Estimating a Changepoint, Boundary, or
Frontier in the Presence of Observation Error

Peter HALL and Léopold Simar

A runge ol problems i economics and statisties involve calealauon of the houndary, o ronter, of the support ol o distribution, Several

practical and antractive solutions exist if the sampled distribution has o sharp discontinuity ar the frontier, bt accorey can be greatly

cinmmished 1 the dat are observed with erron

Indeed, 11 the error s additeve and Has varzinee o

then macenriees are uslly ol

arder ers tor s bers I this article we sugeest an elementary method Tor reducing the etfect ol ermor 1o Qe J. and show that relinements
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1. INTRODUCTION

We observe independent data X,. ... .. X, generated by the
model X, =Y, +Z,. where the density of the distribution of ¥,
has a jump discontinuity at a point  and Y and Z, are inde-
pendent. The Z,'s may be thought of as observational “errors.”
added to the vanables Y, which are really the focus of atten-

ton. We wish 1o estimate #. The case where 1 is an upper

endpoint of the distribution of ¥, 15 of particular interest in the
context ol frontier analysis, ind here we focus solely on that
setting, although more general problems may be treated usine
stmilar methods.

In many cases this problem does not admit a unique solu-
tnon. and so & s not adentifiable. Trivially, the roles of ¥
and Z can be interchanged; if the distributions of Y and Z
end i points #, and @, then the problems of estimating 0,
and ¢, are contounded. Even if 1t is assumed that the den-
sity of Z is symmetrie and unimodal (with mode at 0) and
infinitely differentiable, and that the distribution of ¥ has a
jump discontinuity at its right endpoint f. there may be an
inhinite number of possible vilues of # for a given distribu-
tion of X. For instance, suppose that X =V +3Y U where
cach U s untformly distributed on [ =2 .2 '], V' is normally
distributed with mean 0; and V. U UL, o o0 are independent,
Then tor each r we may write X =Y +Z, where ¥ = U, and
Z=V+3) . U.lIn this representation the distribution of ¥
has as s night endpoint # = 27", and the distribution ol Z is
symmetric about O, umimodal, and infinitely differentiable.

Even if the distribution of Z were perfectly known, estimat-
mg the distribution of X would not necessarily be straight-
forward. For example, if Z is known 1o be normal N(0, )
and ¢ s known. then the minimax-optimal rate ol conver-
gence lor estimating the density of Y from data on X 1s only
(log ) *, where n denotes sample size and & represents the
number of derivatives ol the density of V. (See Carroll and
Hall 1988 and Fan 1991, 1992, 1993 tor discussion of this and
related results.) The problem that we treat here is, in a sense.
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an order of magnitude more ditficult. in that we make only
minimal assumptions about the distribution ol Z: for example.
that var(Z) 15 relatively small.

Despite these pessimistic views of the problem. there are
grounds tor beheving that 1t can be posed 1 a manner that
leads to usetul and practicable solutions. For example. it the
density ol ¥ is perfectly fat in a short interval 1o the left of #.
and 1l the density of Z 1s unimodal and sutheiently short-tailed
to the nght, then 1t may be shown that # can be characterized
as o local maximum of the gradient ol the density of X, This
result fals 1f the density of Y oapproaches its endpoint at an
angle. but nevertheless it sull holds to a good approximation,
provided that the error variance, o = var(Z), is small. Indeed,
we show that the L, error in the flat-density approximation is
only O(o~) as o — (. These results should be compared with
the rate of O(er) that obtains it standard frontier estimation
methods are apphied without allowing for the effects of noise.
The biases of estimators can be further reduced by estimating,
and correcting tor, asvmmetries introduced by departures from
the fAat-density hypothesis. We show how 1o reduce bias from
order o” to o' in this way: higher-order corrections are also
feasible.

Theretore, although the problem that we are endeavoring
o solve s ntrisically ll-posed and can have infinitely many
solutions. a usetul and well-defined practical solution can be
obtatned in the low-noise case. This solution generally will
not be consistent unless the density of ¥ is completely flat, but
the asymptotic bias will be proportional to the error varance.
not to the error standard deviation,

The case where error varance 15 small s commonly
encountered - practical setuings, and so there 18 substan-
tal motvaton for developing a solution along the lines just
described. despite the admittedly irregular nature of the prob-
lem. A major application s in cconomics, where boundaries
may be interpreted as production frontiers, There, one wishes
o analyze how ditferent firms trunstorm a set of inputs (typi-
cally labor, energy. or capital) into an output (typically a quan-
tity of goods produced). The houndary represents the upper
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envelope of attainable production: it is the geometric locus of

optimal production. A hirm’s economic efficiency of a hirm 1s
defined in terms of its ability to operate close to the boundary.
In this context. firms can be compared to determine the more
efficient. Although production is usually measured with error
it is typically small relative to the level of production itself.
Therefore, the condition of high signal-to-noise ratio 18 gener-
ally valid. and a low-noise approximation can be effective.

Importantly, our method 15 readily extended 1o spatial-
bivariate settings, where the convergence rate (o) contin-
ues to be valid, In such problems the boundary 1s a curve in
a plane rather than a poimnt on a line. It can be esumated as a
ridge line of the surface defined by the maximum directional
derivative of a bivariate kernel density estimator, or by esti-
mating the maximum gradient of the appropriate conditional
density.

The econometnc literature on boundary estimation includes
parametric approaches. suggested by Aigner, Lovell. and
Schmidt (1977), Meeusen and van den Broek (1977), and
Greene (1990). In the context of panel data. these approaches
have senmiparametric generalizations (see Park and Simar 1994
Park, Sickles, and Simar [998). Nonparametric techniques,
including those suggested in this article, are based on the
idea of “enveloping™ the data. In particular, Farrell (1957)
introduced data envelopment analysis (DEA) estimators of the
boundary, based on the convex hull of the data. Linear pro-
gramming techniques lor computing the DEA estimator intro-
duced by Charnes. Cooper, and Rhodes (1978) have proven
particularly popular, Deprins. Simar. and Tulkens (1984)
extended the idea to nonconvex sets and suggested the free dis-
posal hull (FDH} estimator, equal to the smallest free disposal
set containing all of the data. Statistical properties of DEA and
FDH estimators are well known (see Banker 1993; Korostelev,
Simar. and Tsybakov 1995u.b; Kneip, Park. and Simar 1998,
Gijbels, Mummen. Park. and Simar 1999; Park, Simar, and
Weiner 2000).

Frontier estimation methods have been applied in many set-
tings, including public services, banks, hospitals, and other
mstitutions (see Setford 1996 for an extensive  survey).
They may be extended to multivariate settings: (see, e.g.,
Shephard 1970). However, existing methods rely on the unre-
alistic assumption that the data ¥, are observed without noise.
In the literature these approaches are referred to as derermin-
istic frontier models, in contrast to stochastc frontier models
where the data are perturbed by noise. In the presence of noise,
lthe envelopment techniques described earlier will be signifi-
cantly biased, 1o such an extent that they will generally not be
consistent. Kneip and Simar (1996) proposed a method that
was arguably the first attempt to estimate stochastic frontiers,
but 1t is limited to panel data and requires particularly restric-
live assumptions; for example, mefficiency must be assumed
constant over long time periods. In contrast, the conditions
required in this article are very mild.

2. METHODOLOGY IN THE UNIVARIATE CASE

2.1 A "Toy" Problem: The Case Where
the Y-density Is Flat

Let (X.VY.Z) denote a generic version of (X,,V.Z).
Recall from Section | that X = Y + Z. where X is observed.
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the density f, of ¥ has its nght endpomnt at #, and Z repre-
sents @ random error. In this section we treat the “toy” prob-
lem. where f,(v) is positive for v inan interval (a, 0) to the
left of @ and O for all v > 6. We also assume. more realistically
than the assumption that f, 1s flat, that the density [, of Z
1s unimodal with a unique mode at 0 and is supported on a
compact interval [b. ¢], with # > a+c. If f, is constant on
(aa, 1), then f,(x), denoting the derivative at x of the density
[ of X, is proportional to —f,(x—#) for x > a+¢ (and In
particular, for v in a neighborhood of #). Thus the unimodal-
ity property assumed of [, implies that # can be characterized
as that point, say @, in [a¢ -+ ¢,0o0) at which the slope of the
density of X achieves 1ts greatest absolute value.

OF course, this characterization rests crtically on the
assumption that f, is constant in an interval to the left of 4.
If that condition were not satisfied, and instead f, had a jump
discontinuity at @ without, in particular, [, (/=) vanishing,
then @ would be only an approximation to #. In Section 2.2 we
explore the accuracy of the approximation when the assump-
tion of Aatness of f, is violated. Nevertheless, the condition
that f, is unimodal is an attractively mild assumption about
the error distribution, and if f, is also symmetric about the
origin (# not-uncommon condition on an error density), then
the assertion that f, has a unique mode at 0 is also mild.

Most importantly, the fact that we can estimate f by simply
estimating the point ar which the value of |fy| is maximized
is attractive. For example, we may construct a nonparametric
estimator f, of f, and estimate @ by aremax |/, |. where the
argmax 15 taken in the neighborhood of the true value ol #;
see Section 2.4 for detals.

One aspect of the fact that the distributions of Y and Z
are not identifiable, noted in Section 1, is that any translation
of one can be accommodated by translating the other by an
equal but opposite amount, Our insistence that the mode of the
error distribution be unimodal with mode ar 0 eliminates this
indeterminism. Clearly. a centering convention of some type
is necessary, just as it 1s i simpler problems of regression: in
the current setting, centering at the mode 15 more natural than
centering at the mean.

2.2 Accuracy of « as an Approximation to ¢

The fat-density approximation, # = @ = argmax |f|. 18
derived under the assumption that f, is perfectly flat to the
left of #. It is inwaitively clear that if the latter condition is
violated. then the approximation should nevertheless become
increasingly accurate as the standard deviation, say o, of Z
decreases. The assumption that the signal-to-noise ratio |i.e.,
the ratio var(¥Y)/var(Z)] is high is often appropriate in prac-
lice. We explore these issues in detail in our numerical work
in Section 4.

We next show that the Hat-density approximation 18 in error
by only O(o?) as o — 0. The O(o?) convergence rate is an
order of magnitude faster than the rate Qo) that would arise
i we were Lo ignore the presence of noise and apply a standard
frontier estimation method to the noisy data X as though they
were really data on Y. We verify the O(e”) rate in the case
of error distributions where the density can be represented as
fz)=a 'e(z/o), with ¢ denoting a fixed density and o (in
our asymptotic model) converging to ().
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Specitically, we assume that (a) /; has two continuous
dertvatives 1o the left of 0, (b) [, (#—) = 0, (¢} ¢ 15 com-
pactly supported and umimodal with its mode at 0, (d) g
has two continuous  dervatives i a neighborhood  of (),
and (¢) g (0) 0, Call these collective conditions (C ). The
assumption that ¢ s compactly supported s made only 1o
avoid having 1o discuss specific moment conditions, which
depend on the number of terms to which our Taylor expansion
approximations are taken, and because it is i keeping with
conditions imposed 1 Section 2.1, Nevertheless, our results
remiun vabd f the error distnibution has sufhciently many
fine moments, and in particular iF it 18 normal.

Assume imbially that

[ f= )= Ay+ Aj¥ -"'-.""': (1)

for v oin a small imterval (1. ). where A, = 0 and —~ -

A, = oo, Then, for v sulhiciently close 1o £,

- folxe) = A x =)+ A {1 = F (v =)

424, , [V =F (x—0+u))du. (2)
Iy
where 1, denotes the distribution fupnction corresponding
w f,. (Our techpigues do not require that [, or F, be
known: these funcuons are introduced here only to develop
methodology.) For the sake ol simphicity, we assume here
that /, 18 supported inoa sufficiently small imterval about s
mode, 0. However, the main result, that # — w = Q@) is
available much more generally. Tor example. in the case of
normal errors.
Put y = | lu|glu)du, Taylor expanding the right side of
(2) i the context of fixed g, and noting that (C,) imphes
[,00) = 0. 11 may be shown that as o — (),

— fytx) = A0+ L e = 0)° £7(0))

+ A, H —{1‘—”]_!}{“]' + A,y +olo) (3)

unitormly in [x —#| < ¢or” for any fixed ¢ = 0. Deriving the
twrming point of the quadratic on the nght side, we conclude
that @ = argmax | [, | satishes

AL, (0)

T L (o) = 0L Ol (4)
."’lgllf;.'[[]i

i = <+
a5 o — (),
Analogously, suppase that we estimate # by

m = uremax | [, . (5]

where h denotes the denvauve of a kernel density estumator
based on data on X, and the argmax 1s taken over a closed
interval 7 m the nght il of the distribution of X, including
the point #. Then @ estumates 1 with systematic error ()1,

for large n.
w="0+ 0o )+ao,]) (6)

as 11— oo, In this formula the werm o) denotes the order
of systemuatic error that occurs even in large samples. This
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level of bias remuains uncorrected. even i the limit as 1 — oc.
The quantity o (1) denotes a stochastic term that converges
W 0 as o — =2 Sufficient regularity conditions for (6) are
(a) f, has a bounded denvative in o neighborhood o the left
of #, (b) ¢ is compactly supported and vnimodal with its mode
at 0 and has two continuous derivatives in-a neighborhood
of 0. (¢) fy(0=)e " (0) s 0, and (d) £ 18 a Kernel density esti-
mator based on a bounded. symmetric. compactly supported.
continuously differentiable kernel und o bandwidth & = fi(n)
that satisties it — O and nh' — =~ as n — 2. A proof of (6)
is similar to the proofs given in the Appendix.

I mstead of (1) we assume that f, has two continuous
derivatives in (0 — e, ] for some € = 0, and that A, =
fi(0=) = 0. and if we deline A, = —f, (=), then (3) 15
sull valid, with @ shghtly more complex dernvation. See
Appendix Al for an illustration ol the argument.

To better appreciate the orders of magnitude claimed in (4).
consider the orders of the terms appearing in (3). Because f,
s modeted as o el Jor) Tor a hixed density g, it follows from
(C)) that (D)= ") and [;(0) = —o " |g"(0)]. where
¢(0), [¢"(0)] are both sirietly posive. Therefore, if v —# =
r-. then the linear and quadratic terms in (3) are both of
size o, and the remainder oler) 18 negligible. Likewise. the

approximation error @ — 6 at (4) is ol size . Indeed. (4) is
cquivalent to

=) e) : —r
a < a4+ alo), (7)

i = -+ - -
fy(H—=) |g"(0)]

2.3 Enhancing the Accuracy of w by
Local Linear Approximation to f,

It the error density /, s compactly supported and sym-
metric about O, and f, 18 perfectly flat in a sufficienly large
interval 1o the left of #. then the density derivative [, will
be svmimetric about 6, That s, 10 wall satisty £ (0 4 x) =
f (0 =x] for v ina neighborhood of 0. Conversely. 1t £, 1s not
flat to the left of # but £, 15 nevertheless symmetric, then f
will not be symmetric about #. This lack of symmetry can be
used as a diagnosuc for lack of flatness, but more practically
il can be exploited as o means for correctung w Lo improve s
ACCUrICY as an approsimation to f.

At the level of (3), the main effects of lack of flathess are
not really apparent. In particular. even 1l f, were perfectly
flat 1o the left of #. f1 would sull equal a guadratic plus
higher-order terms. Departure from the Hat-density hypoth-
esis becomes discernible only 11 we progress to cubic and
higher-order terms in the expansion. As we show, the cubic
and guartic terms can be used o approximate the component
A fA0) AL (0) on the right side of (4). of the error in the
Hat-density approximation 1o #. Argoing in ihis way. the error
in the approximation can be reduced from O(o”) to O(a').
Higher-order corrections can reduce the errvor still further. but
we do not consider these corrections here.

We continue W mterpret [, as ¢ ol Jer). where ¢ s o
ixed density and o — 00 As a prelude o developing length-
er versions of (3). we assume that (a) /. has hve bounded
denvatives to the left of 6, (b) f,t0—) = 0, (c) ¢ is compactly
supported and ummodal with its mode at (L (d] g has five
bounded derivatives in o neighborhood of 0, (e) ¢"'((}) =0
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for j= 1.3, and () ¢”(0) # 0. Call these collective condi-
tions (). Property (e) is a little weaker than asking that the
distribution of Z be svmmetric.

We prove in Appendix Al that under (C.).

~ ol dt) = € — Cstt +Cyt’ + Cyi* +O®),  (8)

where

C,= fi{80=) [0} + O(1),

Cy= 1 [ (=) [F(0)] + Ol ),

C,=—1Lf1(6=) [£2(0) (1 . Ll \6) ) +0(e ).

F_.,'ll'il

and

el

Co= 5 [i0=) () +0(a ).

[t may be deduced from (8) that. assuming (C. ). the remainder
a(or=) in (7) is actually O(a').

fr(H—=)g(0) 5
, a7+ Ola’). (9)
Sytl=) |g"(Q)] ")

i) = H

More importantly. (8) gives vs the leverage we need 1o cor-
rect the approximation e (of #) for the term of order . In
particular, (8) includes a cubic term that would vanish if f,
were perfectly flat in a neighborhood immediately to the lef
of # (e, il A, =0) but is in general nonzero.

Property (9) and the formulas lTor C,, .. .. C, imply that

3{.'.lltnl
2UC; —6C,C)

= (0 —w)[] +O(7)]

as o — (). Thus. because w = 0+ O(a*),

3C,C,

— +rJ[rr‘j.
2(C5 - 6C,C,)

=

( 1))

Formula (10) suggests the following approach to hias-
correcting a at-density approximation estimator of #, Esu-
mate [, by f:.i* say, and define @ as in (5). Next, estimate
constinis Er, ..... E_, by fAuing a quarlic to —.,f-';. i a neigh-
borhood of @, obtaining

-

_f:.;(fﬁ—l—nl > E:,,— (J:_m: +Con’ + C i (1)

sy, Take

VA

o

2°C: = 6C,C)

H = w-+ (12)
to be an estimator of 6. Analogously to (6). it may be proved
by Taylor expansion that the correction in (12) achieves the
level of bias suggested by (10),
B=0+0(a")+ao,l(l). (13)
where O(o') denotes the order of bias that remains even in the
limit as n — oc and o, (1) denotes a stochastic term that con-
verges ta O as n — oc. Sufficient regularity conditions for (1 3),
in addition to (C.), are that /| is a kernel density estimator
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based on o bounded, symumetric, compuctly supported kerpel
with five continuous derivatives, and a bandwidth it = h(n)
that satisfies i — 0 and nh” — 2 as n — .

ILis implicit in this argument that €3 — 6C,C, does not
vanish, Now,

¢(0) g(0)
g (0)?

C: (C;=6C,C) 11 +0(a)) =1 -

which gquantity s nonzero for common error distributions. In
particular. it equals —2 when the error distribution is normal.

To better appreciate the orders ol magnitude present in for-
mulas such as (8). note that C,, C,, Cy, and C, are asymplotic
o constant multiples of o', o ', o™, and o as o — 0.
Therefore, i equals o constant multiple of o (the same
stze as w — ). then the terms €, E:n:. Co', and Cuu? in (8)
are asymptotic to constant multiples of o', o, ', and o,
In particular, the cubic and quartic terms in (8) are of the
same size, o', and so the quartic term in particular cannot be
dropped. and the remainder, O(a*), is an order of magnitude
smaller than the terms explained by the quartic polynomial in
(8). These properties Justily the claim, implicit in our moti-
vation of the estimator 6, that the polynomial given in (11)
represents an accurate approximation to — /..

2.4 Empirical Methods

We may estimate @ by finding the point at which the gradi-
ent of a kernel estimator of f, achieves s maximum. To this
end, define

. ! r—X
_f't-{-r}:{m'z]"ZK( ; J).
!

fe=1

where K 15 a kernel function and & 1s a bandwidth, We take
K to be a compactly supported, symmetric probability density.
Higher-order kernels are of course feasible, but their greater
tendeney to produce oscillatory density estimates. owing to
the so-called “side lobes™ of K, makes them not so attractive
when the task at hand 1s to find turning points of derivatives.

Define @ as in (5). In describing properties of this estimator,
we first treal the case where the error distribution is held fixed
as sample size increases. It may be shown that in this setting,
the optimal order of bandwidth (in the sense of minimizing
asymptotic mean squared error of @ as an estimator of w)
is i =n"". For this choice of h, the stochastic error of @
and the asymplotic bias are both of size n=*", Result (15) in
Section 5 1s a more detailed statement of this property. Further
results in that section show that the O(or?) order of error of the
flat-density approximation @ of £ can be achieved empirically
by w, but there h = (o= /n)"".

3. EXTENSION TO MULTIVARIATE DATA

We consider only biviriate cases, noting that the same prin-
ciples apply to multivariate data. Suppose that X = VY + Z,
where again Y (the variable of intrinsic interest) and Z (repre-
senting error) are independent. but this time X, Y. and Z are
vectors ol length 2. We represent their coordinates by brack-
eted superseripts, for example, X = (X', X'*!). The bivariate
density of the distribution of Y is assumed to have a sharp
discontinuity along a smooth, curved boundary. say €. but the
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sharpness ol the change along € the observed data X 18
Bunted by the addinion ol errors /

Our methods for the unvarnate problem can be generalized
SOCas o approxinmite or estimate © inoat least three wavs,
The generalizations depend 1o some extent on the type of dati

avatlable. T the first approach. repeated values ol X
oand the

are
avatlable for cach ol a sequence ol values of X
replications are i sufficient quantity for us o suaply apply
the methods sugeested in Section 2w each X0 In this sel-
ting, the errors 7 would generally have a vamshing second
coordinate. but their first coordinate would have a contimuous
chstribution with s mode at the arigim.

Alternatively, e either this setting or o sething with no
replications of the X'"7s. we could project onto o straght
line passing through o pomt ' on the fiest axis and paral-
lel 1o the second axis those data values X whose hirst coor-
dinate lay within o given bandwidith of ' The projected
dati, being on o line rather than in the plane, would be
analyzed us though they arose i the context discussed
Section 2. For example. il ¢ were determimed by the for-
mula v =) then o estimate (') Trom the dataset
2 G N ] we would first form the univanate datase
ety = X" e X < pMg b, where b = 0 was
a handwidth, and estimate (") from U000 In practice.
one would rypically ke foequal o the bandwidth tor the
nonparametric density estimator computed from the projected
data on the line, Thos the elfective kernel Tor the latter esti-
mator would be hivariate and supported on a rectangle, rather
than umivariate and supported on a line.

The two methods just deseribed are disunctly nonspanal
and are appropriate when the hiest and second data coordinates
are s different in character that geometric operations, such us
rotations, in the (a7 ") plane are not really qusttied, This
s the case i many practical settings. for example, when the
first coordinate represents an mput to o commercil process
(¢.p.. number of employees of a company) and the second is
an output {e.g., annual proht ol the company ).

[n spattial setungs, however, both the model and the method
typreally would be different. In particular, the error distr-
bution would be genumely bivarate and coniinuous. aher
than concentrated on qust one coordinate. Our third approach
o approximating and estimating € s appropriite m this set-
tng. As before. detine /1o be the density of X oand pul

fl-:ll”l vi-=-atfehytt) ,||'.1,I (4] | et

ERES] zhljplrr'l'JL"[ v 4—1;""}% ()= tw

{i”-+ [I:.I{ . I}nll-_

il

Ex

Il

denote the maximuom of the directional denvative of [ over
all directions, Using this definition of ||, we consider the
= oty and take o ridge line of
the surtiace o be an approximition to ¢

A ndee Tine of 8§ s the projection anto the v-plane, [,
of a ridge ol 8 Several different detiniions ol o ndge have
been given by Hall, Quan. and Titterington (1Y92) For any
ol these delimtions, the nidge Line approximtion to &0 15 10
error by only (e ), not simply 4 o). under muld regulanity
conditions. In Appendin A2 we verify this chnm, which we

surfuce § represented by
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call result (R the case ol the Tollowimg specihc defimtion
of i ndee:
Vorode bimstlogenes b the popatar denottond 188 represents o Holnban ringe )

ar o antinder 1L'11ri'1_"~p[ll|t|:||15.' Tir ¢ linee ..|||||f|r.'_ il '-il||::‘g.' ihmrl s a0 logus al

podnis whiere suevessive “vontour hines" e plunes perpendicule w11 huve

boweal rmcrsaiins 1 the absolote vilues ol thetr curvatares, tnken over all Fﬂulh“-
passang Hwough the pommt that are perpendicular w1

The wue surtuce & s esumated by the empimical sur-
lace N, delined as the locus of points (v, x) determned by
= |fula )=, where

s I . 1 Ih.l-\.
I\It}:luh']':}_h'( ')

/i

18 i kernel estimator of £, computed using a bwvariate ker-
nel K. The analogous estimator of € s i ndge line of S. As
i the umivariate case. here it can be shown that the ()
convergence rate miy be attained empireally, although for the
sake of brevity we do not pursue that matter further here.

4. NUMERICAL PROPERTIES

[ this sechion we report the results ol simulation studhes in
the upivariate case and give o real data example oo bivanale
seHing.

41 Simulations in the Unvariate Case

$.1.1 Meudels.
lerms ol which X owas detined by

We analyzed five models for (Y. Z) in
X=V+27:

« Model |1 # =¥
Z is normal N0 )
vir Y = A

« Model 20 0 =Y is distributed as [N(O, or7 )| and Z is nor-
mal N(O.a=). Thus E{Yy=0—(2/@) =& and vary =
(1 =27 "o

« Model 3: 0 =Y is distributed as N (p o) e N (. )
conditioned on Nig. o) = 0] and Z is N0, 7). Thus
EiY)y=H#—(g+cor) and varY =’ [ —elpa "+ ).
where ¢ = dip /o) /P o) and & and D are the stan-
Jdard normal density and distribution funcuons. Note that

s exponential with mean /A and
Thus E(Y)y=868—-(1/A) and

=0 corresponds o model 2,

o Mudel 40 # = 1. ¥ has density f,(v) = |1 +all -
W+ alb+ 1) " for 0=y < 1, where . b = 1), und
Zis N0, e ),

« Muodel 53 # =V is untformly distributed on the inter-
val (0.1 and 2 is N(O. %), Thus E(Y)y =1
varY = 1/12

and

Models | and 2 reflect assumptions commonly made in
parametric frontier models, In partcular, they imply thut the
density £, of Y ois inereasing immediately before the boundary.
In Madel 3 the density of Vs cither increasing or decreasing
immediately before the houndary according to whether g < ()
or p= 00 In Model 4 the density is always decreasing at the
boundary. Model 5 represents a case where @ = #. and 1l this
were known 1o the experimenter. then correction of @ would
not be attempred. Teis thus of interest 1o ascertain the relative

performance ol the corrected estimator.
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In each model we ook ¢ = | and selected the parameter
values so that E(Y) = 5 or, in the case of model 4, E(Y) = 1,
We chose various values of nand o, the latter allowing us 1o

tune the noise o signal ratio, p,, = o, /0.

4.1.2  Practical Computarions,  In our simulations we
used the following iterative procedure to determine the band-
width, /1. Starting with an overly large h. we computed an
initial value of w by calculating the zero of 7 (v) in a neigh-
borhood of max(X,). Then, over a decreasing set of values
of i on a fine grid, we computed a new value of @ by cal-
culating the zero of [y (x) n a neighborhood of the previous
value of @. and so on. We stopped iteration when the absolute
value of the difference in the values of @ between two Jtera-
tions increased. Thus we obtained both a value for & and the
corresponding . o R

The correction term, ¢t = 3C,C;/{2(C: —ﬁﬁ.ﬁ )}. added to
w in (12) can be unstable because it is a ratio of two random

variables. We dampened the Huctuations by using a variant of

Breiman's (1996) bagging method, as follows. Having com-
puted /i and @ from the original sample U as discussed ear-
lier, we drew a bootstrap resample 17 from 27 and calculated
the bootstrap versions w” and ¢t” of @ and ct. for the given
bandwidth /i, The final correction term, say cl, may be taken
10 be any robust average of the values ct® drawn by repeated
resampling: we took ¢t (o be the mean of those values of ¢t
out of B = 100 that satisfied |ct*]| < h.

As suggested m Section 2. we used quartic interpolation
to caleulate the values of €7 (the bootstrap variant of C))
needed to compute ¢, To implement the interpolation, we
used a grid of 10 points in a neighborhood of width /s/2. As
an illustration, Figure | depicts the density and its derivatives
tor a typical sample generated from model |,

4.1.3  Resulrs.  Tables 1-9 give numerical approximations
to meun squared error (MSE). bias, variance, and the stan-

dengity (dashed), dervalwe (dofed) and second derivative (solid)

2 ' . . . ;

1k -
o = T J
1 .
ol d
ab
4 : = ; | ; :

Figure 1. Density and lts Denvatives for a Typical Sample of Size

n = 100 Generated From Model 1 With i =1, A =2, o, =2, n, =
o, =.5, and p,,, = .40. For these data, max(X ) = 1.2145, w = 1.2072,
= 1.0767, and h = .3438.
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Table 1. Monte Carlo Simulations for Mode! 1: Exponential (A = 2).
E[‘IYJ' — .5, Ty = .5, trz = I:}E, anct Pap = ?ﬂ

Sample size Estimate MSE Bias Stcl(bias) Variance
n=20 @ 0267  .1046 (.0089) 0158
0 0052 0127 (.0050) 0051
n=100 (0 0040 0468 (.0030) 0018
f 0008 0058 (.0020) 0008
n = 500 @ 0013 0277 (.00186) 0005
fi 0003  .0051 (.0011) 0003
n=1000 i 0005 0178 (.0009) 0002
i 0002 0053 (.0009) 0002

Table 2. Monte Carlo Simufations for Model 1: Exponential (A = 2),
E(Y}=8 in=23 oz =.1 10 py, = .20

Sample size Estimate MSE Bias Std{bias) Variance
n =20 ) 0306  .1253 (.0087) 0150
f 0065  .0215 (.0055) 0060
n =100 b 0071 .0689 (.0035) 0024
& 0021 .0120 (.0032) 0020
n = 500 P 0021 0422 (.0013) 0004
i 0012 0141 (.0022) 0010
n = 1000 £} 00186 0379 (.0010) 0002
0 0009 0158 (.0017) 0006

Table 3. Monte Carlo Simulations for Mode! 2: Half-Normal
(rr = .6267), E(Y )= .5, ry = .3778, v, = 0378, and p,,, = .10

Sample size  Estimate  MSE Bias Std(bias)  Variance
n=20 Py 0099 0358  (.0066) 0087
i 0059  -.0294  (.0050) 0050
n=100 tr) 0017 0207 (.0026) 0013
i 0013 -.0064 (.0025) 0012
n =500 ® 0004 0064  (.0013) 0003
f 0003  —.0027  (.0011) 0002
n = 1000 @ 0002 0048  (.0008) 0001
i 0001 ~.0020 (.0007) 0001

Tahle 4. Mante Carlo Simufations for Model! 2: Half-Normal
(rr =.6267), E(Y )= .5, oy = .3778, o, =.0756, and p,,, = .20

Sample size  Estimate MSE Bias Sid{bias)  Variance
n=20 @ 0113 0417  (.D0BY) 0096
f 0066  —.0174 (.0056) 0064
n=100 @ 0025 0238  (.0031) 0020
i 0025 0119 (.0034) 0023
n =500 @ 0005 0136  (.0013) 0004
i 0005  -.0013 (.0016) 0005
n= 1000 W 0003 0102  (.0009) 0002
i 0003  —-.0027  (.0012) 0003

Table 5. Monte Carlo Simulations for Modef 3: Truncated Normal
(it=~.40, o= .7834), E(Y) =5, o, = 4046, r, = 0809, and p,, = 20

Sample size  Estimate MSE Bias Std(bias)  Variance
n=20 @ 0151 0664  (.0073) 0107
i 0079  —.00B4 (.0063) D079
n=100 @ 0032 0378  (.0030) 0018
(i 0014 0028  (.0026) 0014
n = 500 (o 0010 0249  (.0015) 0004
1 00086 0043 (0017 0005
n= 1000 @ 0005 0177 (.0010) 0004
i 0003 0034  (0013) 0003
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Table 6. Monte Carlo Simulations for Mode! 3 Truncated Norma)

(it = 40, o = 3768}, E(Y) = 5, «r, = 3033, ir, = 0303, and p,,, = .10
Sample size Estimate MSE Bias Stel(bias) Variance
n =100 w 0046 —.0506 (.0032) 0021
i D060 0612 (0033) 0oz22
1= 500 u_u 0024 -.0452 (.0014) 0004
i 0022 —.03g5s (.0018) 00086
1= 1000 (! 0019 0416 (.0010) 0002
" 0012 — 0295 (.0013) 0003

durd deviation of bias (stdibias)). obtaimed by averaging over
200 simulations. 1t will be seen that # = @ 4 L. the corrected
version ol ., almost alwuays has less bias and less MSE than a
Indeed. o improves substantially on @ when the density s
monotonically increasing up to the boundary. for example. in
the cases of models T and 2. In practucal terms, this is often the
case Tor data that have an cconomic origin, where the bound-
ary represents o theoretcal mit 1o pertormance and firms tend
to be clustered at or near the houndary.

The improvement offered by 0 aver @ is still positive. but
not so large. when the mode of f, occurs near the boundary,
for example. in the case of model 3 with g = (). There the
quartic fit used to compute the correction term 1s sometimes
confused by the presence of the mode. This difhculty could
be remedied by hitting the quartic by hand n difficult cases.,
although we found this prohibitively time-consuming to do in
a simulation study, Performance of the method in model 5 is
surprisingly good. In theory, this case requires no correction.
because the Rat-density approximation 1s valid, and attempting
a correction night be expected to sigmhcantly reduce perfor-
mance. This tirns out 1o not be the case.

4.2 Real Data Example in the Bivariate Case

4.2.1  Semiparametric Fit of Cobb-Douglay Model, A
dataset on 123 American electrie wility companies presented
by Chnstensen and Greene (1976) has become a popular
example for the study ol frontier models. Greene ( 1990) htted
and compared several Tully parametric models and described
the data in detatl; Tor each utihity, cost, €, output, (J, price
of labor, P price ol Tuel. Py and price of capital. P, were
measured, The parametric stochastic frontier is a cost-efficient
frontier described by a Cobb-Douglas model.

V=w+By -0+, (14)

Table 7. Monte Carlo Simulatians for Mode! 30 Truncated Normatl
(= .40, o = 3768), E(Y)=.5, w, = .3033, 0, = 0607, and p,,, = .20

Eslimate MSE Bias

229

Table 8. Monte Carlo Simuwiations for Mode! 4. Decreasing Density for
Y With{a=1 b=2), EfY )= 4375, v, = 2881, o; = .0578, and

Mam = EU
Sample size  Estimate  MSE Bias Std(bias)  Vanance
n=20 W 0393 - 1109 (.D117) 0272
! 0417 - 1296 (.0112) 0250
n =100 i 0164 - 0635  (.0079) 0125
f 0163 - 0631  (.0079) 0123
n = 500 u) 0009 0129 (.0019) 0007
T 0008 - 0085  (.0019) 0007
n = 1000 (1 0004 — 00B5 (.0014) 0004
{1 0004 -.0054 (0014} 0004
where v = —log(C/P;). x, = log Q. x, = (log Q). % =

log(,/P,). and x, = log(P, /P, ).

Greene (1990) proposed parametric models (exponentiul.
halt-normal. truncated normal. and gamma) for the probability
density tunction of the inefficiency term u, convolved with
normal for the nose v, (This noise variable 1s assumed to be
part of the recorded data and 1s being modeled here; 1t 1s, of
course, not being added as part of the analysis.) The proce-
dure s maximum hikelthood inthe spirit of the work ot Algner
et al. (1977) and Meeusen and van den Broek (1977) on para-
metric stochastc frontiers,

We implement o semiparametric approach using the method
described in Section 2, based on the estimator w defined
by (5). The idea 1s straightforward: The parametric part is the
Cobb-Douglas model as before. but now 1, > 0 and the noise
variables v, are independent and identically distributed with
unspecitied probability densittes. We make the same assump-
tions on the probability densities ol u, and v, as in Sechon 2
lor the densities of ¥, and Z,,

Arguing in this manner, we suggest the following estimation
procedure. Rewrite (14) as

v, =a"F BN =l o,

where = Flu). 0 = u, — p. and a° = w — . An ordinary
least squares (OLS) procedure produces consistent estumators
a” and B. Define the shifted OLS residuals,

€ =v — B,
which are estimators of the true residuils.

e =v,— By =a—u +u.

Table 8. Mante Carlo Simulations for Model 5: Uniform (0.1),
E(Y)=.5, i, = 2887, o,= 0577, and p,, = .20

Estimate MSE Bias

Sample size Std{bias)  Vanance
n =100 n_': 00359 —.Dadi (.0031) 0020
f DOE4 - 0611 [.0037) 0027
n =500 ith ooz2 - 0430 (.0014) 0004
! 0024 - 0419 (.0018) 0007
= 1000 i 0020 Dai8 (.0011) 0002
H 0015 0324 (.00186) 0005

Sample size St(bias)]  Variance
n=20 i1 0159 —.0313 (.0086) 0150
( 0176  —.0641 (.0082) 0136
n =100 it 0019 -.0016 (.0031) 0019
I 0025 - 0131 (0034 0024
n = 500 ) 0004 0016  (0014) 0004
I 0005 0037  (0016) 0005
n=1000 el 0002 D005 (.0010) 0002
T 0003 0022 (.0011) 0002




530

Using the method of Section 2. compute & from the sample € .
f=l.....n Specifically, we used w defined by (5). 1aking
f.& there 1o be a kemel density estimator using a bandwidth
ft computed as described in Section 4.1.2. Note too that an
estmator ol g = E(u) s given hy

i
" I - op - -
f=—n Z[\',—H—ﬁ‘l,lfﬂ—”-

The resulting estimator of « in the case of the electric util-
ity company data equals 7.37 and lies between the value 7.21
of the OLS estimator and the values 7.41. 7.50, and 7.53 ol
maximum likelihood estimators in the cases of [N(0, a7 ).
N, o), and exponential models. Thus the new nonpara-
metric estimator lies approximately in the muddle of the range
ol values obtatned using alternative parametric approaches and
SO gives a meaningful result,

4.2.2  Application of the Method of Section 3. As noted
in Section 3. the umvariate methodology can be extended 1o
multivariate cases. We consider a bivanate setting where the
discontinuity is along a smooth boundary €. and illustrate the
case where € is determined by the formula ¥ = i(x'""), The
framework 15 nonspatial: i( x'"") could represent. for instance.
a production frontier where o' is the maximum output that
a4 firm can produce for a given input +'''. Due to production
inelficiency, the “true™ value ol an observation lies below the
rontier. but the observation is contaminated by noise. This 1s
exactly the setting of Gijbels et al. (1999). who proposed an

estimator of af (a bias-corrected version ol the convex hull of
the cloud of points) when there 1s no noise and the frontier

function 18 known to be monotone and concave.
In this setting, to estimate ') for a
project onto g stranght line passing through

oven o' we

v and paral-
lel to the second axis those diata whose hirst coordinate lies
within a given bandwidth of 1" In the illustrations that fol-
low we chose the bandwidth to be appropriate for estimating
the marginal density of X'''. The projected data were ana-
lyzed using the algonthm described earlier. producing f(2'').
We hriefly illustrate the apphication of this method in a Monte
Carlo experiment, and then apply the method w the electric
utility company data.

4,23 Simdated Data. Here we use model | of Gijbels
el al. (1999) and perturb the data by noise:

X"~ U0, 1] and X" = (X" exp(—V)exp(W).

where

II"I'

r(v) =2 with V ~exp(3)

and
W~ N0, (.066T)).

with the random variables X', Voand Woindependent, Note
that E{exp(=V)| = 3/4. The noise to signal ratio is p,, =

ary /oy =200 Figure 2 depicts a typical simulated dataset for
a sample of size = 100,
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Figure 2. A Typical Simulated Sample of Size 100. The solid fine
represents the true frontier function.

Table 10 summarizes simulaton results for two sample
sizes at three different points, .25, 50, and 75, menor (o
the support of the marginal density of X', The results rep-
resent the averages over SO0 simulations. Tt is evident from
the table that the estimator performs well. even tor nr as small
as 1000 Indeed. the hias is often not sigmilicantly dilferent
from (),

4.2.4  Application to Electric Utility Data, Returning to
the electric utility data of Christensen and Greene (1976).
we use only measurements of’ the variables X' = log Q and
X" =log €. where (0 is the production output of a firm and
(" is the total cost involved in production. Figure 3 depicts the
data along with pointwise estimates of i(x*'") over a selected
orid of 30 values for o', The bandwidth was taken equal
o .51, The hgure also shows o smooth estimator of the rontier
obtamned by runnimg o kernel smoother (quartic kermel and
same bandwidth 51) through the esnmated boundary points,
To avoid edee elfects, we resineted the region ol estimanon
to [1.5.5].

Here, of course, we focused on estimation ol the upper
boundary. because we are interested in estimating the “best
practice” trontier that maximizes the production Q for a given
level of the cost C. I lor some reason one wanted o consider
the lower boundary, then it could be dealt with in the same
wiy as the upper houndary,

Table 10. Estimated Bfas and MSE at Three Different Values of X'",
for Two Sample Sizes

xl.'I: 25 xl.‘l — 50 xt':n: ?'5
Bias Bias Bias
n (std{bias)) MSE  (std(bias)) MSE  (std(bias))  MSE

100 0048 (.0017) 0014 0017 (.0022) .0025 -.0003 (,0024) 0028
500 .0009 (.0010) 0005 0041 (.0012) .0007 .0041 (.0014) 0011

NOTE: Standard errars of the blas eshimator are given In parentheses
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Figure 3. Scatterplot of the American Electric Utitity Data, The +'s
represent the observations, the 's are the pomntwise estimates of the
boundary over a sefected grid of 50 values for x'"', and the solid jine
s @ smooth version of these boundary points. The bandwidth for X'
18 8128,

5. THEORETICAL STATISTICAL PROPERTIES

First, we treat the case where the distribution of the errors.
Zi. s held fixed as sample size increases, and introduce regu-
larity conditions. Assume that @ = argmax| /. (V)] is an inte-
rior point of a closed interval 7 and the density £, has four
continuous derivatives in an open interval containing 7. with
| ';“{fuj = (), !'_,i-'ﬁ"{m} = () and .,r":.:'{ v) #F O Tor all points v € 7
with ¥ 7= w. Also suppose that K is a compactly supported.
symmetne probability density with three bounded derivatives
and fi = n 7" Then

0 — = [j'{”:mﬂ l[{uh"} =l () N

= 3 O A m}] + oy ) (1S)

where k = (K"}, ks = | w7 K () e and the random variable
N, has a standard normal distribution. [ The departure of the
distribution of N, from standard normal may be absorbed into

the o, (A7) term.| Note that. because £ is of size n " the
' S

terms i (nh') and 4= on the right side ol (15) are both of

size =" An outline proof of (15) is given in Appendix A3,

Next. we suppose that the density [, of Z may he
represented in the form o 'g(-/a ). where we allow o7 = r(1)
o converge to Uas ir — oo, This asymptotic regime will give
us insight into properties of the estimator @ in cases where
simultaneously sumple size is moderately large and error vari-
ance 18 moderately small. In such contexts it is reasonable 1o
ask that the bandwidth. f. be of smaller order than @: other-
wise, the kernel smoothing step will blur the endpoint # of the
density fy 1o at least the same extent as adding the errors Z
and so can be expected 1o hinder rather than help estimation
ol @ from some points of view.

To further elaborate on this technique, we note that in
asymptotic analysis one usually keeps the model fixed as »
increases. There the parameter of interest is identifiable. and

o3

the parameter estimator generally converzes to the parameier.
[n the present setting. however. the parameter ix not identifi-
able. und we rely on low noise to achieve relatively low sys-
ematic error. We have suggested methods for reducing the
order of magnitude ol this bias. but because the model is not
entifiable, we are not able to reduce bias 10 0, even in the
[imit as o1 — a0 unless we allow o 1o decrease (o 0 as #
mereases. [The dichotomy between nonvanishing systematic
error it o does not converge 1o 0 and asymptotically negligi-
- o 18 evident in the two remainder
terms on the right sides of (6) and (13).] Tuking o = a{n) 1o
converge o (s essential il we are to achieve o limit theo-
rem of conventional type that demonstrites consistency in the
standard way,

Assume six hounded  derivatives of £, and e. and that
gINZE0Nh=0ler). o=0(n Y. 0 *h— .

hle stochastic error as n

h=eala™ + (n~ o )115, (16)

and

o = Oty ). (17)

all holding for some € =~ 0. (Note that we do not require
that wh — ~c.) Suppose also that K satisfies the conditions
tmposed before (15). Then

1

_ =) e(0)
& = = :r* .-“ (r
[ (=) e (]
kL= 270N M, F o (o),

+a(nhi’) !

W

(18)

where M, denotes a random variable that is asymploticully
normal MO, T An outline prool is given in Appendix A4,

Note that in (18). in contrast to (15). we effectively tream @
ds an estimator of ¢ rather than of w. OF course. this is possible
hecause we now allow the error variance o o converge to 0.
Takimg this view. the principal contribution to the bias of a.
given by the hrst term on the right side of (18). is of order o2,
This s one of the consequences of taking /1o be of smaller
order than o2 without that assumption, there would be an extra
erm in fi= in the bias contribution. much as in (15).

Observe also that the stochastic error term. given by the
second component on the right side of (18). is now ol size
o (nh™) ' rather than (n) ' as in (15). This is a4 conse-
quence of the fact that the value of w =argmax| /.| becomes
more easy to estimate when o is small, because the peak in
[, becomes more pronounced.

Property (I8) implies that the asymptotic MSE (AMSE) of
w 1s of size o’ + o (ah?)y ! and is mimmized by taking /i 1o
be of size (o= /)", This is of course a very different-sized
bundwidth than that i the problem of estimating @ for a fixed
error distribution. because we are treating a different problem
here. considering @ 1o be an estimator of # rather than w.
The constraint r = (o /i)' 7 s allowed by our regularity con-
ditions. provided that  does not converge to () oo quickly:
specitically, we need n " =orn ) as well as o0 = O0{n ).
lor some € = (),

For the optimal choice of bundwidth. the minimum AMSE
of w as an estimator ol # 1s Olo?). Note that this is the same
order as the MSE of the nonstochastic approximation w o f;
see Sectton 2.2 Tor that resull.
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APPENDIX: PROOFS OF MAIN
THEORETICAL RESULTS

A.1  Derivation of (8)

Put A, = (1)) 'I,IH‘J—}Inr;_.l'.?.....ﬁ.dnd

W A=) GG == ) edy i< =)
¢ —

§ (=1 et ) =g

Assuming condition (C, ), the expansion in (3) may be extended to

—felay = A L0+ L= 0P £+ Lo =0 1 )
+ A FA0) = (x = @) f,10)— 2 (x =) f5(0)]

4 4—|

+ ZZ Ao

J—.:Jr”

=x =8 4+ 00a™):

S0 . . "y A4 - .
|Condition (C) allows us 1o drop terms in ), and ‘,f;, | Equivalently,

— fola)= B+ B (x —0)— By(x — )" + By(x—8)

+ B, (x =) +00e’) (A

uniformly in [x =) < Ca~ for any € > (), where

',-;“ == ""'|||[r..-"[‘j] 'l- J'1-| F..ii”..' + AJ”fr + !'1 {”fr: + ."l._nl_”f-r-l-

By= 1Al f7(0)] — Ane .

By=—1 A f/(0),
and

B = A7 0).

Note that A,., which otherwise would appear in the expansion of 5,
equals (), and that higher-order terms in expansions of B,. ..., f1,
may be neglected because their contributions. when multiplied by
the appropriate power of x — 1, are of the same order as the Qo)
remainder in (AT ),

Therefore, dehning a, = _F';Jr'”{ﬂ} and w = argmax | f, ()], we see
that

Aty

and. uniformly in |i| < co” for any ¢ = (),
—fylw+u)=C,— Csit* + Cot* + Cyn’ + O(a?),

where C, = Aga,+ O(1). €, =
Mo "), and

l:r“l”]ﬂﬂ +0(o*), C; = :_r.;-dlllfh 4

(I” t’q

{.f1:£f’l,|ﬁr3|(|— )-!-U'[H ).

l"l' 1

This proves both (8) and the clmmed formulas tor €, C,, Cy, and C,.

A.2 Derivation of Result (R) of Section 3

For simplicity, we take € w0 be a non-self-intersecting curve
passing from one side of a closed rectangle & (o the other that does
not touch the boundary of & except at the two points on opposite
sides of K. Assume that in a neighborhood of each pomnt on €, the
curve has a Cantesian representation in terms of functions with three
uniformly bounded derivatives. That is, if £ 15 a point on €. and if
the axes are translated and rotated so that the x'' axis passes through
I and is tangenual o € at P, then in the neighborhood of P, € s
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the locus of ponts (2", v1), where +% = o, (x'") and the func-
tion i, has three dernvatives bounded uniformly in P. Suppose also
that fi (v) can be wntien as f (v (v £ Y), where the {unction [ has
two continuous denvatives in R, ¥ denotes that part of & lying on
a specific side of @, and f(f) = 0 for i € @, Take f, = g(-/or).
where the fixed bivanate density g is compactly supported and uni-
modal with 1ts mode at 0, has two continuous derivatives, and satisties
e(z) = gl0) =" Qz +ol||z||*) as z — O, with Q a strictly positive-
definite 2 x 2 matrix.

Let 6= (#'", 0V7) denote a point on €, and let T (#) represent the
set of points v such that £, (60 +v) = (. We may assume without loss
of generality that the tangent to € at # is not parallel to either of the
coordinate axes: 1f it is, then rotate the axes slightly. I £, denotes
the density ol a random two-vector W, then dehine

fi ) = .'r?.'::: r_““_” fo (1)
and
Allae- (@) = ()~ M, g, e o) f:f” T+ v
Then
fl\ [H - l'l]

= f_r, (64 v)f5(~1 —v) dv

gyt el

-—f !.4|1{Hl+}__.-'1:”[H] WD 1““
Tt

I I |'

[I| i, r'qit.H]lll.H '[I“:'”*“] + e

A A

(Led2al

].,I"_-,,[ —u— v) dv.

(Here and later we represent Taylor expansions in a formal sense,
without concise estimates of remainder terms, to clarify the nature of
our arguments.) Formulas for derivatives of f,(# —u) with respect
o components of # may be developed similarly. Thus

i o iy |
£ )

= f {A”“”*Z-“'l”iﬂi"“’ + 3 ARty
T

i=] !|-r-1

Lfgatng e | 1
+ Z til L !”[Hh'“"ll”“"ll:'“”‘F‘"‘ Jr},h

Ppjdzaty

"’""[’ ) efe,
(A.2)

It follows from (A.2), the unimodality and smoothness of g, and
the smoothness of the boundary of T(#) that .,",Jf”[ﬂ} = O(o°) and
£ = of(e ). Call thw.: collective results (R;). To dernve
a4 more concise formula for f,f '"(#) and a formula for ;’“‘ 28,
we assume without loss of generality that (a) # lies at the origin
of the (x''", x!*') coordinate system, (b) the +''" axis is parallel to
the tangent 1o the boundary of T(8) a1 8, and (c) the positive half
of the x*' axis is on the side of the x''! axis away from T (8).
Then, by (A.2),

= A, , 12wy dv +o{o™")
7 (1)

= A“l"ﬁl:r.r o)+ oler?) ?t:rizl (A.3)
ol(ar=2) ifit=1
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and

(Ll ol b

Iy Y= Ay l .I’_I.»I "J'H'hh' o r']

= F

W= =2

Aa(her g “NO) + efer ™)

r."ll'.r h:i

[AA)

itherwise

Put 3(u) = ;‘:’ !

pone it

{ :1}}','|”fﬁ+ul+ f'.: it lrlf:'I'lH + ), dmd

il
v,y = —— 3.4
't

— P O ) £ Ly + )

e

= l”-’r-ulﬂ' IIIH-I--J.rI

+fy N ) [AS)
Result (R imphies that (3,(0) = 02(r “1oocnll this result [R.). Sub-
stituting (A.3) and (A ) o (AS) and using (R ) we deduce that
it

-"-|.|”:|'1” E_l.'l'ﬂl_l-:” ""IHH doler M) iff=J=

TH“” = [ A )

afler M) otherwise.

Note that 300y = -},lr'i';'r'ln'“:|_,r"; (04 )" Result {A6) shows that
a ridge line of the surface v=[{, (04 |-, as detined at the end of
Section 3, is asymptotically, as o — U the direction parallel o
the 7' axis. By constructing a two-term Taylor expansion ot 3, (1)
around = 0, using (R and (AL6) w0 ohtiin the zero and hirst denva-
tives of B0 at = 0. and thereby obtaining an asymptotic solution
of the equation (3. (1) = 0, we deduce that the ridge line passes a dis-
nee Qe "fer By = O(r) from the pomt on & with coordimines .

A.3 Denvation of (15)

By Taylor expansion, and because f{lw) = 0. flo + ) =
O G A G ) s v — 0, Likewise,

r‘:[f"','l'l.t i} = Fyla)+ : h:h‘._;,'ll'in-{ o)

aniformly inoa e Jooas b — D0 Also detiming Diy) = (nh') =
[ (x) = fi,f"{ (v)).owe tind that D) s asymiptotically normally dis-
mributed with mean O and variance (ol ) 'k f 0o and, more gen-
erally. &) = Diew + I} converges weahly, as o stochastic process
defined on the interval J = | —¢, | tor any fixed ¢ >0, 104 Crhaussian
process EqLie) whose Covartance funchion is

yia, )= fylx) / K+ oK e+ whdu

Furthermore. theorem 3 of Komlas, Major, and Tusmidy (1975) may
be used o prove that

)}

|ELm) — &) = H[H.'.'|I::-g1 | -+

with probability 1. uniformly m values u such that o+ b 5
Combining these results, we deduce first that with prababihty 1,

,F:_;;[m—l—hul =_.f-:lml + M ,I"_-Lh!m]l ! f‘l[h"1| (e Loogd 1+ e[ 1] e IL

uniformly in 0 such that @+ Juee . and second that 7y () —
f“ ) — ) I.IHi'f-HrI"l} m v e 1 I tollows trom these two i'lﬁi}'Tl:rlitl'*-
and thie properties asswmed of £ on f that the vidue @ ot v that max-

imizes | £ (x)] saushies (@ —w) /b — 0 with probability 1 Therefore,

' iy - " Al ¥ e
0= fi{@) = ta—w)fy tw)+ L./ w)

+inh’) "-'mman,m-”n_ (AT
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It s strmghttorward o denve (A7) when the term (') “Diw)
U DEw). However. the weak
convergenice ol & o &, and the tuet that @ = w + oll) with proba-
hility 1 imply that (eh™ ) YD) = (ul™) D0+ o el l“ll

" the remainder here equals o, 007). Solving

on the rght side s replaced by (nhi7)

And becuause It = N
(AT tor @ — w, we deduce 113)

A4 Dernvation of (18)

Uiyder the assumed conditions, the following version of (ALY 1y

valid:

—foib ) =8, + B — B + B B Ol e Tl

umformly tn (w] < ¢ tor any € = 0. Likewise. the denvative of this

tarmuba s valid:
— [+ =18 — 28,4 Ve + 4B+ O et e "|u|;'}l.
umiformly i o] = €. Therelore,

-‘:If_;'iﬂ +ul] = ’ Ky f (0 =q— iy

=B, =280+ 38,0 W) 4Bt 3k D)

+ Oer (' I8+ e 000 [AN)

Nuote that 8. = . B = e ound By = o(a ) Theretore.
because b =woia), B = o(B.). Pl s, = o° +e il Vet and
note that (171 and the property o — O mply that 8, — ) {or some
e = 0 1t tollows from (16) that o ft ‘ﬁ“l. where 8, denotes
& with € = (1 Stted more simply. the fact that & = ol ) implies
= e 0,0, Using (17) and the property i = aler ), we

— .ril_r‘r

that or
miay deduce thal

lh] +or =5 ar || +er it =), | ALY
uniformly i values of w such that [n] = O he +8, ) Tor any € =0
and some € - 0 Now a constant multiple of the left side of (AY)
donnmates (|8l + |Bylu" + o Nl wdy B Combining these
restlts and (AR we deduce that. uniformly o w such thar (i) =

CLh- +48, 1, Tor some € = (),

F| .I'.;I”—FH” = B, +oto )| =281 +oll)|u
+ofer " tah’) I"'I.

From this property, and borrowing Trom the argument used in
Appendin: A3, we deduce that the solution u = 1 = w — 0 of the
equation £ (0 4w = U satishies

W= 18 4+ lir I'll - 28,1 % rJJ,“:III-f

L B P TROY R VT B B

Solving tor i, we deduce (18), The asymprote nonmaldity of (w)
requires the assumplion that sl — 20, but does not need the assump-

tion that nfi’ — =,

PRecenved April 20000, Revised Mureh 20001
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