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ON THE USE OF LOSS FUNCTIONS IN THE CHANGEPOINT PROBLEM
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Summary

We consider a sequence of independent random variables whose
densities depend on a parameter which is subject to a change at an
unknown time point. A Bayesian decision-theoretic approach is used
to obtain an optimal choice of changepoint. The exponential and mul-
tivariate normal models are analyzed, and some numerical examples are
given.

1. Introduction

Consider a sequence of » independent random variables y, (possibly
vector-valued) whose densities depend on a parameter (vector) 6. The
value of this parameter or of some of its components changes at an
unknown time point k£ so that the densities of y, are f(y.|6,) for t=
1,---,k and f(y.]0;) for t=k+1,---,n. We are interested in the un-
known changepoint ke {1,2,.--,n—1} and impose a loss structure on

the problem, i.e., let L(IQ; k, 0, 0;) be the loss incurred if it is decided

that the change occurred at point & when it actually occurred at point
k. This loss depends on the magnitude of the change. A changepoint
is then chosen to minimize the expected loss.

The changepoint problem has a long history. Most studies have
been done about a change in the mean of a sequence of random vari-
ables, e.g., Srivastava and Sen [11], Smith [10], Lee and Heghinian [8]
and Cobb [4]. Wichern, Miller and Hsu [12], and Menzefricke [9] ex-
amine changes in a variance. Hsu [5] examines a change in the scale
parameter of a gamma distribution, and Chin Choy and Broemeling [3]
examine a changing linear model.

In the next section we will briefly outline our general approach,
followed by one section each for an exponential and a multivariate nor-
mal model. Some concluding remarks are offered in a final section.
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2. General model

We assume that prior information is available about the value of
the parameter both before and after the change, expressed in a prior
distribution p(4,, 4,). Prior information about the changepoint k is also
available and is denoted by p(k), k=1,.--,n—1. We assume (4, 6,)
and k to be independent. This prior information can be combined with
the n observations, to yield a posterior distribution for 4,, 6, and k,

@1 ol 0, 0 DxnlR)p(s 0) 1T £@10) TT Fwil0)

t=k+1

where D=(y,,---,¥,). Note that some of the parameters of the model
may not change, i.e., 6, and 6§, may have common components.

A decision regarding the changepoint can be made by minimizing
the expected loss,

2.2) EL()=5 S S Ll &, 6,, 6,)p(k, 6, 8,] D)d6:d6, .
k=1

The choice of loss function L(IE; k, 0y, 6,) depends on the practical
context of the problem and suggesting a particular form for all situa-
tions is clearly misguided. For purposes of illustrating our methods,
we have chosen forms which are relatively simple to work with and
lead to tractable results. Often L(IE; k, 8,, 6;) will have special struec-
ture and simplification of (2.2) is then possible.

Let us consider a few special cases for which the loss funection
factors into two parts, one that depends only on k and %, and another
that depends only on @, and 4,,

L(k; k, 6,, 6,)=Ly(k, k)Ly0,, 6,) .

Then (2.2) simplifies to

(2.3) E L(i)=3] Li(k, k) E Ly(k, D)p(k| D) ,

where E Lk, D)=S SL2(01, 8)p(0,, 0,|k, D)d6,d8, and p(6y, 6,|k, D) is

the posterior distribution for 6, and 6, given the changepoint is at k.
Within this framework, various simplifications are possible depending
on the nature of L, and L,. We briefly list two such simplifications :
(1)

0 if k=Fk,

(2.4) Ly(k, k)={ A
1 if k+k.
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Then, as is easily seen from (2.8), obtaining the optimal estimate
of the changepoint is equivalent to finding the value of k& which maxi-
mizes R(k)=E Lyk, D)p(k|D). If, in addition to (2.4), Ly(6,, 6;)=con-
stant, then E L,(k, D)=constant and the optimal choice of the estimate
of the changepoint leads to finding the mode of the posterior distribu-
tion of k, p(k|D).

(il) Ly(k, k)=(k—Fk).
Then the minimizing value of % in (2.3) is the integer k closest to

[z k E Ly(k, D)p(k| D)} / [z E Ly(k, D)p(k| D)] .

If, in addition, L.(8,, 6,)=constant, then k is simply the integer closest
to the posterior mean of k.

3. Exponential case

3.1. Derivation of results

Let y,, t=1,---,m, be a sequence of independently distributed ex-
ponential random variables with density f(y,|6,)=6;"! exp (—y./6,), where
6.=0, for 1=t<k and 6,=6, for k+1<t<m. The prior distribution for
f; is taken to be the inverse gamma with parameters ¢, and s;, p(6,)
ocf7%*V exp (—s,/0;), and the prior distribution for % is denoted by
pk), 1=k=m—1. The posterior distribution for k, 6, and 6, is

2

(3.1) p(k, 6, 0, D)oc T[ 6;7#*" exp (—s,4/0,)p(k) ,

Jj=1
01>0, 02>0, and k—'zl, 2,‘ c n—l ’

n

P
where t,=t,+k, tu=t,+n—k, s,=s+> Y. and sy=s,+ > y,. The
t=1 t

=k+1
posterior distribution for the changepoint & is, for k=1,-.-,n—1,

(3.2) (k| D)oc I' ({1 )si el (o )85 0(K)
and that for the magnitude {=6,/8, of the change given & is
(3.3) p(C|k, D)occ‘lk"(slkc+s2k)'“1k+‘2k7 ,

i.e., [(Su/tw)/(su/t)]C has an F-distribution with 2t,, and 2t, degrees of
freedom.

We will next examine a loss function as in (2.4). A measure of
change is {=6,/d,, the ratio of the parameter values after and before
the change. When ¢ is very close to 1, failure to detect a change is
not very serious. The loss L(,, 6,) should thus increase as ¢ =0,/6,
moves away from 1. One convenient choice for L.(4,, 6,) is L6y, 6;)=
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Ly({)=({—1)*. The optimal changepoint estimate can then be found
by choosing the value of k maximizing

(3.4) R(={] €—1yp(cE, D)t} p(k| D)
= {Var ({ |k, D)+[E |k, D)— 1]} p(k| D) ,
where E (C|k, D)=(8y/(te—1))/(si/tu), (t>1), and

(3.5) Var (¢ |k,D)=E*( |k, D)[ijt—t_‘z)l-] . (tw>2).

3.2. A numerical illustration

In this section we will present the result of a simulation study to
illustrate the results for the exponential case. The simulation pro-
ceeded in the following way:

1. Generate n exponential variates z,, t=1,-.-,7n, from the exponen-
tial distribution with parameter 1.

2. Let q vary from 1 to n—1 in increments of 1. For each value of
q, let y,==, t=1,--.,¢q and let y,=Cx, t=q+1,.--,n; find the
mode kj of the posterior distribution of the changepoint (3.2), and
find the value of k, denoted by ki, associated with the largest value
of R(k) from (3.4).

3. Repeat (1.) (2.) 300 times and find the average and standard de-
viation of the 300 values for k2 and kj, denoted by E (k2), E (kI),
SD (k?) and SD (k7).

In Table 1 are presented results for =20, and =38 and 9. The
prior distributions assumed are diffuse, i.e., s,=t,=0, =1, 2, in (3.1)
to (3.4). An interesting point that emerges here is that this specifica-
tion implies that R(k) in (3.4) is not defined for k=18 and k=19, which
may be seen on consulting (3.5).

Examining the results in Table 1, we find that use of %] can lead
to better (worse) decisions than k2 when ¢, the actual changepoint, is
small (large). For example, consider the case where (=3, i.e., the
parameter of the exponential distribution after the change, 6,, is three
times what it was before the change, ;. When the actual change-
point occurred at k=5, the average changepoint selected based on the
posterior mode is E (k3)=7.6, whereas that based on the loss function
L(8,, 6;)=[(0:/6,)—1}, E (k;)=5.4, is closer to the correct value. In the
latter case, however, the variability in the chosen values is slightly
higher.

A different approach to this problem may be found in Hsu [51,
who examined a related problem using the classical approach involving
a change in the scale parameter of a sequence of gamma variates.
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Table 1. Results of the simulation

=3 =9
E(kp) SD(k) E(k) SD(k) E(kd) SD(kf) E(k)  SD(k)
1 8.9 5.8 4.8 5.8 6.8 6.0 1.8 2.9
2 7.8 5.6 4.5 5.1 4.5 4.6 2.2 2.0
3 7.3 5.0 4.7 4.7 4.5 3.3 2.9 1.4
4 7.3 4.6 5.0 4.5 4.9 2.5 3.8 1.5
5 7.6 4.2 5.4 4.5 5.6 2.0 4.9 1.8
6 7.9 3.7 6.1 4.5 6.4 1.4 5.8 2.0
7 8.6 3.7 6.7 4.5 7.5 1.5 6.9 1.9
8 9.1 3.5 7.5 4.7 8.3 1.3 7.9 2.0
9 9.7 3.3 8.3 4.8 9.2 1.3 8.7 2.1
10 10.4 3.5 9.0 4.9 10.2 1.3 9.7 2.2
11 11.1 3.5 9.6 5.0 11.1 1.4 10.8 2.4
12 11.7 3.7 10.3 5.2 12.1 1.5 11.8 2.4
13 12.3 3.9 10.8 5.4 13.0 1.7 12.7 2.6
14 12.8 4.2 11.5 5.8 14.0 1.8 13.8 2.9
15 13.1 4.6 12.3 5.8 14.9 1.9 14.5 3.2
16 13.5 4.8 12.8 6.1 15.7 2.2 15.5 3.1
17 13.1 5.3 12.5 6.5 16.3 2.8 15.8 3.8
18 12.5 5.8 11.6 6.8 16.2 4.2 15.0 4.7
19 11.3 6.0 10.3 6.9 14.6 5.6 12.9 6.2

4. Multivariate normal case

4.1. Derivation of results

Suppose the y, are independent p-variate normal random variables
with mean vector g, and precision matrix H. Here p,=y, for 1=tk
and g,=p, for k+1=<t<mn. The prior distribution for p; is taken to be
normal with mean vector m, and precision matrix ¢;H, where ¢, is a
scalar; the prior distribution for H is Wishart with » degrees of free-
dom and matrix parameter V, i.e., p(H)o<c|H|* ?P2exp {(—1/2) tr HV};
the prior distribution for the changepoint % is denoted by p(k), 1=k=<
n—1. The posterior distribution for &, pi, ¢, and H can be written as
ok, w1, pay H|D)Y=p(pt1, g2, H|k, D)p(k| D), where p(k|D) is the posterior
distribution of the changepoint k and p(u,, p., H|k, D) is the posterior
distribution of g, g, and H given k. It is well known that the joint
distribution factors so that »(py, w., H|k, D)=p(p,| H, k, D)p(p:| H, k, D)
-p(H|k, D), where p(y;|H, k, D) is a p-variate normal distribution with
mean vector m,, and precision matrix ¢;.H, and p(H|k, D) is a Wishart
distribution with degrees of freedom n-+» and matrix parameter V,.
Note that

tu=t+k, tu=t+n—k,

M= (Em+ky)/t M=tz 4 (1 —E)Yor) [t »

k n
Y= Ylk , Yu= > Y/(n—Fk),
iz t=k+1
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Vi=V+8S,+ S +ttl—k (m,— Yue) (M — Yu) + h(%@- (My—Yp) (my— Yu)
1%

2k
k n
Su= E ¥ =9 Y —Yu) and Sy = . ;k_:l . (Ye—Yu) Y~V

Finally, the posterior distribution of the changepoint k is
(4.1) (k| D)ocp(k) (buetne) ™| Vie |+ k=1,2,---,m—1.

We will next examine a loss function as in (2.4) which incorpo-
rates the magnitude of the change. A suitable measure of change is
the squared Mahalanobis distance (u— ) H(p;—ps) and we take the
loss Ly0,, 6;) to be equal to the squared Mahalanobis distance. The

optimal changepoint estimate k& can then be found by choosing the
value of k corresponding to the largest value of

@2 R0)={{ [ (o Bt~ ), s Hlk, D)dindndH| ik D)
= {P(ti + 1) + (v + ) (Mg — mae) Vi (g, — my )} p(K | D) .

The second term of the expression in braces can be expected to be
largest for the true value of the changepoint. When t,=t,, the first
term in braces is largest when % equals 1 or n—1 and it is smallest
when k equals n/2.

4.2. Illinois traffic data

To illustrate these results we will use some Illinois traffic data
adapted from Srivastava and Sen [11] and given in Table 2. Let x,
and x;, 1=1962,---,1971, be the number of deaths per 10° miles and
the number of injuries per 10" miles. We will apply the results of

Table 2. Illinois traffic data* Table 3. Illinois traffic data applica-
tion of Subsection 4.1

Year Deaths. per Injuries. per

108 miles 107 miles Year, k p(k| D) R(k)
1962 4.9 28.2 1963 .01 .02
1963 5.1 30.1 1964 .02 .09
1964 5.2 31.6 1965 .06 .38
1966 5.3 31.3 1967 .04 .21
1967 5.1 30.6 1968 .02 .06
1969 4.7 29.2 1970 .05 A1
1970 4.2 28.6
1971 4.2 26.1

* From Srivastava and Sen [11]
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Subsection 4.2 to first differences y,;=,;,—®;_,;; 1=1963,---,1971; j=
1,2. Note that n=9. We will use diffuse prior distributions for the
parameters, i.e., we let v=—2, V=0, and t,=%,=0 in Subsection 4.2.
In Table 3 are given the values of p(k|D) and R(k), computed from
(4.1) and (4.2), respectively. The mode of the posterior distribution of
the changepoint is at k=1966, indicating that a change in the first
differences occurred after 1965. A similar result is obtained when ex-
amining the values of R(k). The magnitude of the change could be
found by a straightforward extension of the results in Subsection 4.1.
Such an analysis suggests that, before the changepoint, rates increased
whereas they decreased after the changepoint.

5. Conclusion

In this paper we have shown how loss functions can be incorpo-
rated into the changepoint problem. In our discussion we tacitly as-
sumed that a change must have occurred, by setting p(k=n)=0. When
proper prior distributions are available for the parameters, this restric-
tion can be relaxed without difficulty. In the case of improper prior
distributions some difficulties arise when p(k=mn)+#0 which are related
to the fact that the changepoint problem is related to the model choice
problem. When k=n, we have a model with parameter 6, only but
when k<mn, we have a model with an additional parameter 6,. The
choice between two models with different numbers of parameters can
lead to difficulties when improper prior distributions are used, e.g., see
Atkinson [1] or Bernado [2].
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