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SAMPLE SPLITTING AND THRESHOLD ESTIMATION

BY BRUCE E. HANSEN1

Threshold models have a wide variety of applications in economics. Direct applications
include models of separating and multiple equilibria. Other applications include empirical
sample splitting when the sample split is based on a continuously-distributed variable such
as firm size. In addition, threshold models may be used as a parsimonious strategy for
nonparametric function estimation. For example, the threshold autoregressive model
Ž .TAR is popular in the nonlinear time series literature.

Threshold models also emerge as special cases of more complex statistical frameworks,
such as mixture models, switching models, Markov switching models, and smooth transi-
tion threshold models. It may be important to understand the statistical properties of
threshold models as a preliminary step in the development of statistical tools to handle
these more complicated structures.

Despite the large number of potential applications, the statistical theory of threshold
estimation is undeveloped. It is known that threshold estimates are super-consistent, but a
distribution theory useful for testing and inference has yet to be provided.

This paper develops a statistical theory for threshold estimation in the regression
context. We allow for either cross-section or time series observations. Least squares
estimation of the regression parameters is considered. An asymptotic distribution theory

Ž .for the regression estimates the threshold and the regression slopes is developed. It is
found that the distribution of the threshold estimate is nonstandard. A method to
construct asymptotic confidence intervals is developed by inverting the likelihood ratio
statistic. It is shown that this yields asymptotically conservative confidence regions. Monte
Carlo simulations are presented to assess the accuracy of the asymptotic approximations.
The empirical relevance of the theory is illustrated through an application to the multiple

Ž .equilibria growth model of Durlauf and Johnson 1995 .

KEYWORDS: Confidence intervals, nonlinear regression, growth regressions, regime
shifts.

1. INTRODUCTION

A ROUTINE PART OF AN EMPIRICAL ANALYSIS of a regression model such as
y sb9x qe is to see if the regression coefficients are stable when the model isi i i
estimated on appropriately selected subsamples. Sometimes the subsamples are
selected on categorical variables, such as gender, but in other cases the subsam-
ples are selected based on continuous variables, such as firm size. In the latter
case, some decision must be made concerning what is the appropriate threshold
Ž .i.e., how big must a firm be to be categorized as ‘‘large’’ at which to split the
sample. When this value is unknown, some method must be employed in its
selection.

1 This research was supported by a grant from the National Science Foundation and an Alfred P.
Sloan Foundation Research Fellowship. Thanks go to Robert de Jong and James MacKinnon for
insightful comments and Mehmet Caner and Metin Celebi for excellent research assistance. Special
thanks go to two diligent referees whose careful readings of multiple drafts of this paper have
eliminated several serious errors.
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Such practices can be formally treated as a special case of the threshold
regression model. These take the form

Ž . X1 y su x qe , q Fg ,i 1 i i i

Ž . X2 y su x qe , q )g ,i 2 i i i

where q may be called the threshold variable, and is used to split the samplei
into two groups, which we may call ‘‘classes,’’ or ‘‘regimes,’’ depending on the
context. The random variable e is a regression error.i

Formal threshold models arise in the econometrics literature. One example is
Ž . Ž .the Threshold Autoregressive TAR model of Tong 1983, 1990 , recently

Ž .explored for U.S. GNP by Potter 1995 . In Potter’s model, y is GNP growthi
and x and q are lagged GNP growth rates. The idea is to allow importanti i
nonlinearities in the conditional expectation function without over-parameteri-

Ž .zation. From a different perspective, Durlauf and Johnson 1995 argue that
models with multiple equilibria can give rise to threshold effects of the form

Ž . Ž .given in model 1 ] 2 . In their formulation, the regression is a stan-
dard Barro-styled cross-country growth equation, but the sample is split into
two groups, depending on whether the initial endowment is above a specific
threshold.

The primary purpose of this paper is to derive a useful asymptotic approxima-
tion to the distribution of the least-squares estimate g of the threshold parame-ˆ

Ž . Ž .ter g . The only previous attempt of which I am aware is Chan 1993 who
derives the asymptotic distribution of g for the TAR model. Chan finds thatˆ
Ž .n gyg converges in distribution to a functional of a compound Poissonˆ 0

process. Unfortunately, his representation depends upon a host of nuisance
parameters, including the marginal distribution of x and all the regressioni
coefficients. Hence, this theory does not yield a practical method to construct
confidence intervals.

We take a different approach, taking a suggestion from the change-point
Ž . Ž .literature, which considers an analog of model 1 ] 2 with q s i. Let d su yi n 2

u denote the ‘‘threshold effect.’’ The proposed solution is to let d ª0 as1 n
Ž .nª`. We will hold u fixed and thereby make u approach u as nª`.2 1 2

Ž Ž . Ž ..Under this assumption, it has been found see Picard 1985 and Bai 1997 that
the asymptotic distribution of the changepoint estimate is nonstandard yet free

Ž .of nuisance parameters other than a scale effect . Interestingly, we find in the
threshold model that the asymptotic distribution of the threshold estimate g isˆ
of the same form as that found for the change-point model, although the scale
factor is different.

The changepoint literature has confined attention to the sampling distribution
of the threshold estimate. We refocus attention on test statistics, and are the
first to study likelihood ratio tests for the threshold parameter. We find that the
likelihood ratio test is asymptotically pivotal when d decreases with samplen
size, and that this asymptotic distribution is an upper bound on the asymptotic
distribution for the case that d does not decrease with sample size. This allowsn
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us to construct asymptotically valid confidence intervals for the threshold based
on inverting the likelihood ratio statistic. This method is easy to apply in
empirical work. A GAUSS program that computes the estimators and test
statistics is available on request from the author or from his Web homepage.

The paper is organized as follows. Section 2 outlines the method of least
squares estimation of threshold regression models. Section 3 presents the
asymptotic distribution theory for the threshold estimate and the likelihood
ratio statistic for tests on the threshold parameter. Section 4 outlines methods to
construct asymptotically valid confidence intervals. Methods are presented for
the threshold and for the slope coefficients. Simulation evidence is provided to
assess the adequacy of the asymptotic approximations. Section 5 reports an
application to the multiple equilibria growth model of Durlauf and Johnson
Ž .1995 . The mathematical proofs are left to an Appendix.

2. ESTIMATION

� 4nThe observed sample is y , x , q , where y and q are real-valued and x isi i i is1 i i i
an m-vector. The threshold ¨ariable q may be an element of x , and is assumedi i
to have a continuous distribution. A sample-split or threshold regression model

Ž . Ž .takes the form 1 ] 2 . This model allows the regression parameters to differ
depending on the value of q . To write the model in a single equation, define thei

Ž . � 4 � 4dummy variable d g s q Fg where ? is the indicator function and seti i
Ž . Ž . Ž . Ž .x g sx d g , so that 1 ] 2 equali i i

Ž . X Ž .3 y su 9x qd x g qei i n i i

Ž .where usu . Equation 3 allows all of the regression parameters to switch2
between the regimes, but this is not essential to the analysis. The results
generalize to the case where only a subset of parameters switch between regimes
and to the case where some regressors only enter in one of the two regimes.

To express the model in matrix notation, define the n=1 vectors Y and e by
stacking the variables y and e , and the n=m matrices X and X by stackingi i g

X Ž . Ž .the vectors x and x g 9. Then 3 can be written asi i

Ž .4 YsXuqX d qe.g n

Ž .The regression parameters are u , d , g , and the natural estimator is leastn
Ž .squares LS . Let

Ž . Ž . Ž . Ž .5 S u , d , g s YyXuyX d 9 YyXuyX dn g g

be the sum of squared errors function. Then by definition the LS estimators
ˆ ˆ Ž .u , d , g jointly minimize 5 . For this minimization, g is assumed to be restrictedˆ

w xto a bounded set g , g sG . Note that the LS estimator is also the MLE when ei
Ž 2 .is iid N 0, s .

The computationally easiest method to obtain the LS estimates is through
Ž .concentration. Conditional on g , 4 is linear in u and d , yielding the condi-n
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ˆ ˆ UŽ . Ž . w xtional OLS estimators u g and d g by regression of Y on X s X X . Theg g

concentrated sum of squared errors function is
y1U UX U UXˆ ˆŽ . Ž . Ž . Ž .S g sS u g , d g , g sY 9YyY 9X X X X Y ,Ž .n n g g g g

Ž . Ž .and g is the value that minimizes S g . Since S g takes on less than nˆ n n
distinct values, g can be defined uniquely asˆ

Ž .gs argmin S gˆ n
ggGn

� 4where G sGl q , . . . , q , which requires less than n function evaluations. Then 1 n
ˆ ˆ ˆ ˆŽ . Ž .slope estimates can be computed via usu g and dsd g .ˆ ˆ

If n is very large, G can be approximated by a grid. For some N-n, let
Ž . � 4q denote the jrN th quantile of the sample q , . . . , q , and let G sŽ j. 1 n N

� 4 Ž .Gl q , . . . , q . Then g sargmin S g is a good approximation to gˆ ˆŽ1. Žn. N g g G nN

which only requires N function evaluations.
Ž . Ž .From a computational standpoint, the threshold model 1 ] 2 is quite similar

Ž .to the changepoint model where the threshold variable equals time, q s i .i
Indeed, if the observed values of q are distinct, the parameters can bei
estimated by sorting the data based on q , and then applying known methods fori
changepoint models. When there are tied values of q , estimation is morei
delicate, as the sorting operation is no longer well defined nor appropriate.
From a distributional standpoint, however, the threshold model differs consider-
ably from the changepoint model. One way to see this is to note that if the
regressors x contain q , as is typical in applications, then sorting the data by qi i i
induces a trend into the regressors x , so the threshold model is somewhati
similar to a changepoint model with trended data. The presence of trends is

Žknown to alter the asymptotic distributions of changepoint tests see Hansen
Ž . Ž ..1992, 2000 and Chu and White 1992 . More importantly, the distribution of

Ž .changepoint estimates or the construction of confidence intervals has not been
Ž .studied for this case. Another difference is that the stochastic process R g sn

n � 4 Ž . Ž .Ý x e q Fg is a martingale in g when q s i the changepoint model , butis1 i i i i
Žit is not necessarily so in the threshold model unless the data are independent

.across i . This difference may appear minor, but it requires the use of a
different set of asymptotic tools.

3. DISTRIBUTION THEORY

3.1. Assumptions

Define the moment functionals

Ž . Ž . Ž X � 4 .6 M g sE x x q Fg ,i i i

Ž . Ž . Ž X < .7 D g sE x x q sg ,i i i

and

Ž . Ž X 2 < .V g sE x x e q sg .i i i i
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Ž .Let f q denote the density function of q , g denote the true value of g ,i 0
Ž . Ž . Ž . Ž X .DsD g , VsV g , fs f g , and MsE x x .0 0 0 i i

ASSUMPTION 1:

Ž .1. x , q , e is strictly stationary, ergodic and r-mixing, with r-mixing coeffi-i i i
cients satisfying Ý` r1r2 -`.ms 1 m

Ž < .2. E e F s0.i iy1
< < 4 < < 43. E x -` and E x e -`.i i i

Ž < < 4 4 < . Ž < < 4 .4. For all ggG , E x e q sg FC and E x ¬q sg FC for some C-i i i i i
Ž .`, and f g F f-`.
Ž . Ž . Ž .5. f g , D g , and V g are continuous at gsg .0

1ya6. d scn with c/0 and 0-a- .n 2

7. c9Dc)0, c9Vc)0, and f)0.
Ž .8. M)M g )0 for all ggG .

Assumption 1.1 is relevant for time series applications, and is trivially satisfied
for independent observations. The assumption of stationarity excludes time
trends and integrated processes. The r-mixing assumption2 controls the degree
of time series dependence, and is weaker than uniform mixing, yet stronger than
strong mixing. It is sufficiently flexible to embrace many nonlinear time series

Ž .processes including threshold autoregressions. Indeed, Chan 1989 has demon-
strated that a strong form of geometric ergodicity holds for TAR processes and,

Ž .as discussed in the proof of Proposition 1 of Chan 1993 , this implies r sm
Ž m. < <O r with r -1, which implies Assumption 1.1.

Ž . Ž .Assumption 1.2 imposes that 1 ] 2 is a correct specification of the condi-
tional mean. Assumptions 1.3 and 1.4 are unconditional and conditional moment
bounds. Assumption 1.5 requires the threshold variable to have a continuous

Ž 2 < .distribution, and essentially requires the conditional variance E e q sg to bei i
continuous at g , which excludes regime-dependent heteroskedasticity.0

Assumption 1.6 may appear unusual. It specifies that the difference in
regression slopes gets small as the sample size increases. Conceptually, this
implies that we are taking an asymptotic approximation valid for small values of
d . The parameter a controls the rate at which d decreases to zero, i.e., hown n
small we are forcing d to be. Smaller values of a are thus less restrictive. Then

Ž .reason for Assumption 1.6 is that Chan 1993 found that with d fixed,n
Ž .n gyg converged to an asymptotic distribution that was dependent uponˆ 0

nuisance parameters and thus not particularly useful for calculation of confi-
Ž y1 .dence sets. The difficulty is due to the O n rate of convergence. By lettingp

d tend towards zero, we reduce the rate of convergence and find a simplern
asymptotic distribution.

Assumption 1.7 is a full-rank condition needed to have nondegenerate asymp-
totic distributions. While the restriction c9Dc)0 might appear innocuous, it

2 Ž . Ž .For a definition, see Ibragimov 1975 and Peligrad 1982 .
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excludes the interesting special case of a ‘‘continuous threshold’’ model, which is
Ž . Ž . Ž . X U U Ž .1 ] 2 with x s 1 q 9 and d g s0 where g s 1 g 9. In this case thei i n 0 0 0
conditional mean takes the form of a continuous linear spline. From definition
Ž . Ž X < . U UX7 we can calculate for this model that c9Dcsc9E x x q sg csc9g g csi i i 0 0 0
0. A recent paper that explores the asymptotic distribution of the least squares

Ž .estimates in this model is Chan and Tsay 1998 .
Assumption 1.8 is a conventional full-rank condition which excludes multi-

collinearity. Note that this assumption restricts G to a proper subset of the
support of q . This is a technical condition which simplifies our consistencyi
proof.

3.2. Asymptotic Distribution

Ž .A two-sided Brownian motion W r on the real line is defined as

Ž .¡W yr , r-0,1~Ž .W r s 0, rs0,¢ Ž .W r , r)0,2

Ž . Ž . w .where W r and W r are independent standard Brownian motions on 0, ` .1 2

1y2 a Ž .THEOREM 1: Under Assumption 1, n gyg ª vT , whereˆ 0 d

c9Vc
vs 2Ž .c9Dc f

and
1

< < Ž .Ts argmax y r qW r .
2y`-r-`

Theorem 1 gives the rate of convergence and asymptotic distribution of the
threshold estimate g . The rate of convergence is n1y2 a, which is decreasing inˆ
a . Intuitively, a larger a decreases the threshold effect d , which decreases then
sample information concerning the threshold g , reducing the precision of any
estimator of g .

Theorem 1 shows that the distribution of the threshold estimate under our
‘‘small effect’’ asymptotics takes a similar form to that found for changepoint

Ž . Ž . Ž .estimates. For the latter theory, see Picard 1985 , Yao 1987 , Dumbgen 1991 ,¨
Ž .and Bai 1997 . The difference is that the asymptotic precision of g is propor-ˆ

Ž X < .tional to the matrix E x, x q sg while in the changepoint case the asymp-i i 0
Ž X .totic precision is proportional to the unconditional moment matrix E x x . It isi i

interesting to note that these moments are equal when x and q are indepen-i i
dent, which would not be typical in applications.

The asymptotic distribution in Theorem 1 is scaled by the ratio v. In the
leading case of conditional homoskedasticity

Ž . Ž 2 < . 29 E e q ss ,i i
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then Vss 2D and v simplifies to

s 2

vs .Ž .c9Dc f

The asymptotic distribution of g is less dispersed when v is small, which occursˆ
2 Ž . Žwhen s is small, f g is large so that many observations are near the0
. < < Ž .threshold , andror c is large a large threshold effect .

ŽThe distribution function for T is known. See Bhattacharya and Brockwell
Ž . . Ž .1976 . Let F x denote the cumulative standard normal distribution function.
Then for xG0,

x x
Ž .P TFx s1q exp y( ž /2p 8

' '3 3 x xq5 x
Ž .q exp x F y y F y .ž /ž / ž /2 2 2 2

Ž . Ž .and for x-0, P TFx s1yP TFyx . A plot of the density function of T is
given in Figure 1.

FIGURE 1.}Asymptotic density of threshold estimator.
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3.3. Likelihood Ratio Test

To test the hypothesis H : gsg , a standard approach is to use the0 0
Ž 2 .likelihood ratio statistic under the auxiliary assumption that e is iid N 0, s .i

Let

Ž . Ž .S g yS ĝn nŽ .LR g sn .n Ž .S ĝn

Ž .The likelihood ratio test of H is to reject for large values of LR g .0 n 0

THEOREM 2: Under Assumption 1,

Ž . 2LR g ª h j ,n 0 d

where

w Ž . < <xjs max 2W s y s
sgR

and

c9Vc
2h s .2s c9Dc

Ž . Ž yx r2 .2The distribution function of j is P jFx s 1ye .

Ž . 2If homoskedasticity 9 holds, then h s1 and the asymptotic distribution of
Ž . 2LR g is free of nuisance parameters. If heteroskedasticity is suspected, hn 0

must be estimated. We discuss this in the next section.
Theorem 2 gives the large sample distribution of the likelihood ratio test for

hypotheses on g . The asymptotic distribution is nonstandard, but free of
Ž .nuisance parameters under 9 . Since the distribution function is available in a

simple closed form, it is easy to generate p-values for observed test statistics.
Namely,

21 2Ž .p s1y 1yexp y LR gn n 0ž /ž /2

is the asymptotic p-value for the likelihood ratio test. Critical values can be
calculated by direct inversion of the distribution function. Thus a test of H :0

Ž . Ž .gsg rejects at the asymptotic level of a if LR g exceeds c 1ya , where0 n 0 j'Ž . Ž .c z sy2 ln 1y z . Selected critical values are reported in Table I.j

TABLE I

ASYMPTOTIC CRITICAL VALUES

.80 .85 .90 .925 .95 .975 .99

Ž .P jFx 4.50 5.10 5.94 6.53 7.35 8.75 10.59
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3.4. Estimation of h 2

The asymptotic distribution of Theorem 2 depends on the nuisance parameter
h 2. It is therefore necessary to consistently estimate this parameter. Let r s1 i
Ž X .2Ž 2 2 . Ž X .2d x e rs and r s d x . Thenn i i 2 i n i

Ž < .E r q sg1 i i 02Ž .10 h s Ž < .E r q sg2 i i 0

is the ratio of two conditional expectations. Since r and r are unobserved, let1 i 2 i
X̂ 2 2 2 X̂ 2Ž . Ž . Ž .r s d x e rs and r s d x denote their sample counterparts.ˆ ˆ ˆ ˆ1 i i i 2 i i

Ž .A simple estimator of the ratio 10 uses a polynomial regression, such as a
quadratic. For js1 and 2, fit the OLS regressions

r sm qm q qm q2 q« ,ˆ ˆ ˆ ˆ ˆji j0 j1 i j2 i ji

and then set

m qm gqm g 2ˆ ˆ ˆ ˆ ˆ10 11 122h s .ˆ
2m qm gqm gˆ ˆ ˆ ˆ ˆ20 21 22

An alternative is to use kernel regression. The Nadaraya-Watson kernel
estimator is

n Ž .Ý K gyq tˆ ˆis1 h i 1 i2h sˆ n Ž .Ý K gyq tˆ ˆis1 h i 2 i

Ž . y1 Ž . Ž .where K u sh K urh for some bandwidth h and kernel K u , such as theh
3 2Ž . Ž .� < < 4Epanechnikov K u s 1yu u F1 . The bandwidth h may be selected4

Žaccording to a minimum mean square error criterion see Hardle and Linton
Ž ..1994 .

4. CONFIDENCE INTERVALS

4.1. Threshold Estimate

A common method to form confidence intervals for parameters is through the
inversion of Wald or t statistics. To obtain a confidence interval for g , this
would involve the distribution T from Theorem 1 and an estimate of the scale
parameter v. While T is parameter-independent, v is directly a function of dn

Ž Ž ..and indirectly a function of g through D g . When asymptotic sampling0 0
distributions depend on unknown parameters, the Wald statistic can have very

Ž .poor finite sample behavior. In particular, Dufour 1997 argues that Wald
statistics have particularly poorly-behaved sampling distributions when the pa-
rameter has a region where identification fails. The threshold regression model
is an example where this occurs, as the threshold g is not identified when
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d s0. These concerns have encouraged us to explore the construction ofn
Ž .confidence regions based on the likelihood ratio statistic LR g .n

Ž .Let C denote the desired asymptotic confidence level e.g. Cs .95 , and let
Ž . Ž .csc C be the C-level critical value for j from Table I . Setj

ˆ � Ž . 4Gs g : LR g Fc .n

ˆŽ .Theorem 2 shows that P g gG ªC as nª` under the homoskedasticity0
ˆŽ .assumption 9 . Thus G is an asymptotic C-level confidence region for g . A

ˆ Ž .graphical method to find the region G is to plot the likelihood ratio LR gn
Žagainst g and draw a flat line at c. Note that the likelihood ratio is identically

.zero at gsg . Equivalently, one may plot the residual sum of squared errorsˆ
Ž . Ž . 2S g against g , and draw a flat line at S g qs c.ˆ ˆn n

Ž .If the homoskedasticity condition 9 does not hold, we can define a scaled
likelihood ratio statistic:

Ž . Ž . Ž .LR g S g yS ĝn n nU Ž .LR g s sn 2 2 2ĥ s hˆ ˆ

and an amended confidence region

ˆ U� Ž . 4G *s g : LR g Fc .n

2 2 ˆŽ . Ž .Since h is consistent for h , P g gG * ªC as nª` whether or not 9ˆ 0
ˆholds, so G * is a heteroskedasticity-robust asymptotic C-level confidence region

for g .
These confidence intervals are asymptotically correct under the assumption

that d ª0 as nª`, which suggests that the actual coverage may differ fromn
the desired level for large values of d . We now consider the case of as0,n
which implies that d is fixed as n increases. We impose the stronger conditionn

Ž 2 .that the errors e are iid N 0, s , strictly independent of the regressors x andi i
threshold variable q .i

THEOREM 3: Under Assumption 1, modifying part 6 so that as0, and the errors
Ž 2 .e are iid N 0, s strictly independent of the regressors x and threshold ¨ariable q ,i i i

then

Ž Ž . . Ž . Ž .P LR g Gx FP jGx qo 1 .n 0

Theorem 3 shows that at least in the case of iid Gaussian errors, the
likelihood ratio test is asymptotically conservative. Thus inferences based on the

ˆconfidence region G are asymptotically valid, even if d is relatively large.n
Unfortunately, we do not know if Theorem 3 generalizes to the case of
non-normal errors or regressors that are not strictly exogenous. The proof of
Theorem 3 relies on the Gaussian error structure and it is not clear how the
theorem would generalize.
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4.2. Simulation E¨idence

We use simulation techniques to compare the coverage probabilities of the
Ž .confidence intervals for g . We use the simple regression model 3 with iid data

Ž . Ž . Ž .and x s 1 z 9, e ;N 0, 1 , q ;N 2, 1 , and gs2. The regressor z was eitheri i i i i
Ž .iid N 0, 1 or z sq . The likelihood ratio statistic is invariant to u . Partitioningi i
Ž .d s d d 9 we set d s0 and assessed the coverage probability of the confi-n 1 2 1

ˆdence interval G as we varied d and n. We set d s .25, .5, 1.0, 1.5, and 2.0 and2 2
ns50, 100, 250, 500, and 1000. Using 1000 replications Table II reports the
coverage probabilities for nominal 90% confidence intervals.

The results are quite informative. For all cases, the actual coverage rates
increase as n increases or d increases, which is consistent with the prediction2
of Theorem 3. For small sample sizes and small threshold effects, the coverage
rates are lower than the nominal 90%. As expected, however, as the threshold
effect d increases, the rejection rates rise and become quite conservative.2

4.3. Slope Parameters

ˆ ˆ ˆŽ . Ž .Letting us u , d and us u , d . Lemma A.12 in the Appendix shows thatn

ˆ'Ž . Ž .11 n uyu ª Z;N 0, VŽ . d u

where V is the standard asymptotic covariance matrix if gsg were fixed. Thisu 0
ˆmeans that we can approximate the distribution of u by the conventional

ˆŽ .normal approximation as if g were known with certainty. Let Q g denote the
conventional asymptotic C-level confidence region for u constructed under the

ˆŽ . Ž Ž ..assumption that g is known. 11 shows that P ugQ g ªC as nª`.ˆ
In finite samples, this procedure seems likely to under-represent the true

sampling uncertainty, since it is not the case that gsg in any given sample. Itˆ 0
may be desirable to incorporate this uncertainty into our confidence intervals

Ž̂ .for u . This appears difficult to do using conventional techniques, as u g is not
differentiable with respect to g , and g is non-normally distributed. A simple yetˆ
constructive technique is to use a Bonferroni-type bound. For any r-1, let

TABLE II

CONFIDENCE INTERVAL CONVERGENCE FOR g AT 10% LEVEL

Ž .x s q x ; N 0, 1i i i

d s .25 .5 1.0 1.5 2.0 .25 .5 1.0 1.5 2.02

ns50 .86 .87 .93 .97 .99 .90 .87 .93 .93 .97
ns100 .82 .90 .96 .98 .99 .84 .86 .92 .96 .95
ns250 .83 .93 .97 .98 .99 .80 .92 .94 .96 .98
ns500 .90 .93 .97 .98 .99 .81 .93 .95 .96 .98
ns1000 .90 .93 .98 .99 .99 .86 .93 .94 .96 .97
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ˆŽ .G r denote the confidence interval for g with asymptotic coverage r. For each
ˆ ˆŽ . Ž .ggG r construct the pointwise confidence region Q g and then set

ˆ ˆ Ž .Q s Q g .Dr

ˆŽ .ggG r

ˆ ˆ ˆ ˆŽ . Ž . Ž Ž ..Since Q >Q g , it follows that P ugQ GP ugQ g ªC as nª`.ˆ ˆr r

This procedure is assessed using a simple Monte Carlo simulation. In Table
Ž .III we report coverage rates of a nominal 95% confidence interval Cs .95 on

d . The same design is used as in the previous section, although the results are2
reported only for the case x independent of q and a more narrow set of n andi i

ˆd to save space. We tried rs0, .5, .8, and .95. As expected, the simple rule Q2 0
is somewhat liberal for small u and n, but is quite satisfactory for large n or d .2 2
In fact, all choices for r lead to similar results for large d . For small d and n,2 2
the best choice may be rs .8, although this may produce somewhat conservative
confidence intervals for small d .2

ˆ ˆŽ .In summary, while the naive choice Q sQ g works fairly well for large nˆ0
andror large threshold effects, it has insufficient coverage probability for small
n or threshold effect. This problem can be solved through the conservative

ˆprocedure Q with r)0, and the choice rs .8 appears to work reasonably wellr

in a simulation.

5. APPLICATION: GROWTH AND MULTIPLE EQUILIBRIA

Ž .Durlauf and Johnson 1995 suggest that cross-section growth behavior may
be determined by initial conditions. They explore this hypothesis using the
Summers-Heston data set, reporting results obtained from a regression tree
methodology. A regression tree is a special case of a multiple threshold
regression. The estimation method for regression trees due to Breiman et al.
Ž .1984 is somewhat ad hoc, with no known distributional theory. To illustrate the
usefulness of our estimation theory, we apply our techniques to regressions
similar to those reported by Durlauf-Johnson.

TABLE III

CONFIDENCE INTERVAL CONVERGENCE FOR d AT 5% LEVEL2

ns 100 n s 250 n s 500

d s .25 .5 1.0 2.0 .25 .5 1.0 2.0 .25 .5 1.0 2.02

Q̂ .90 .93 .96 .95 .90 .95 .95 .94 .91 .97 .94 .940

Q̂ .90 .95 .96 .95 .94 .96 .96 .94 .94 .98 .94 .95.5

Q̂ .95 .97 .97 .96 .97 .98 .96 .94 .97 .98 .95 .95.8

Q̂ .99 .99 .95 .94 .99 .99 .97 .94 .99 .99 .95 .95.95
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The model seeks to explain real GDP growth. The specification is

Ž . Ž .ln YrL y ln YrLi , 1985 i , 1960

Ž . Ž .szqb ln YrL qp ln IrYi , 1960 i1

Ž . Ž .qp ln n qgqd qp ln SCHOOL qe ,i2 i 3 i

where for each country i:

Ž .v YrL sreal GDP per member of the population aged 15]64 in year t;i, t

Ž .v IrY s investment to GDP ratio;i

v n sgrowth rate of the working-age population;i

Ž .v SCHOOL s fraction of working-age population enrolled in secondaryi
school.

The variables not indexed by t are annual averages over the period 1960]1985.
Following Durlauf-Johnson, we set gqds0.05.

Ž .Durlauf-Johnson estimate 12 for four regimes selected via a regression tree
using two possible threshold variables that measure initial endowment: per
capita output YrL and the adult literacy rate LR, both measured in 1960. The
authors argue that the error e is heteroskedastic so present their results withi
heteroskedasticity-corrected standard errors. We follow their lead and use
heteroskedasticity-consistent procedures, estimating the nuisance parameter h 2

using an Epanechnikov kernel with a plug-in bandwidth.
Since the theory outlined in this paper only allows one threshold and one

threshold variable, we first need to select among the two threshold variables,
and verify that there is indeed evidence for a threshold effect. We do so by

Ž .employing the heteroskedasticity-consistent Lagrange multiplier LM test for a
Ž .threshold of Hansen 1996 . Since the threshold g is not identified under the

null hypothesis of no threshold effect, the p-values are computed by a bootstrap
Ž .analog, fixing the regressors from the right-hand side of 12 and generating the
Ž 2 .bootstrap dependent variable from the distribution N 0, e , where e is theˆ ˆi i

Ž .OLS residual from the estimated threshold model. Hansen 1996 shows that
this bootstrap analog produces asymptotically correct p-values. Using 1000
bootstrap replications, the p-value for the threshold model using initial per
capital output was marginally significant at 0.088 and that for the threshold
model using initial literacy rate was insignificant at 0.214. This suggests that
there might be a sample split based on output.

U Ž .Figure 2 displays a graph of the normalized likelihood ratio sequence LR gn
as a function of the threshold in output. The LS estimate of g is the value that
minimizes this graph, which occurs at gs$863. The 95% critical value of 7.35 isˆ

Ž .also plotted the dotted line , so we can read off the asymptotic 95% confidence
ˆ Uw x Ž .set G *s $594, $1794 from the graph from where LR g crosses the dottedn

line. These results show that there is reasonable evidence for a two-regime
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FIGURE 2.}First sample split: Confidence interval construction for threshold.

specification, but there is considerable uncertainty about the value of the
threshold. While the confidence interval for g might seem rather tight by
viewing Figure 2, it is perhaps more informative to note that 40 of the 96
countries in the sample fall in the 95% confidence interval, so cannot be
decisively classified into the first or second regime.

If we fix g at the LS estimate $863 and split the sample in two based on initial
Ž .GDP, we can mechanically perform the same analysis on each subsample. It is

not clear how our theoretical results extend to such procedures, but this will
enable more informative comparisons with the Durlauf-Johnson results. Only 18
countries have initial output at or below $863, so no further sample split is
possible among this subsample. Among the 78 countries with initial output
above $863, a sample split based on initial output produces an insignificant
p-value of 0.152, while a sample split based on the initial literacy rate produces a
p-value of 0.078, suggesting a possible threshold effect in the literacy rate. The
point estimate of the threshold in the literacy rate is 45%, with a 95%

w xasymptotic confidence interval 19%, 57% . The graph of the normalized likeli-
hood ratio statistic as a function of the threshold in the literacy rate is displayed
in Figure 3. This confidence interval contains 19 of the 78 countries in the
subsample. We could try to further split these two subsamples, but none of the
bootstrap test statistics were significant at the 10% level.



SAMPLE SPLITTING 589

FIGURE 3.}Second sample split: Confidence interval construction for threshold.

Ž .Our point estimates are quite similar to those of Durlauf and Johnson 1995 .
What is different are our confidence intervals. The confidence intervals for the
threshold parameters are sufficiently large that there is considerable uncertainty
regarding their values, hence concerning the proper division of countries into
convergence classes as well.

6. CONCLUSION

This paper develops asymptotic methods to construct confidence intervals for
least-squares estimates of threshold parameters. The confidence intervals are
asymptotically conservative. It is possible that more accurate confidence inter-
vals may be constructed using bootstrap techniques. This may be quite delicate,
however, since the sampling distribution of the likelihood ratio statistic appears
to be nonstandard and nonpivotal. This would be an interesting subject for
future research.

Dept. of Economics, Social Science Bldg., Unï ersity of Wisconsin, Madison, WI
53706-1393, U.S.A.; bhansen@ssc.wisc.edu;www.ssc.wisc.edur;bhansen.

Manuscript receï ed July, 1996; final re¨ision receï ed April, 1999.
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APPENDIX : MATHEMATICAL PROOFS

Ž . < < < Ž . Ž . < Ž . < < < Ž . Ž . <Define h g , g s x e d g yd g and k g , g s x d g yd g .i 1 2 i i i 2 i 1 i 1 2 i i 2 i 1

LEMMA A.1: There is a C -` such that for gFg Fg Fg , and rF4,1 1 2

Ž . r Ž . < <12 Eh g , g FC g yg ,i 1 2 1 2 1

Ž . r Ž . < <13 Ek g , g FC g yg .i 1 2 1 2 1

PROOF: For any random variable Z,

d
Ž . Ž Ž .. Ž < . Ž .14 E Zd g sE Z q sg f g .i idg

Thus under Assumption 1.4,

d r rŽ < < Ž .. Ž < < < . Ž .x e d g sE x e q sg f gi i i i i idg

rr44w Ž < < < .x Ž .F E x e q sg f gi i i

rr4FC fFC ,1

w x Ž . Ž .setting C smax 1, C f. Since d g yd g equals either zero or one,1 i 2 i 1

r Ž . Ž < < r Ž .. Ž < < r Ž .. < <Eh g , g sE x e d g yE x e d g FC g yg ,i 1 2 i i i 2 i i i 1 1 2 1

Ž . Ž .by a first-order Taylor series expansion, establishing 12 . The proof of 13 is identical. Q.E.D.

LEMMA A.2: There is a K-` such that for all gFg Fg Fg ,1 2

2n1
2 2Ž . Ž Ž . Ž .. < <15 E h g , g yEh g , g FK g yg ,Ý i 1 2 i 1 2 2 1'n is1

2n1
2 2Ž . Ž Ž . Ž .. < <16 E k g , g yEk g , g FK g yg .Ý i 1 2 i 1 2 2 1'n is1

Ž .PROOF: Lemma 3.4 of Peligrad 1982 shows that for r-mixing sequences satisfying Assumption
1.1, there is a K 9-` such that

2n1
2 2Ž Ž . Ž ..E h g , g yEh g , gÝ i 1 2 i 1 2'n is1

22 2Ž Ž . Ž ..FK 9E h g , g yEh g , gi 1 2 i 1 2

4 Ž .F2 K 9Eh g , gi 1 2

< <F2 K 9C g yg1 2 1

Ž . Ž . Ž .where the final inequality is 12 . This is 15 with Ks2 K 9C . The proof of 16 is identical.1
Q.E.D.
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Let

n1
Ž . Ž .J g s x e d g .Ýn i i i'n is1

LEMMA A.3: There are finite constants K and K such that for all g , «)0, h)0, and dGny1, if1 2 1'n GK rh, then2

K d 2
1Ž . Ž .P sup J g yJ g )h F .n n 1 4ž / hg FgFg qd1 1

PROOF: Let m be an integer satisfying ndr2FmFnd , which is possible since ndG1. Set
Ž . Ž . Ž .d sdrm. For ks1, . . . , mq1, set g sg qd ky1 , h sh g , g , and h sh g , g .m k 1 m ik i k kq1 i jk i j k

Ž . r r < < y1 nNote that 12 implies Eh FC d and Eh FC ky j d for rF4. Letting H sn Ý h ,i k 1 m i jk 1 m nk is1 i k
observe that for g FgFg ,k kq1

' ' 'Ž . Ž . < <J g yJ g F n H F n H yEH q n EH .n n k nk nk n k n k

Thus

Ž . Ž . Ž . Ž . Ž .17 sup J g yJ g F max J g yJ gn n 1 n k n 1
2FkFmq1g FgFg qd1 1

' '< <q max n H yEH q max n EH .n k n k n k
1FkFm 1FkFm

Ž Ž ..For any 1F j-kFmq1, by Burkholder’s inequality see, e.g., Hall and Heyde 1980, p. 23 for
2 Ž . y1 Ž .1r2 Ž .some C9-`, Minkowski’s inequality, Eh FC d , 15 , n Fd and ky j F ky j ,i k 1 m m

4n14Ž . Ž . Ž . Ž Ž . Ž ..18 E J g yJ g sE x e d g yd gÝn k n j i i i k i j'n is1

2n1
2FC9E hÝ i jkn is1

21r22n1
2 2 2Ž .FC9 EH q E h yEhÝi jk i jk i jknž /is1

21r2Ž .K ky j dmŽ .FC9 C ky j d q1 m ž /n

2 2'w x ŽŽ . .FC9 C q K ky j d .1 m

Ž . Ž .The bound 18 and Theorem 12.2 of Billingsley 1968, p. 94 imply that there is a finite K 0 such that

2 2Ž .md dmŽ . Ž . Ž .19 P max J g yJ g )h FK 0 sK 0 ,n k n 1ž / 4 4h h2FkFmq1

Ž .which bounds the first term on the right-hand side of 17 .
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Ž .We next consider the second term. Lemma 3.6 of Peligrad 1982 shows there is a K --` such
that

24 y1 4 2'Ž . < Ž . < Ž .20 E n H yEHG FK - n Eh q EhŽ .nk nk ik ik

2y1Ž Ž . .FK - n C d q C d1 m 1 m

Ž 2 . 2FK - C qC d ,1 1 m

y1 Ž .where the third inequality is n Fd . Markov’s inequality and 20 yieldm

Ž 2 . 2K - C qC d1 1 m'Ž . < Ž . <21 P max n H yEH )h Fmn k n kž / 4h1FkFm

Ž 2 . 2K - C qC d1 1F ,4h

where the final inequality uses md sd and d Fd .m m
Finally, note that

2C1' ' 'Ž .22 n EH s n Eh F n C d F ,nk ik 1 m 'n

'Ž . Ž . Ž . Ž .since d F2rn. Together, 17 , 19 , 21 , and 22 imply that when 2C r n Fh,m 1

w Ž 2 .x 2K 0 qK - C qC d1 1
< Ž . Ž <P sup J g yJ g )3h F ,n n 1 4ž / hg FgFg qd1 1

4w Ž 2 .xwhich implies the result setting K s3 K 0 qK - C qC and K s6C . Q.E.D.1 1 1 2 1

Let ‘‘« ’’ denote weak convergence with respect to the uniform metric.

Ž . Ž .LEMMA A.4: J g «J g , a mean-zero Gaussian process with almost surely continuous samplen
paths.

Ž . Ž .PROOF: For each g , x e d g is a square integrable stationary martingale difference, so J gi i i n
converges pointwise to a Gaussian distribution by the CLT. This can be extended to any finite
collection of g to yield the convergence of the finite dimensional distributions.

4 y1 2 2w xFix «)0 and h)0. Set ds«h rK and nsmax d , K rh , where K and K are defined1 2 1 2
in Lemma A.3. Then by Lemma A.3, for any g , if nGn,1

K d 2
1Ž . Ž .P sup J g yJ g )h F sd« .n n 4ž / hg FgFg qd1 1

Ž . ŽThis establishes the conditions for Theorem 15.5 of Billingsley 1968 . See also the proof of
Ž . . Ž . Ž . Ž .Theorem 16.1 of Billingsley 1968 . It follows that J g is tight, so J g «J g . Q.E.D.n n

LEMMA A.5: gª g .ˆ p 0

Ž .PROOF: Lemma 1 of Hansen 1996 shows that Assumption 1 is sufficient for

n1 1
X XŽ . Ž . Ž . Ž .23 M g s X X s x x d g ª M g ,Ýn g g i i i pn n is1

Ž . Ž .uniformly over ggR. Observe that 23 implies M s 1rn X 9Xª M.n p



SAMPLE SPLITTING 593

Let X sX . Then since YsXuqX d qe and X lies in the space spanned by P s0 g 0 n g0U Ž UX U .y1 UXX X X X ,g g g g

Ž . Ž . X X Ž . X X Ž .S g ye9esY9 IyP Yye9esye9P eq2d X IyP eqd X IyP X d .n g g n 0 g n 0 g 0 n

Ž .Using Assumption 1.6, Lemma A.4, and 23 , we see that uniformly over ggG ,

y1 q2 a Ž Ž . . y1 Ž X Ž . . Ž .n S g ye9e sn c9 X IyP X cqo 1 .n 0 g 0 p

w xThe projection P can be written as the projection onto X , Z , where Z sXyX is a matrixg g g g g
XŽ Ž .. X X X Xwhose ith row is x 1yd g . Observe that X Z s0, and for gGg , X X sX X and X Z s0.i i g g 0 0 g 0 0 0 g

Ž . w xThen using 23 we calculate that uniformly over gg g , g0

y1Xy1 Ž Ž . . Ž Ž . Ž . Ž . Ž ..n c9 X IyP X csc9 M g yM g M g M g c0 g 0 n 0 n 0 n n 0

y1Ž Ž . Ž . Ž . Ž .. Ž .ª c9 M g yM g M g M g c'b g ,p 0 0 0 1

Ž .y1 Ž .say. Note that M g exists under Assumption 1.8 so b g is well defined.1
Ž .A calculation based on 14 shows

d
Ž . Ž . Ž . Ž .24 M g sD g f g ,

dg

Ž . Ž . Ž . Ž . Ž .where M g and D g are defined in 6 and 7 . Using 24 ,

d y1 y1Ž . Ž . Ž . Ž . Ž . Ž . Ž .b g sc9M g M g D g f g M g M g cG01 0 0dg

Ž . w xso b g is continuous and weakly increasing on g , g . Additionally,1 0

d
Ž .b g sc9Dfc)01 0dg

Ž . w xby Assumption 1.7, so b g is uniquely minimized at g on g , g .1 0 0
w x y1 Ž X Ž . . Ž .Symmetrically, we can show that uniformly over gg g , g , n c9 X IyP X cª b g , a0 0 g 0 p 2

weakly decreasing continuous function which is uniquely minimized at g . Thus uniformly over0
y1 q2 aŽ Ž . . Ž .� 4 Ž .� 4ggG , n S g ye9e ª b g gGg qb g g-g , a continuous function with uniquen p 1 0 2 0

Ž . Žminimizer g . Since g minimizes S g ye9e, it follows that gª g see, e.g., Theorem 2.1 ofˆ ˆ0 n p 0
Ž ..Newey and McFadden 1994 . Q.E.D.

a ˆ a ˆŽ . Ž . Ž . Ž .LEMMA A.6: n uyu so 1 and n dyd so 1 .p n p

ˆ ˆ y1Ž .PROOF: We show the result for d , as the derivation for u is similar. Let P sIyX X 9X X 9.X
Ž .Then on ggG , using 23 ,

1
X y1 y1Ž . Ž . Ž . Ž . Ž . Ž . Ž .X P X sM g yM g M M g «M g yM g M M g sM* g ,g X g n n n nn

Ž . Ž .say. Observe that for ggG , M* g is invertible since MyM g is invertible by Assumption 1.8.
Also,

1
X Uy1Ž . Ž . Ž . Ž .X P X «M gng yM g M M g sM g ,g X 0 0 0 0n
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say. Thus

y11 1
X Xa aˆŽ Ž . . ŽŽ . .n d g yd s X P X X P X yX cqenn g X g g X 0 gž / ž /n n

y1 UŽ . Ž Ž . Ž ..«M* g M g yM* g c0

Ž .sd g ,
U Ž . Ž . Ž . Ž . Ž .say. Note that M g sM* g so d g s0. Since M g is continuous and M* g is invertible,0 0 0 0

Ž .d g is continuous in G . Lemma A.5 allows us to conclude that

a ˆ a ˆŽ . Ž Ž . . Ž .n dyd sn d g yd ª d g s0. Q.E.D.ˆn n p 0

Ž . y1 n Ž .2 < Ž . Ž . < Ž . y1 n 2Ž . 1y 2 aDefine G g sn Ý c9x d g yd g and K g sn Ý k g , g . Set a sn .n is1 i i i 0 n is1 i 0 n

LEMMA A.7: There exist constants B)0, 0-d-`, and 0-k-`, such that for all h)0 and
«)0, there exists a ¨ -` such that for all n,

Ž .G gnŽ . Ž .25 P inf - 1yh d F« ,
< <gyg¨ž /0< <F gyg FB0an

Ž .K gn Ž .P sup ) 1qh k F« .
< <gyg¨ 0ž /

< <F gyg FB0an

Ž . Ž .PROOF: We show 25 , as the proof of 26 is similar. First, note that for gGg ,0

Ž . Ž . Ž Ž . Ž ..27 EG g sc9 M g yM g c,n 0

Ž . Ž . Ž . Ž . Ž . Ž .so by 24 , dEG g rdgsc9D g f g c, and the sign is reversed if g-g . Since c9D g f g c)0n 0 0 0
Ž . Ž . Ž . Ž .Assumption 1.8 and c9D g f g c is continuous at g Assumption 1.5 , then there is a B0
sufficiently small such that

Ž . Ž .ds min c9D g f g c)0.
< <gyg FB0

Ž .Since EG g s0, a first-order Taylor series expansion about g yieldsn 0 0

Ž . Ž . < <28 inf EG g Gd gyg .n 0
< <gyg FB0

Ž .Lemma A.2 16 yields

2 24 4 y1Ž . Ž . Ž . < < Ž . Ž . < < < <29 E G g yEG g F c E K g yEK g F c n K gyg .n n n n 0

For any h and « , set

1yhr2
Ž .30 bs )1

1yh

and

< < 48 c K
Ž .31 ¨ s .2 2 Ž .h d 1y1rb «
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Ž .We may assume that n is large enough so that ¨ra FB, else the inequality 25 is trivial. Forn
jy1 Ny1js1, 2, . . . , Nq1, set g sg q¨b ra , where N is the integer such that g yg s¨b ra FBj 0 n N 0 n

Ž .and g yg )B. Note that NG1 since ¨ra FB.Nq 1 0 n
Ž . Ž .Markov’s inequality, 29 , and 28 yield

22 NŽ . Ž . Ž .G g E G g yEG gh 2n j n j n j
P sup y1 ) F Ý 2ž /Ž .ž /EG g 2 h Ž .n j EG g1FjFN js1 n j

N 4 y1< < < <c Kn g yg4 j 0F Ý2 22h < <d g ygj 0js1

4 `< <4 c K 1
y2 asn Ý jy12 2 bh d ¨ js1

< < 44 c K 1
F s«r2

2 2 1y1rbh d ¨

Ž .where the final equality is 31 . Thus with probability exceeding 1y«r2,

Ž .G g hn jŽ .32 y1 F
Ž .EG g 2n j

for all 1F jFN.
Ž .So for any g such that ¨ra Fgyg FB, there is some jFN such that g -g-g , and onn 0 j jq1

Ž .the event 32 ,

Ž . Ž .Ž . G g EG gG g n j n jnŽ .33 G
< < Ž . < <gyg EG g g yg0 n j jq1 0

< <d g ygh j 0G 1yž / < <2 g ygjq1 0

Ž .s 1yh d ,

Ž . Ž . Ž . Ž .using 28 , the construction g yg r g yg s1rb, and 30 . Since this event has probabilityj 0 jq1 0
exceeding 1y«r2, we have established

Ž .G gn Ž .P inf - 1yh d F«r2.
< <gyg¨ž /0Fgyg FB0an

Ž .A symmetric argument establishes a similar inequality where the infimum is taken over y ¨ra Ggn
Ž .yg GyB, establishing 25 . Q.E.D.0

LEMMA A.8: For all h)0 and «)0, there exists some ¨ -` such that for any B-`,

Ž . Ž .J g yJ gn n 0Ž .34 P sup )h F« .
< <a gyg'¨� 0n 0

< <F gyg FB0an
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jy1PROOF: Fix h)0. For js1, 2, . . . , set g yg s¨ 2 ra , where ¨ -` will be determined later.j 0 n
A straightforward calculation shows that

Ž . Ž .Ž . Ž . J g yJ gJ g yJ g n j n 0n n 0Ž .35 sup F2 sup
< < < <a gyg a g yg' '¨ j)0n 0 n j 0

< <F gyg FB0an

Ž . Ž .J g yJ gn n jq2 sup sup .
< <a g yg'j)0 g FgFg n j 0j jq1

Ž .Markov’s inequality, the martingale difference property, and 12 imply

2`Ž . Ž . Ž . Ž .J g yJ g E J g yJ g4n j n 0 n j n 0Ž .36 P 2 sup )h F Ý2 2ž /< < h < <a g yg a g yg'j)0 n j 0 n j 0js1

2` Ž < < Ž . Ž . .E x e d g yd g4 i i i j i 0s Ý2 2h < <a g ygn j 0js1

` < <C g yg4 1 j 0F Ý2 2h < <a g ygn j 0js1

`4C 1 8C1 1s s .Ý2 jy1 2h ¨ 2 h ¨js1

< <Set d sg yg and h s a g yg h. Then'j jq1 j j n j 0

Ž . Ž .J g yJ gn n jŽ .37 P 2 sup sup )hž /< <a g yg'j)0 g FgFg n j 0j jq1

`

Ž . Ž .F2 P sup J g yJ g )h .Ý n n j jž /
g FgFg qdjs1 j j j

y1 y1 y1r2 jy1Observe that if ¨ G1, then d Ga Gn . Furthermore, if ¨ GK rh, then h sa 2 ¨hGj n 2 j n
y1 r2 y1r2 w xK a GK n . Thus if ¨ Gmax 1, K rh the conditions for Lemma A.3 hold, and the2 n 2 2

Ž .right-hand side of 37 is bounded by

` 2 ` 2< <K d K g yg 8 K1 j 1 jq1 j 1Ž .38 2 s s .Ý Ý4 4 4 22 4h < < 3h ¨a g yg hj n j 0js1 js1

Ž . Ž . Ž . Ž . w x35 , 36 , 37 , and 38 show that if ¨ Gmax 1, K rh ,2

Ž . Ž .J g yJ g 8C 8 Kn n 0 1 1
P sup )2h F q ,

2 4 2< <a gyg h ¨ 3h ¨'¨� 0n 0
< <F gyg FB0an

which can be made arbitrarily small by picking suitably large ¨ . Q.E.D.

Ž . Ž .LEMMA A.9: a gyg sO 1 .ˆn 0 p

PROOF: Let B, d, and k be defined as in Lemma A.7. Pick h)0 and k)0 small enough so that

Ž . Ž . Ž < < . Ž < < . Ž . Ž < < . Ž .39 1yh dy2 c qk hy2 c qk k 1qh ky 2 c qk k 1qh k)0.
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a ˆ a ˆ< < < < < <Let E be the joint event that gyg FB, n uyu Fk , n dyd Fk ,ˆn 0 0 0

Ž .G gnŽ . Ž .40 inf G 1yh d ,
< <gyg¨ 0< <F gyg FB0an

Ž .K gnŽ . Ž .41 sup F 1qh k ,
< <gyg¨ 0

< <F gyg FB0an

and

Ž . Ž .J g yJ gn n 0Ž .42 sup -h .
< <a gyg'¨ n 0

< <F gyg FB0an

Ž .Fix «)0, and pick ¨ and n so that P E G1y« for all nGn, which is possible under Lemmasn
A.5]A.8.

U ˆ ˆŽ . Ž . Ž . Ž .Let S g sS u , d , g , where S ?, ? , ? is the sum of squared errors function 5 . Sincen n n
YsXuqX d qe,0 n

ˆ ˆ ˆ ˆ ˆŽ Ž . Ž ..YyXuyX ds eyX uyu yX dyd yDX d ,g 0 n g

where DX sX yX . Henceg g 0

U U ˆ ˆ ˆ ˆŽ . Ž . Ž .43 S g yS g s YyXuyX d 9 YyXuyX dŽ . Ž .n n 0 g g

ˆ ˆ ˆ ˆŽ . Ž .y YyXuyX d 9 YyXuyX d0 0

ˆ X ˆ ˆ X ˆ X ˆŽ .sd 9DX DX dy2d 9DX eq2d 9DX DX uyug g g g g

X ˆ X ˆ X ˆŽ .sd 9 DX DX d y2d 9DX eq2d 9DX DX uyun g g n g g g

ˆ X ˆŽ . Ž .q d qd 9DX DX dyd .n g g n

aˆw x < <Suppose gg g q¨ra , g qB and suppose E holds. Let csn d so that cyc Fk . Byˆ ˆ0 n 0 n
Ž . Ž .39 ] 43 ,

U U X X X X a ˆŽ .Ž . Ž . c9DX DX c 2cDX e 2c9DX DX n uyuS g yS g ˆ ˆg g g g gn n 0 s y q1y aŽ . Ž . Ž .Ž .a gyg n gyg n gygn gygn 0 0 00

Ž . X Ž .cqc 9DX DX cycˆ ˆg gq
Ž .n gyg0

Ž . Ž . Ž . Ž .G g J g yJ g K gn n n 0 na ˆ< < < < < Ž . <G y2 c y2 c n uyuˆ ˆŽ . Ž .gyg gygŽ .a gyg'0 0n 0

Ž .K gn
< < < <y cqc cycˆ ˆ Ž .gyg0

Ž . Ž < < . Ž < < . Ž .G 1yh dy2 c qk hy2 c qk k 1qh k

Ž < < . Ž .y 2 c qk k 1qh k

)0.
U Uw x Ž . Ž .We have shown that on the set E , if gg g q¨ra , g qB , then S g yS g )0. We cann 0 n 0 n n 0

U U U Uw x Ž . Ž . Ž . Ž .similarly show that if gg g yB, g y¨ ra then S g yS g )0. Since S g yS g F0,ˆ0 0 « n n n 0 n n 0
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< < Ž .this establishes that E implies gyg F¨ra . As P E G1y« for nGn, this shows thatˆn 0 n n
Ž < < .P a gyg )¨ F« for nGn, as required. Q.E.D.ˆn 0

U Ž . Ž . U Ž . Ž .Let G ¨ sa G g q¨ra and K ¨ sa K g q¨ra .n n n 0 n n n n 0 n

LEMMA A.10: Uniformly on compact sets C ,

Ž . U Ž . < <44 G ¨ ª m ¨ ,n p

and

Ž . U Ž . < < < <45 K ¨ ª Df ¨ ,n p

where msc9Dcf.

Ž . Ž .PROOF: We show 44 . Fix ¨ gC . Using 27 ,

Ž . U Ž . Ž Ž . Ž .. < < < <46 EG ¨ sa c9 M g q¨ra yM g cª ¨ c9Dfcs ¨ mn n 0 n 0

Ž .as nª`. By 29 ,

2 2U U 2Ž . Ž . Ž . Ž . Ž .47 E G ¨ yEG ¨ sa E G g q¨ra yEG g q¨ran n n n 0 n n 0 n

2a ¨n 4 4 y2 a< < < < < <F c K s c K ¨ n ª0.
n an

Ž . Ž . U Ž . < <Markov’s inequality, 46 and 47 show that G ¨ ª m ¨ .n p
Uw x Ž .Suppose Cs 0, ¨ . Since G ¨ is monotonically increasing on C and the limit function isn

Ž .continuous, the convergence is uniform over C . To see this, set G ¨ sm¨ . Pick any «)0, then set
U< Ž .Js¨mr« and for js0, 1, . . . , J, set ¨ s¨m jrJ. Then pick n large enough so that max G ¨ yj j F J n j

Ž . <G ¨ F« with probability greater than 1y« , which is possible by pointwise consistency. For anyj
Ž . U Ž . Ž . w Ž . Ž . x ŽjG1, take any ¨ g ¨ , ¨ . Both G ¨ and G ¨ lie in the interval G ¨ y« , G ¨ q« withjy1 j n jy1 j

. < U Ž . Ž . <probability greater than 1y« , which has length bounded by 3« . Since ¨ is arbitrary, G ¨ yG ¨n
F3« uniformly over C .

w xAn identical argument yields uniformity over sets of the form y¨ , 0 , and thus for arbitrary
compact sets C . Q.E.D.

Ž . Ž Ž . Ž ..Let R ¨ s a J g q¨ra yJ g .'n n n 0 n n 0

LEMMA A.11: On any compact set C ,

Ž . Ž .R ¨ «B ¨n

Ž . Ž Ž . Ž . .where B ¨ is a ¨ector Brownian motion with co¨ariance matrix E B 1 B 1 9 sVf.

PROOF: Our proof proceeds by establishing the convergence of the finite dimensional distribu-
Ž . Ž . Ž .tions of R ¨ to those of B ¨ and then showing that R ¨ is tight.n n

U UŽ . Ž . Ž . Ž . Ž . Ž .Fix ¨ gC . Define d ¨ sd g q¨ra yd g and u ¨ s a x e d ¨ so that R ¨ s'i i 0 n i 0 ni n i i i n
y1 r2 n Ž . Ž . y1 n Ž . Ž . � Ž . 4n Ý u ¨ , and let V ¨ sn Ý u ¨ u ¨ 9. Under Assumption 1.2, u ¨ , F is ais1 ni n is1 ni ni ni i

Ž . Žmartingale difference array MDA . By the MDA central limit theorem for example, Theorem 24.3
Ž .. Ž . Ž < < .of Davidson 1994, p. 383 sufficient conditions for R ¨ ª N 0, ¨ Vf aren d

Ž . Ž . < <48 V ¨ ª ¨ Vfn p
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and

y1 r2Ž . Ž .49 n max u ¨ ª 0.ni p
1FiFn

Ž . Ž X 2 Ž .. Ž . Ž . Ž .First, a calculation based on 14 shows dE x x e d g rdgsV g f g , where V g is definedi i i i
Ž . Ž . Ž . Ž .in 8 . Thus by the continuity of V g f g at g Assumption 1.5 , if ¨ )0,0

X U2Ž . Ž . Ž Ž . .50 EV ¨ sa E x x e d ¨n n i i i i

¨
X X2 2Ž Ž ..sa E x x e d g q yE x x e d gn i i i i 0 i i i i 0ž /ž /an

ª¨Vf ,

Ž .with the sign reversed if ¨ -0. By 15 ,

22 na 1n2 2 2U UŽ . Ž . Ž . Ž < < Ž . Ž < < Ž . ..51 E V ¨ yEV ¨ s E x e d ¨ yE x e d ¨Ýn n i i i i i i'n n is1

a2 ¨n y2 aF K sn K¨ ª0
n an

Ž . Ž . Ž .as nª`, which with 50 combines to yield 48 . By 12 ,

4 1 4y1r2 Ž . Ž .E n max u ¨ F E u ¨ni nin1FiFn

a2
n 4 UŽ < < Ž . .s E x e d ¨i i in

2 < <a ¨nF C1n an

y2 a < <sn C ¨ ª0,1

Ž . Ž . Ž < < .which establishes 49 by Markov’s inequality. We conclude that R ¨ ª N 0, ¨ Vf . This argu-n d
w xment can be extended to include any finite collection ¨ , . . . , ¨ to yield the convergence of the1 k

Ž . Ž .finite dimensional distributions of R ¨ to those of B ¨ .n
4 y1r2 1raŽ w x.We now show tightness. Fix «)0 and h)0. Set ds«h rK and ns max d , K rh ,1 2

where K and K are defined in Lemma A.3. Set g sg q¨ ra . By Lemma A.3, for nGn,1 2 1 0 1 n

h
Ž . Ž . Ž . Ž .P sup R ¨ yR ¨ )h sP sup J g yJ g )n n 1 n n 1 1r2ž / ž /a¨ F¨F¨ qd g FgFg qdra n1 1 1 1 n

2
d

K1 ž /anF Fd« .y2 4a hn

Ž y1 a y1r2 1r2 1r2The conditions for Lemma A.3 are met since dra Gn when n Gd , and hra GK rnn n 2
a .when n GK rh, and these hold for nGn. As discussed in the proof of Lemma A.4, this shows2
Ž . Ž . Ž .that R g is tight, so R ¨ «B ¨ . Q.E.D.n n
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ˆ ˆ ˆ' 'Ž Ž .. Ž Ž . . Ž .LEMMA A.12: n uyu g ª 0, and n u g yu ª Z;N 0, V .0 p 0 d u

PROOF: Let J sny1r2 X 9e, and observe that Lemma A.4 impliesn

J1 JnUXX es « ,g Ž .ž /J gŽ .ž /J g'n n

a Gaussian process with continuous sample paths. Thus on any compact set C ,

Jn
JU ¨Ž .J ¨ s «n Ž .J gž /J g q 0n 0ž /� 0an

Ž .and 23 implies

¨
M M g qn n 0ž /a Ž .M M gn 0U Ž .M ¨ s ªn p¨ ¨ Ž . Ž .ž /M g M g0 0M g q M g q� 0n 0 n 0ž / ž /a an n

uniformly on C . Also
an X UŽ . Ž .A ¨ s DX DX FK ¨ ª 0n g q¨ r a g q¨ r a n p0 n 0 nn

uniformly on C by Lemma A.10, and hence

¨ y1 IU U y1r2ˆ'Ž . Ž . Ž . Ž .52 n u g q yu sM ¨ J ¨ y A ¨ ca0 n n n nž /ž /ž /ž / Ian

y1
Ž .M M g J0« sZ,Ž .J gž /Ž . Ž .ž /M g M g 00 0

ˆ' Ž Ž . .which establishes n u g yu ª Z as stated.0 d
Ž .Pick «)0 and d)0. Lemma A.9 and 52 show that there is a ¨ -` and n-` so that for all

Ž < < .nGn, P a gyg )¨ F« andˆn 0

¨
ˆ ˆ' Ž .P sup n u g q yu g )d F« .0 0ž /ž /any¨F¨F¨

Hence, for nGn,

¨
ˆ ˆ ˆ ˆ' 'Ž < Ž . < . Ž .P n uyu g )d FP sup n u g q yu g )d0 0 0ž /ž /any¨F¨F¨

Ž < < .qP a gyg )¨ F2« ,ˆn 0

ˆ ˆ' < Ž . <establishing that n uyu g ª 0 as stated. Q.E.D.0 p

ˆ ˆ ˆ ˆŽ . Ž . Ž .Let Q ¨ sS u , d , g yS u , d , g q¨ra .n n 0 n 0 n

'Ž . Ž . < < Ž .LEMMA A.13: On any compact set C , Q ¨ «Q ¨ sym ¨ q2 l W ¨ , where lsc9Vcf.n

Ž . Ž . U Ž . X Ž . Ž .PROOF: From 43 we find Q ¨ syG ¨ q2c R ¨ qL ¨ , wheren n n n

Uaˆ ˆ'Ž . < < Ž . Ž < < < < < < < <. Ž .L ¨ F2 n dyd R ¨ q 2n c uyu q cqc cyc K ¨ˆ ˆ ˆn n n n

«0
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U ˆ ˆ' 'Ž . Ž . Ž . Ž . Ž . < < Ž . < < Ž .since uniformly on C K ¨ sO 1 , R ¨ sO 1 , n uyu sO 1 , and n dyd sO 1 , byn p n p p n p
Ž . < < Ž .Lemmas A.10, A.11, and A.12. Applying again Lemmas A.10 and A.11, Q ¨ «ym ¨ q2c9B ¨ .n 'Ž . Ž .The process c9B ¨ is a Brownian motion with variance lsc9Vcf , so can be written as l W ¨ ,

Ž .where W ¨ is a standard Brownian motion. Q.E.D.

Ž . Ž . Ž .PROOF OF THEOREM 1: By Lemma A.9, a gyg sargmax Q ¨ sO 1 , and by Lemmaˆn 0 ¨ n p
Ž . Ž . Ž .A.13, Q ¨ «Q ¨ . The limit functional Q ¨ is continuous, has a unique maximum, andn
Ž . Ž Ž . .lim Q ¨ sy` almost surely which is true since lim W ¨ r¨ s0 almost surely . It<¨ < ª` ¨ ª`

Ž .therefore satisfies the conditions of Theorem 2.7 of Kim and Pollard 1990 which implies

Ž . d Ž .a gyg ª argmax Q ¨ .ˆn 0
¨gR

Ž 2 . Ž 2 . Ž .Making the change-of-variables ¨ s lrm r, noting the distributional equality W a r 'aW r ,
and setting vslrm2, we can re-write the asymptotic distribution as

l l l' 'w < < Ž .x < <argmax ym ¨ q2 l W ¨ s argmax y r q2 l W r2 2ž /mm my`-n-` y`-r-`

l l
< < Ž .'v argmax y r q2 W r

m my`-r-`

< <r
Ž .sv argmax y qW r . Q.E.D.

2y`-r-`

Ž .PROOF OF THEOREM 2: Lemma A.12 and 23 show that

ˆ ˆ ˆ ˆŽ . Ž . Ž Ž Ž . . Ž .. Ž Ž . Ž ..s LR g yQ ¨ s S u g , g yS Q , g y S u , g yS u , gˆ ˆ ˆ ˆn 0 n n 0 0 n n 0 n

ˆ ˆŽ Ž . . Ž .sS u g , g yS u , gn 0 0 n 0

ˆ ˆ UX U ˆ ˆŽ Ž . . Ž Ž . .s u g yu 9X X u g yu ª 0.0 g g 0 p

Now applying Lemma A.13 and the continuous mapping theorem,

Ž . Ž . Ž .Q ¨ sup Q ¨ sup Q ¨n n n nŽ . Ž . Ž .LR g s qo 1 s qo 1 ª .n 0 p p d2 2 2s s sˆ ˆ

This limiting distribution equals

1 1 l l' 'w < < Ž .xsup ym ¨ q2 l W ¨ s sup ym r q2 l W r2 2 2 2ž /s s m mn r

l
2w < < Ž .x' sup y r q2W r sh j2s m r

Ž 2 . Ž 2 . Ž .by the change-of-variables ¨ s lrm r, the distributional equality by W a r 'aW r , and the fact
2 Ž 2 .h slr s m .

1w x w Ž . < <xTo find the distribution function of j , note that js2 max j , j , where j ssup W s y s1 2 1 sF 0 2
1w Ž . < <xand j ssup W s y s . j and j are iid exponential random variables with distribution2 0 F s 1 22

Ž . yx Ž Ž ..function P j Fx s1ye see Bhattacharya and Brockwell 1976 . Thus1

2yx r2Ž . Ž w x . Ž . Ž . Ž .P jFx sP 2 max j , j Fx sP j Fxr2 P j Fxr2 s 1ye .1 2 1 2

Ž .PROOF OF THEOREM 3: Note that by the invariance property of the likelihood ratio test, LR gn 0
Ž .is invariant to reparameterizations, including those of the form gªg*sF g . Since the thresholdn

� 4 Ž .variable q only enters the model through the indicator variables q Fg , by picking F x to be thei i n
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empirical distribution function of the q , we see thati

j
� 4 � Ž . Ž .4q Fg s F q FF g s Fg*i n i n ½ 5n

for some 1F jFn. Without loss of generality, we therefore will assume that q s irn for thei
remainder of the proof. Let j be the largest integer such that j rn-g . Without loss of generality,0 0 0
we can also set s 2 s1.

If we set as0, the proof of Lemma A.13 shows that uniformly in ¨

Ž . Ž . U Ž . Ž . Ž .53 Q g q¨rn syG ¨ q2d 9R ¨ qo 1n 0 n n p

where for ¨ )0
n

2U Ž . Ž . � 4G ¨ s d 9x g -q Fg q¨rnÝn i 0 i 0
is1

n j j q¨0 02Ž .s d 9x -q FÝ i i½ 5n nis1

and
n j j qn0 0Ž .R n s x e -q F .Ýn i i i½ 5n nis1

Ž .While Lemma A.13 assumed that a)0, it can be shown that 53 continues to hold when as0.
U Ž . X Ž .Note that the processes G ¨ and d R ¨ are step functions with steps at integer-valued ¨. Letn n n

q Ž .N denote the set of positive integers and D ¨ be any continuous, strictly increasing function suchn
U Ž . Ž . q Ž .that G k sD k for kgN . Let N ¨ be a mean-zero Gaussian process with covariance kerneln n n

Ž Ž . Ž .. Ž .E N ¨ N ¨ sD ¨ n¨ .n 1 n 2 n 1 2

Ž . 2 U Ž .Since d 9R ¨ is a mean-zero Gaussian process with covariance kernel s G ¨ n¨ , the restric-n n 1 2
Ž . Ž .tion of d 9R ¨ to the positive integers has the same distribution as N ¨ .n n
Ž . Ž . Ž Ž ..Since D ¨ is strictly increasing, there exists a function ¨ sg s such that D g s ss. Noten n

Ž Ž .. Ž . q q � Ž . q4that N g s sW s is a standard Brownian motion on R . Let G s s: g s gN .n
Ž .It follows from 53 that

Ž .Q gn Uw Ž . Ž . x Ž .max s max yG k q2d 9R k qo 1n n p2 qsg)g kgNˆ0

w Ž . Ž .x Ž .' max yD k q2 N k qo 1n n pqkgN

w Ž Ž .. Ž Ž ..x Ž .s max yD g s q2 N g s qo 1n n pqsgG

w Ž .x Ž .s max ysq2W s qo 1pqsgG

w Ž .x Ž .F max ysq2W s qo 1 .pqsgR

We conclude that

Ž . Ž .Q g Q gn nŽ .LR g smax max , maxn 0 2 2s sg)g g-gˆ ˆ0 0

w < < Ž .x w < < Ž .x Ž .Fmax max y s q2W s , max y s q2W s qo 1p
sG0 sF0

d w < < Ž . xª max y s q2W s sj .
y`-s-`

Ž Ž . . Ž . Ž .This shows that P LR g Gx FP jGx qo 1 , as stated. Q.E.D.n 0
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