -))

n=|

as a process indexed by y € I'. The asymptotic distribution of
Wy (-) can be easily deduced from the asymptotic distribution
of 07 (). The asymptotic equivalence among Wy (-), LM,(-),
and LR;(-) can be shown through modifications of the proofs
in Appendix 4 of Gouriéroux, Monfort, and Renault (1993) to
account for the presence of the nuisance parameter 7.
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Proof of Proposition 1

The moments of the truncated standard normal variable €
can be calculated with the following recursive formulas:

E[(e])]=¢(y)
E[(¢!)] = yo(y) + ®(-7)

El(e)')= | " el p(e)de

- — fm €' Vdg(e)
Y
= [~ "e(@] +(i=1) [ ep(e)de

y
. ?a‘—!rph,}.{,{f — l}E[(E:‘]i-IJ.

where ¢ and @ denote the pdf and cdf of a standard Gaussian
vanable, respectively. Similarly, we may establish that

i >3

E[(e;)]=—¢(y)
E((e,)’] =—ve(y) + P(y)
E[(e)]1=—y"e(y)+(i— 1E[( )] >3

The moments of the centered processes m] = € — E[€]"]
and 0, = €, — E[e, | are thus equal to

E[(n])*]=ve(y) —e(y)* +®(-7)
E[(n/)']1= (¥ +2)e(y) —3ve(y)
=30(y)®(—y) +2¢(y)’
E[(n/)']= (¥ +3¥)e(y) — [4(¥* +2) — 6B(—y)]e(y)’
+6y¢(y)’ —3¢(y)* +3P(—7)
and

E[(n])*]1=—ve(y) —e(y)’ + ®(y)
E[(n,)]==(¥*+2)e(y) —3ve(y)*
+3e(y)®(y) - 2¢(y)’
E[(n,)']==(¥' +3y)e(y) — [4(¥* +2) — 60(y)]e()’
—6v0(y)’ —3e(y)* +3®(y).

Expectations of products of powers of n;"” and 7 can sim-
ilarly be computed:

E[n/n; 1= e(y)’
E[(n )07 1= —-20(v)’ +ve(y)’ + e(y)P(—7¥)
E(n! (n,)’]=2¢(y)’ +7v0(y)* — @(y)®(7)
E[(n7)(07)*] = e(¥)*(@() + ©(—y)) = 3¢(¥)’
E[(n})'n 1=3¢(y)* + ¢(y)’
x (¥ +2-3(ye(y) + ®(—v)))

and
E[n/(n,)]1=3e(y)* +e(¥)* (¥ +2+3(ye(y) — D(y))).

The conditional skewness and kurtosis of ¥, can be com-
puted for any threshold y by using the moments of U, =
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Y, — E[Y,|€,_,] and the aforementioned expressions. The con-
ditional skewness of Y, 1s equal to

E ] 30 (DU (i) eti, 3—)
E[UFenl™  [LLo ()Y () et 2—0)]"

where ¢(i, j) = E[(n})'(n; )], Yi, j. The conditional kurtosis
of ¥, is given by

EUemn] _ Tiao (DU (f5)* Peli 4 0)
E[UM e [22, C)VFHfi)ieti,2- 0]

When we set y =0, we get from ¢(0) = 1/4/27, ®(0) =
1/2,

SR iy T ]
Ay s ppady . T2
E[(n,)]=—E[(m, Yl= (27)32
Ay e O = 10w —3
E[{ﬂr } ]—L[(Th ]' ] S 42
Elnim; 1= 5
Wl ae . g W
EHT], ) 1), ]— E[“r ("L ) ]_ (211")332
dar —
El(n! ()] = 227
$ o T o
E[(n})'n, | =—E[n] (7)) = ——

which leads to the results of Proposition .

Proof of Proposition 2

From the definitions of the autocovariance ¥(u) and the
centered processes 71, , 1, , we get

! I
Y(u)= E[(Z d? "'T.-Jruf'l'd:'_ ﬂ:—--a') (E drn:‘u-i +df_7];-u-i)]'

i=l) i=0

Therefrom, we deduce, thanks to the iid properties of 1, 7.,
that y(u) =0 for u > I, and

) = S[dh o d E(nF )2+ diud EL(7, )]

fml)

+ (dt d7 +d;,d})Elntm]

for u</. This leads to the stated result since E[(n',)?

= E[(n,_)] = (m — 1)/2m), and E[n;n_]
—E|e,|E[e ;] = 1/(27) when y = 0.

f=i

Proof of Theorem 2

We focus on Assumptions (c), (), (k), and (n). Other
assumptions are straightforward to check.
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First, we show that S, , = T-'"23"_ s , = S, [assump-
tion (n)]. By Theorem 21.9 of Davidson (1994), uniform con-
vergence over y € [ is obtained if and only if pointwise con-
vergence holds and S, ; is stochastically equicontinuous. For
each y € I', the score of instrumental models [-III takes the
generic form

7

Z “""a,r.:('}"} = ZI;(T)“:{T}

=1

where u,(7y) is the error term, and the column vector x,(7y)
contains lags of observed values or polynomials of these
lags for the regression at time 7. The pointwise multivari-
ate central limit theorem then applies immediately to the
score since Y,(y) is a g-dependent process for each y. By
Andrews (1992), the existence of a Lipschitz-type condi-
tion is sufficient to obtain stochastic equicontinuity |see also
thm. 21.10 in Davidson (1994)]. We can rely here on the lines
in Hansen (1996). The score is mixing at a rate infinitely fast
since Y,(y) is g-dependent. By establishing that the score ful-
fills Assumption 2 in Hansen, the uniform convergence will
follow. So, we have to show

e, (), () = x (Y)u, (¥l = B,y — ¥
where B, is 0,(1), not depending on vy for all y,y" €T
By the triangular inequality,
[l Cydue () — 2, (y*)u, (¥

< lx, ()u, (o + N2, (") u, (¥7) s

and by Hdolder’s inequality,

e, (y*)u, (¥l
< lx (v Nalle, Cy) Nl + 112, (¥*)

lx,(y)|ls is bounded for all y € I'. Hence,
lx, ()lls < M,, and

% Cy)u (y)ll2+

(Y9 s
e, ()lls =<

|, ()i, () — x, (¥, (") ||, < 2M7.

Since the support of I' is a finite subset of the real line, we
can always find a B, < o so that 2M} < B,|y — ¥'| for all
¥, y* € I' (see Hansen (1996), p. 426). This is the desired
result, :

Now, we are interested in assumption (k). %ZL, Vs, (¥)
is equal to %Zf__t,t;(‘}’)x,{‘}")'. This expression satifies the
assumptions of Lemma 1 of Hansen. Uniform almost sure con-
vergence 1s a consequence of this lemma and the continuity
of the support of . >

The uniform convergence of 87 (0, y) [assumption (c)] fol-
lows here from assumptions (k) and (n).

Next, we have to show the uniform convergence of

‘UﬁﬁT{H y) for all ¥ € I'. We have the following cquality:

V,BY (6, y)=[X'(6, v)X(8, 1]
x [Vo(X (6, Y)Y (6, 7))~ [X'(6.7)X(0.7)] "
x (V,(X(0,7)X(8,7))(X(8,7)Y(8,7))]

where BY(6, y) =[X"(6, y)X (8, y)| 7' (X(6, y) Y (0, y)) with

obvious notation. Again, by applying Lemma 1 of

Hansen to 7 V,(X(0,v) X(0, 7)), 7 Ve (X(0,7)Y(8, 7)),
=(X'(8, T}X{H y)), and (X(6,y)Y(6,y)), we get uni-

fnrrn almost sure convergence for these expressions. Hence,
aBr(H y) converges uniformly almost surely.

Finally, we derive the asymptotic distribution of the indirect
inference estimator under the alternative. By a mean value
expansion of the first-order condition of the indirect estimator
criterion under the alternative

VaBY (6, v) Q5 (v)(Br — (BY (6, ¥)))
= VoBY (6, v) Q3 (V) (Br — (BY(0°, ¥)))
~VoBY (8, v) Qp(y) Ve BY (0, y)
x (05 () —0") +0,(I™"?)
where 8 = [§" ... @] and 6% = AW G;* 4+ (1 = A®)§® for
some 0 <A™ <1 and k=1,...,q and 6" is the indirect

pseudotrue value under the alternative. The expression above
yields

() (y) = 07) = [VBY (8, y) s (1) Vo BY (6. )]
X v&ﬁr{ﬂ Y) H +(y)

x (Br — (BY (67, ) +0,(T7'7%). (A1)

Under the alternative with the appropriate selection matrix R
defined in Section 3, we have

>
=R6+ —=.

0 ﬁ
By multiplying Equation (A.l) by the selection matrix R, and
by using assumptions (a)-(p), as well as results provided in
the proofl of Theorem 1, we obtained the desired result:

R'O"

VTR (B} = 8) = (~RK, (Bos by, 157 (By. ) +¢
with

Eq(‘) = [vﬂh(ﬂﬂ' ) (B, )V b( 6, '}]HI Vab(6,, ) 2" (By, +)
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