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Abstract

We consider tests of the null hypothesis of stationarity against a unit root
alternative, when the series is subject to structural change at an unknown point
in time. Three extant tests are reviewed which allow for an endogenously
determined instantaneous structural break, and a related fourth procedure
is introduced. We further propose tests which permit the structural change to
be gradual rather than instantaneous, allowing the null hypothesis to be
stationarity about a smooth transition in linear trend. The size and power
properties of the tests are investigated, and the tests are applied to four
economic time series.

I. Introduction

Hypothesis testing to determine whether economic time series are best
modelled by (trend) stationary or unit root processes has been the subject of
much recent research, and can be examined using two basic approaches. The
first approach – ‘unit root testing’ – follows Dickey and Fuller (1979), and
specifies the null hypothesis as a unit root process, testing against a stationary
alternative. The second approach – ‘stationarity testing’ – reverses the null
and alternative hypotheses, following tests first devised by Nyblom and
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Mäkeläinen (1983) and MacNeill (1978), and subsequently generalized to
allow the series to follow a general autoregressive moving average (ARMA)
or autoregressive integrated moving average (ARIMA) process by Kwiat-
kowski, Phillips, Schmidt and Shin (1992) – hereafter KPSS – and Leybourne
and McCabe (1994, 1999).

Modifications to both sets of procedures are required when the series is
subject to a structural break. In the unit root testing framework, Perron (1989,
1993) first developed procedures to conduct testing when a break occurs at a
known point in time, while several authors have considered more general
techniques which assume that the break date is unknown and is to be
determined endogenously (see, e.g. Vogelsang and Perron, 1998; Harvey,
Leybourne and Newbold, 2001). When the null hypothesis is that of stationarity
with a structural break, Lee (1999), Lee and Strazicich (2001), Busetti and
Harvey (2001, 2002) and Kurozumi (2002) propose KPSS-type tests which are
modified to permit a break at either a known or an unknown date.

In practice, the implicit assumption that any structural change occurs
instantaneously may be unrealistic. An alternative approach in the unit root
testing context is proposed by Leybourne, Newbold and Vougas (1998),
where the structural change is modelled by a smooth transition in linear trend.
This procedure, which also allows the timing and speed of the transition
to be determined endogenously, allows a series to gradually evolve from
one trend regime to another, rather than undergo an instantaneous structural
break.

In this paper, we focus on stationarity tests in the presence of endogenously
determined structural change. We review three extant instant break tests, and
introduce a related fourth procedure, deriving the test’s asymptotic distribution
under the null. Further, we propose two tests of the null hypothesis that the
series is stationary about a smooth transition in linear trend, paralleling the
Leybourne et al. (1998) unit root testing work. The tests are then compared by
way of Monte Carlo simulations, investigating size and power when
instantaneous breaks and smooth transitions are present. The structure of
the paper is as follows: section II presents the instant break stationarity tests,
while section III proposes the smooth transition test procedures; the simulation
experiments are examined in section IV. In section V, the tests are applied to
four economic time series: the S&P 500 stock market index, UK GDP, British
industrial production, and the dollar–sterling exchange rate. Section VI
concludes.

II. Stationarity tests in the presence of breaks

Following Busetti and Harvey (2001), we consider four random walk models
with different orders of deterministic components and structural breaks:
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Model 1 yt ¼ lt þ dlw0
t þ et ð1Þ

Model 2 yt ¼ lt þ bt þ dlw0
t þ dbðw0

ttÞ þ et ð2Þ

Model 2a yt ¼ lt þ bt þ dlw0
t þ et ð3Þ

Model 2b yt ¼ lt þ bt þ dbz0t þ et ð4Þ

where lt ¼ lt)1 + gt with gt � i.i.d.ð0; r2gÞ, et � i.i.d.(0, r2), wt¢ ¼ 1(t > s¢)
and zt¢ ¼ 1(t > s¢)(t ) s¢), with 1(Æ) being the indicator function and s¢ the true
break point. Model 1 has no trend and a break in level; models 2a, 2b and 2
contain trends and are subject to, breaks in level only, slope only, and both
level and slope, respectively. The models can be generalized to allow for
autocorrelation by permitting et to follow a more general stationary process,
but for purposes of tractability in our analysis, we shall assume that this is
unnecessary.

Busetti and Harvey (2001), and Lee and Strazicich (2001) for models 1 and
2, propose tests of the null hypothesis of stationarity ðH0 : r2g ¼ 0Þ against a
unit root alternative ðH1 : r2g > 0Þ when the true break date s¢ is unknown.
If the true break date was known, the appropriate test statistic (the locally
best invariant test for Gaussian gt and et) would be a KPSS-type statistic
constructed from the residuals of the relevant regression among equations (1)–
(4) above, with lt replaced by a constant l:

niðk0Þ ¼
PT

t¼1ð
Pt

s¼1 esÞ
2

T 2r̂2
i ¼ 1; 2; 2a; 2b ð5Þ

where et denotes the residuals, k¢ ¼ s¢/T, and r̂2 is the usual least squares
estimator of r2. Now, given that the timing of the break is unknown, the
statistic (5) can be calculated for all possible break dates s and the break point
selected as that giving the most favourable result for the null of (trend)
stationarity about a structural break (cf. Zivot and Andrews, 1992, in the unit
root testing context). This yields the following test statistic:

~ni ¼ inf
k2K

niðkÞ i ¼ 1; 2; 2a; 2b ð6Þ

where k ¼ s/T and K is a closed subset of the interval (0,1). The break date is
implicitly estimated by ŝ ¼ k̂T , with k̂ obtained from:

k̂ ¼ argmin
k2K

niðkÞ i ¼ 1; 2; 2a; 2b: ð7Þ

The authors differ in their approach to obtaining critical values for these
tests. Busetti and Harvey (2001) propose an unconditional procedure with
regard to the break date: limit distributions are derived under the null for
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the statistics (6) by making use of a ‘shift assumption’ that the magni-
tudes of the breaks dl and db decrease to zero with the sample size at rates
faster than T)1/2 and T)3/2, respectively. This assumption ensures that the
distributions do not depend on either the break fraction or other nuisance
parameters, and, of course, encompasses the case where no break actually
occurs. Clearly, the value of this approach is highly dependent on the
viability of the shift assumption in practice – if violated, dependencies on
the break fraction and break magnitude will be introduced into the
asymptotic distributions.1 Lee and Strazicich (2001), however, suppose that
the true break fraction k¢ is consistently estimated by equation (7), and
propose an approach that is conditional on the break timing, using critical
values that correspond to tests with a break at a known point in time.
Critical values – which depend on the value of k¢ – are thus drawn from the
limiting distributions of ni(k¢) in equation (5).2 The merit of this procedure
rests primarily on the performance of equation (7) in estimating the true
break fraction, and also on the implicit assumption that a break does
actually occur.

In addition to the selection rule (7), other break date estimation procedures
can be considered. Lee (1999) suggests use of the Schwarz Bayesian criterion
(SBC) in the wider context of potential multiple breaks, and uses the criterion
to simultaneously determine the number of breaks as well as their timings.
Kurozumi (2002) and Busetti and Harvey (2002) propose estimating the
relevant regression for all possible break dates, and using a break date which
minimizes the residual sum of squares; this procedure will clearly give
identical estimates to Lee’s SBC approach when only one break is considered.
In the parallel context of testing the null of a unit root in the presence of a
break at an unknown time, selection procedures based on the significance of
coefficients on the relevant break dummy variables have also been used (see,
e.g. Vogelsang and Perron, 1998); indeed, Harvey et al. (2001) find a modified
version of this method to be superior to the Zivot and Andrews (1992)
minimum test statistic approach and the use of SBC in important cases. In the
present context of testing a stationary null, break date selection based on
the significance of break dummy variable coefficients translates to the follow-
ing criteria, following estimation of the relevant regression for all possible
break dates:

1The null limiting distributions for this unconditional procedure, along with the corresponding
critical values, are given in Busetti and Harvey (2001), although the result for model 2a contains an
error – the corrected distribution and critical values for this case, as well as finite sample critical
values for all four models, are provided by Harvey and Mills (2002).

2These are reported for models 1 and 2 in Lee and Strazicich (2001) and for all four models in
Busetti and Harvey (2001).
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k̂ ¼ arg max
k2K

jtd̂lðkÞj for models 1, 2a

k̂ ¼ arg max
k2K

Fd̂l;d̂bðkÞ for model 2

k̂ ¼ arg max
k2K

jtd̂bðkÞj for model 2b

ð8Þ

where td̂lðkÞ and td̂bðkÞ are the t-ratios on dl and db, respectively, and Fd̂l;d̂bðkÞ
is the F-statistic for testing the joint significance of dl and db, all for a
given break date s ¼ kT. Of course, unlike in the unit root testing framework,
use of equation (8) will always give identical break date estimates to the
minimum residual sum of squares and SBC criteria discussed above. The
stationarity test statistics which follow from this approach are simply obtained

by computing niðk̂Þ using equation (5), where k̂ is calculated according to
equation (8).

As with the minimum stationarity test statistic procedure (6), there are
two possible approaches for obtaining critical values for the niðk̂Þ test
statistics. One approach, which we develop here, is to derive the null limit
distributions of the statistics under the shift assumption of Busetti and
Harvey (2001), thereby providing an unconditional procedure with regard
to the break date. Using version (8) of the equivalent estimation criteria
discussed above to maintain consistency with the preferred approach in the
unit root testing context, the null asymptotic distributions are (see
Appendix for proof):

niðk̂Þ )
Z 1

0
½Biðr; k̂Þ�2dr i ¼ 1; 2; 2a; 2b ð9Þ

where the Biðr; k̂Þ are as defined in Busetti and Harvey (2001) for i ¼ 1, 2, 2b,
and Harvey and Mills (2002) for i ¼ 2a, except with k replaced by k̂, where

k̂ ¼ arg max
k2K

jZiðkÞj

with

Z1ðkÞ ¼
ffiffiffiffiffiffi
k

1�k

q
½W ð1Þ � 1

kW ðkÞ�

Z2ðkÞ ¼ 2
k3ð1�kÞ5 ½ð1� 3kþ 3k2ÞH2

1 þ 3ð1� 3kþ 4k2Þ2H1H2

þ 3ð1� 2kþ 4k2ÞH2
2 �

Z2aðkÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
ð1�kÞð1�3kþ3k2Þ

q
W ð1Þ� 1

kW ðkÞ�6ð1�kÞ
Z 1

0
r dW ðrÞ� 1

2W ð1Þ
� �� �
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Z2bðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3
k3ð1�kÞ3

q �
k2½ðk� 1ÞW ð1Þ � ½W ð1Þ � 1

kW ðkÞ��

�ð1� kÞ2ð1þ 2kÞ
Z k

0
r dW ðrÞ þ k2ð3� 2kÞ

Z 1

k
r dW ðrÞ

�

and

H1 ¼ 2k2ð1þ kþ k2ÞW ð1Þ � 2kð1� 2kþ 4k2ÞW ðkÞ

þ 3ð1� kÞ3
Z k

0
r dW ðrÞ � 3k2ð1þ kÞ

Z 1

k
r dW ðrÞ

H2 ¼ �k3ð1þ kÞW ð1Þ þ kð1� 3kþ 4k2ÞW ðkÞ

� 2ð1� kÞ3
Z k

0
r dW ðrÞ þ 2k3

Z 1

k
r dW ðrÞ

where W(r) is a standard Wiener process. Asymptotic and finite sample
critical values for these tests were obtained by Monte Carlo simulation and
are given in Table 1. The asymptotic critical values were generated by direct
simulation of the limiting functionals in equation (9) using discrete
approximations for T ¼ 500. The space of values for k is restricted to a
closed subset of (0, 1); in our simulations here and in section IV, we restricted

TABLE 1

Critical values of niðk̂Þ tests for stationarity with an endogenously determined structural break

Model 1 Model 2

10% 5% 1% 10% 5% 1%

T ¼ 50 0.167 0.209 0.311 0.047 0.057 0.078
T ¼ 100 0.170 0.212 0.320 0.048 0.057 0.081
T ¼ 200 0.177 0.219 0.323 0.048 0.057 0.081
T ¼ ¥ 0.177 0.221 0.326 0.049 0.057 0.081

Model 2a Model 2b

10% 5% 1% 10% 5% 1%

T ¼ 50 0.070 0.085 0.122 0.062 0.075 0.108
T ¼ 100 0.071 0.086 0.119 0.062 0.076 0.112
T ¼ 200 0.072 0.086 0.122 0.062 0.077 0.107
T ¼ ¥ 0.073 0.088 0.122 0.062 0.075 0.106

Notes: Model 1 has no trend and allows for a break in level; models 2a, 2b and 2 contain trends
and allow for breaks in level only, trend only, and level and trend, respectively [see equations
(1)–(4)]. niðk̂Þ denotes tests for stationarity allowing for an instantaneous break, where the break date
is estimated according to the significance of break dummy variable coefficients. The reported critical
values relate to the unconditional procedure.
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k to lie between the conventionally chosen points (0.2, 0.8). The finite sample
critical values were obtained by repeated application of the test niðk̂Þ, using
equation (8) to estimate the break date, to a stationary generating process
[yt ¼ et � n.i.d.(0, 1)].3 Here and throughout the paper, simulations were pro-
grammed in GAUSS and conducted using 10,000 replications. With the
exception of model 1, the finite sample critical values are very close to those
in the limit. As with the Busetti and Harvey (2001) unconditional test, the
potential limit of this new approach is the credibility of the shift assumption in
realistic scenarios, as will be considered later in the paper.

The second approach, proposed by Lee (1999), Kurozumi (2002) and
Busetti and Harvey (2002), is to adopt a procedure that is conditional on the
break timing, using critical values associated with tests involving a break at
a known date, given the fact that equation (8)/minimum residual sum of
squares/SBC will estimate the true break fraction k¢ superconsistently. As with
the Lee and Strazicich (2001) unconditional test using equation (7), the
performance of this method depends on how well k¢ is estimated, and
behaviour when a break is not actually present in the series.

III. Stationarity tests in the presence of smooth transitions

The stationarity tests of the previous section all assume that when there is a
break, the change occurs instantaneously. However, as argued by Leybourne
et al. (1998) in the context of testing a unit root null hypothesis, this may be
unrealistic in many economic applications. A more appealing approach would
be to allow any structural change to occur gradually, with a smooth, rather
than instantaneous, transition between two deterministic regimes. Leybourne
et al. (1998) propose unit root tests where the alternative hypothesis is
stationary about such a smooth transition in linear trend. These authors make
use of the logisitic smooth transition function to model the change, following
the work of Bacon and Watts (1971), Granger and Teräsvirta (1993) and Lin
and Teräsvirta (1994).

Applying these concepts to the stationarity testing context, we can consider
variants of the models (1)–(3), where the structural break terms are replaced
by smooth transitions:4

3This method of obtaining finite sample critical values (repeated application of the test to a
stationary series without breaks) parallels the situation in the limit where, under the shift assumption,
there is no dependence on break parameters. This same approach is used by Harvey and Mills (2002)
to obtain finite sample critical values for the Busetti and Harvey (2001) tests.

4Smooth transition models do not apply well to the piecewise linear trend model 2b, since this
model relies on a single point at which the two regimes meet; a smooth transition variant of this type
of process is better modelled by a transition in intercept and trend, i.e. model 2.
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Model 1 yt ¼ lt þ dlS0t þ et ð10Þ

Model 2 yt ¼ lt þ bt þ dlS0t þ dbðS0t tÞ þ et ð11Þ
Model 2a yt ¼ lt þ bt þ dlS0t þ et ð12Þ

where lt and et are as defined below equations (1)–(4), and St¢ is the logistic
smooth transition function:

S0t ¼ ½1þ expf�c0ðt � k0T Þ=r̂ðtÞg��1 ð13Þ
with r(t) denoting the standard deviation of the transition variable, i.e. the
time trend.

The midpoint of the transition is given by k¢T, and the transition speed is
controlled by the parameter c¢. At one extreme, c¢ ¼ 0 implies that no
transition occurs at all, while in the limit c¢ fi ¥, the transition occurs
instantaneously: thus no structural change and an instantaneous structural
break are special cases of the above models. The term r̂ðtÞ in equation (13) is
introduced, following Granger and Teräsvirta (1993, p. 123), to provide an
O(T) scaling to c¢, allowing transition speeds for different sample sizes to be
interpreted using c¢ independent of T. The transitions considered here are
symmetric about k¢T; further generalization to admit asymmetric smooth
transitions can be performed using the generalized logistic function, as
examined by Sollis, Leybourne and Newbold (1999) for testing a unit root
null. Such extensions, however, go beyond the scope of this paper.

Tests of the null hypothesis of stationarity, where the transition speed and
timing are determined endogenously, can be conducted using a two-stage
procedure. In the first stage, the appropriate regressionmodel based on equations
(10)–(12) is estimated by nonlinear least squares (NLS), with lt replaced by a
constant l. The residual sum of squares function can be minimized analytically
over the regression parameters (l, b, dl, db) and numerically over the transition
parameters (c, k). In the second stage, a KPSS-type test statistic is computed:

si ¼
PT

t¼1ð
Pt

s¼1 esÞ
2

T 2r̂2
i ¼ 1; 2; 2a ð14Þ

where et denotes the residuals from the first-stage regression. Conceptually, this
method is most similar to the instant break stationarity tests where the break date
is selected using equation (8), as in both cases the most likely timing of the
structural change is explicitly determined as a first step, with the stationarity tests
subsequently computed conditional on this choice. As with the instant break
tests, the test statistics can be modified to allow for additional autocorrelation in
the series, but here we shall assume that such augmentation is unnecessary.

Critical values for these tests can be obtained in two ways, paralleling the
unconditional and conditional approaches adopted in the case of instantaneous
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breaks. The difference, however, is that analytical derivations of the asymptotic
distributions of the tests are not possible using standard techniques, because of
the lack of closed-form expressions for the NLS estimators, and the need for
knowledge of the limiting behaviour of terms such as

PT
t¼ 1 S

0
tyt. The

unconditional approach in the instantaneous break framework rests on the
Busetti and Harvey (2001) shift assumption. Although asymptotic distributions
are not directly evaluated in the smooth transition case, it is to be expected that
the shift assumption will be equally important in preventing the null limiting
distributions of the smooth transition tests from being dependent on nuisance
parameters.We implicitlymake this assumption, therefore, for the unconditional
approach, and derive finite sample critical values in the same way as for the
instantaneous break tests of this type, i.e. using Monte Carlo simulation,
repeatedly applying the tests of equation (14) to a stationary generating process
[yt ¼ et � n.i.d.(0, 1)]. Finite sample critical values generated in this way are
provided in Table 2, and results for T ¼ 500 can be taken as approximate
asymptotic critical values for the tests.5 This unconditional procedure clearly
nests the case where no transitions are present in the series.

If a smooth transition does occur, the NLS estimation will provide consistent
estimates of the parameters, motivating the possibility of a conditional approach
regarding critical values for the tests. This second method reasons that the first
stage optimization will provide consistent estimates of c¢ and k¢, in which
case critical values corresponding to tests with a smooth transition with known
speed and midpoint might be employed. As with the conditional instantaneous

TABLE 2

Critical values of si tests for stationarity with an endogenously determined smooth transition in
linear trend

Model 1 Model 2 Model 2a

10% 5% 1% 10% 5% 1% 10% 5% 1%

T ¼ 50 0.180 0.230 0.354 0.051 0.062 0.091 0.063 0.076 0.107
T ¼ 100 0.175 0.223 0.348 0.050 0.061 0.084 0.063 0.077 0.106
T ¼ 200 0.175 0.223 0.354 0.048 0.059 0.086 0.063 0.075 0.107
T ¼ 500 0.183 0.235 0.379 0.049 0.061 0.084 0.064 0.076 0.106

Notes: Model 1 has no trend and allows for a smooth transition in level; models 2a and 2
contain trends and allow for smooth transitions in level only, and level and trend, respectively [see
equations (10)–(12)]. si denotes tests for stationarity allowing for a smooth transition. The reported
critical values relate to the unconditional procedure.

5For each replication (here and in the section IV simulations), starting values for the nonlinear
estimation were obtained from a grid-search procedure, with values for c and k given by c 2 {1.5, 3,
7.5, 15, 30} and k 2 {0.1, 0.2,…, 0.9} respectively. Numerical optimization was performed using
the Broyden, Fletcher, Goldfarb and Shanno algorithm in the OPTMUM subroutine for GAUSS; in
any cases where the algorithm produced estimates of c and k which resulted in the transition function
St being constant for the whole sample, the Moore-Penrose generalized inverse was employed.
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TABLE 3

Critical values of si tests for stationarity with a known smooth transition in linear trend:
5% level, T ¼ 500

k¢ c¢ ¼ 1.5 c¢ ¼ 3 c¢ ¼ 7.5 c¢ ¼ 15 c¢ ¼ 30 c¢ ¼ 60

(A) Model 1
0.01 0.196 0.278 0.374 0.412 0.426 0.436
0.10 0.185 0.253 0.324 0.349 0.358 0.364
0.20 0.171 0.219 0.270 0.286 0.295 0.299
0.30 0.158 0.184 0.216 0.228 0.235 0.238
0.40 0.148 0.158 0.178 0.188 0.192 0.196
0.50 0.144 0.148 0.163 0.174 0.179 0.181
0.60 0.147 0.156 0.177 0.186 0.194 0.197
0.70 0.156 0.182 0.213 0.224 0.233 0.238
0.80 0.169 0.217 0.270 0.287 0.296 0.304
0.90 0.183 0.252 0.329 0.357 0.368 0.372
0.99 0.193 0.279 0.377 0.415 0.433 0.440

(B) Model 2
0.01 0.061 0.074 0.106 0.126 0.138 0.142
0.10 0.060 0.070 0.098 0.110 0.117 0.120
0.20 0.058 0.065 0.083 0.091 0.094 0.096
0.30 0.057 0.059 0.069 0.073 0.076 0.077
0.40 0.056 0.055 0.058 0.062 0.063 0.065
0.50 0.056 0.053 0.055 0.058 0.059 0.061
0.60 0.056 0.055 0.059 0.062 0.064 0.065
0.70 0.057 0.059 0.069 0.075 0.077 0.078
0.80 0.058 0.065 0.082 0.089 0.093 0.095
0.90 0.059 0.070 0.095 0.110 0.117 0.118
0.99 0.060 0.074 0.106 0.124 0.134 0.140

(C) Model 2a
0.01 0.087 0.099 0.122 0.135 0.140 0.142
0.10 0.085 0.092 0.109 0.116 0.119 0.121
0.20 0.084 0.085 0.093 0.098 0.100 0.101
0.30 0.086 0.084 0.090 0.095 0.099 0.101
0.40 0.101 0.103 0.112 0.116 0.119 0.120
0.50 0.130 0.129 0.129 0.130 0.132 0.133
0.60 0.103 0.105 0.113 0.118 0.121 0.122
0.70 0.088 0.085 0.091 0.096 0.099 0.102
0.80 0.084 0.085 0.092 0.095 0.098 0.100
0.90 0.085 0.092 0.107 0.114 0.118 0.119
0.99 0.087 0.098 0.122 0.133 0.140 0.141

Notes: See notes to Table 2 for model and test definitions. k¢ and c¢ denote the smooth
transition midpoint fraction and speed, respectively. The reported critical values relate to the
conditional procedure.
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break procedures, the resulting test’s performance will be dependent on the
performance of the transition parameter estimators, as well as behaviour when
no transition actually occurs. The critical values will of course depend on both c¢
and k¢, and can be generated by simulation. Table 3 contains a grid of such
values at the 5% level for a sample size of T ¼ 500; these were generated by
repeated application of equation (14) to a generating model of stationarity about
a smooth transition in linear trend, i.e. equations (10)–(12)withr2g ¼ 0, treating
the transition parameters as known in the first-stage regressions. The Table 3
values approximate the asymptotic critical values for the conditional procedure;
in unreported experiments, we also found critical values for T ¼ 100 to differ
little from those in Table 3, especially for models 2 and 2a.6

IV. Monte Carlo simulations

In order to examine the behaviour of the tests outlined in sections II and III,
and compare their relative performance, we conducted a number of Monte
Carlo experiments. Let ~ni and niðk̂Þ denote tests employing break date
selection rules (7) and (8), respectively, with critical values consistent with the
unconditional approach described in section II, i.e. using critical values from
Harvey and Mills (2002) and Table 1, respectively. Similarly, let si denote the
unconditional smooth transition stationarity test, using the critical values of
Table 2. Then, let ~n�i , niðk̂Þ

� and s�i denote tests using the same test statistics
as above, but with critical values corresponding to conditional tests where the
timing (and speed for smooth transitions) of structural change is assumed
known, i.e. using critical values similar to those of Table 3 for the smooth
transition tests (critical values for the exact sample size involved were actually
used, with a slightly more detailed grid), and similarly simulated critical
values for the instant break tests for a range of k¢ values; the precise critical
values used in a given replication were then obtained by linear interpolation.

The generating processes used for the size and power simulations are given
by equations (1)–(4) for series containing instantaneous breaks7 and equa-
tion (12) for a representative case involving smooth transitions, with r2g ¼ 0
for size experiments and r2g ¼ 0:01; 0:1; 1 for power experiments. We set
l0 ¼ b ¼ 0 and et � n.i.d.(0, 1) throughout, and unless otherwise stated,
experiments were conducted using a typical sample size of T ¼ 100.
Simulations were conducted for breaks/transitions occurring early, late and in

6If the null hypothesis of stationarity about a smooth transition is not rejected, a related issue is to
subsequently test whether a transition is actually present in the series, i.e. testing the null of linearity
(c¢ ¼ 0) under an assumption of stationarity. Granger and Teräsvirta (1993, Chapter 6) provide a
detailed discussion of such tests.

7An exception is that for model 2, wt¢t in equation (2) is replaced by zt¢ so as to separate out the
impacts of the level and trend components of the breaks.

873Tests for stationarity in series with endogenously determined structural change

� Blackwell Publishing Ltd 2004



the middle of the sample, but as the results were found to be approximately
symmetric about k¢ ¼ 0.5, we report k¢ ¼ 0.25, 0.5 only. All six tests are
reported in each case, but note that as we do not consider a model 2b version of
the smooth transition tests, we applied the s2 and s�2 tests when the generating
process was equation (3).Where they are comparable, our results and comments
concur with those of Busetti and Harvey (2002) and Lee and Strazicich (2001).

Size and break date estimation when an instantaneous break occurs

Table 4 provides results for size experiments when a break occurs under the
null hypothesis. Examining first the unconditional instant break tests, although
(by construction) both ~ni and niðk̂Þ are correctly sized when no break occurs,
the tests suffer from size distortions when breaks are present under the null. The
distortions are mostly those of oversize and vary according to the true break
fractions. These distortions and dependencies on k¢ clearly highlight that the
shift assumption underpinning the unconditional tests is inappropriate for the
break magnitudes considered here. It appears that the shift assumption would
only be viable for much smaller breaks, but as the magnitudes considered in
Table 4 are typical of those arising in economic time series, the results question
the validity of the unconditional tests in practical applications. The conditional
test ~n�i , which uses break date estimator (7), also suffers from size distortions.
This procedure is always undersized, often to a quite severe degree. In order to
examine whether the size distortions of these three procedures are small sample
effects, we also conducted experiments for larger sample sizes. The distortions
were found to persist in larger samples (with the exception of ~n�2b), increasing
the uncertainty as to the reliability of these tests in practice.

In contrast, the conditional procedure using equation (8) to estimate the
break date, niðk̂Þ�, performs extremely well for series containing breaks.
Approximate correct size is almost always achieved for the models, break
magnitudes and break timings considered. Moreover, unreported simulations
show that any deviations from nominal size disappear as the sample size grows,
yielding a well-behaved test with very appealing size properties.

The only drawback concerns the performance of the test when no break is
present under the null – in these circumstances the test is undersized. In fact,
simulations show that, asymptotically, the estimator (8) places the break at the
beginning or end of the series when no break occurs. This feature ensures that
the test can still be theoretically valid in the case of no break, as the critical
values for break fractions close to zero and one converge to those of the
standard no-break KPSS test. However, two caveats should be highlighted:
first, the degree of trimming selected for the space of values for k (in our
simulations, 20%) constrains the fraction estimates, so that unless close to zero
trimming is used, the endpoints cannot practically be selected by equation (8);
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TABLE 4

Empirical sizes of nominal 5% level stationarity tests when a structural break occurs under the
null: T ¼ 100

db dl k¢ ~n1 ~n�1 n1ðk̂Þ n1ðk̂Þ� s1 s�1

(A) Model 1
— 0.0 — 5.08 0.07 5.01 3.70 5.02 2.72

2.5 0.25 17.87 1.46 9.21 4.73 6.87 3.92
0.50 10.28 1.31 2.71 4.84 1.65 4.17

5.0 0.25 17.62 1.30 9.72 4.94 7.84 4.79
0.50 10.46 1.48 2.77 4.98 2.02 4.78

10.0 0.25 14.81 0.37 9.78 4.99 8.05 4.48
0.50 9.92 1.34 2.76 4.96 2.11 4.82

db dl k¢ ~n2a ~n�2a n2aðk̂Þ n2aðk̂Þ� s2a s�2a

(B) Model 2a
— 0.0 — 5.08 0.03 4.81 1.51 5.03 0.71

2.5 0.25 21.97 1.79 8.83 4.73 8.71 2.93
0.50 23.83 0.58 16.34 4.86 17.63 3.77

5.0 0.25 22.42 1.85 9.01 4.96 11.83 4.51
0.50 22.29 0.25 16.78 5.02 20.96 4.86

10.0 0.25 23.02 1.61 9.05 4.98 12.70 4.73
0.50 22.83 0.02 16.82 5.01 20.49 4.93

db dl k¢ ~n2b ~n�2b n2bðk̂Þ n2bðk̂Þ� s2 s�2

(C) Model 2b
0 — — 5.14 0.58 5.00 1.55 4.92 0.67
1 — 0.25 7.67 0.90 9.90 3.43 8.80 2.78

0.50 2.52 0.49 3.25 2.07 2.84 3.34
2 — 0.25 11.98 1.41 12.51 4.63 13.54 4.68

0.50 9.64 2.69 6.61 4.67 3.74 4.46
4 — 0.25 19.07 4.99 13.21 5.12 17.02 6.00

0.50 11.57 4.98 6.93 4.98 3.81 4.16

db dl k¢ ~n2 ~n�2 n2ðk̂Þ n2ðk̂Þ� s2 s�2

(D) Model 2
0 0.0 — 4.67 0.03 5.07 1.23 4.92 0.67
1 2.5 0.25 31.77 1.91 18.86 4.93 12.94 4.10

0.50 14.20 0.87 6.36 4.97 3.12 3.43
5.0 0.25 30.49 1.23 18.63 4.91 15.34 4.78

0.50 15.66 1.17 6.47 5.06 3.96 4.35
10.0 0.25 27.93 0.28 18.62 4.93 15.66 5.17

0.50 18.86 1.65 6.54 5.11 4.33 4.74
2 2.5 0.25 28.70 0.94 18.70 4.92 13.49 4.12

0.50 13.56 0.87 6.33 5.05 3.58 4.03
5.0 0.25 26.83 0.83 18.66 4.91 14.87 4.93

0.50 11.02 0.26 6.49 5.08 3.93 4.28
10.0 0.25 26.69 0.15 18.62 4.93 15.58 5.17

0.50 19.00 1.31 6.54 5.11 4.24 4.65
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secondly, convergence of k̂ to the endpoints is an asymptotic property, and
occurs only to a limited extent in finite samples. These problems lead to the
observed undersize for niðk̂Þ� in the tables. Despite this drawback, our primary
concern is behaviour when breaks do occur; if it is known that a break is not
present in a series, tests explicitly designed for such situations (e.g. KPSS)
should be used instead. On the other hand, if niðk̂Þ� is used in practice and
the estimated break fraction is found to be close to either zero or one (or more
accurately the extremes of the space of values considered for k), this would
motivate further exploration as to whether a break is actually present in the
series. [Note that the above arguments do not apply to ~n�i , as the estimator (7)
does not converge to the endpoints in the no-break case.]

The results of Table 4 also show that tests based on equation (8) are
almost always better sized than those based on equation (7). This arises as
equation (8) is a substantially superior break fraction estimator, and is of
particular importance to the conditional tests because of their explicit reliance
on a good estimate of the break timing. Table 5 reports, for representative cases,
the sample means and variances of estimated break fractions from the size
simulations, in addition to results for the same experiments using larger samples
of T ¼ 200 and T ¼ 400. The mean is always more accurately estimated by
equation (8) than (7), and the variance is always substantially lower, yielding a
more efficient estimator. Moreover, in line with theory, evidence exists that
equation (8) is a superconsistent estimator, converging to k¢ at rate T (or faster),
with the variance reducing by at least a factor of 4 as the sample size doubles.
The inferior estimator (7) is still consistent for k¢, but converges at a slower rate,
with evidence of superconsistency only present for model 2b. These findings
explain the difference in size performance for the two conditional tests. For
models 1, 2a and 2, equation (7) does not achieve rate T consistency, and thus
does not converge to the true value fast enough to prevent test size distortions.
Instead, given that the nature of the estimator (7) is to choose the minimum

TABLE 4

(continued)

db dl k¢ ~n2 ~n�2 n2ðk̂Þ n2ðk̂Þ� s2 s�2

4 2.5 0.25 26.45 0.59 18.83 4.98 14.70 4.60
0.50 12.54 0.80 6.40 4.97 3.57 3.94

5.0 0.25 18.07 0.18 18.65 4.91 14.84 4.73
0.50 6.82 0.11 6.46 5.06 4.08 4.48

10.0 0.25 18.08 0.05 18.62 4.93 15.80 4.89
0.50 7.49 0.00 6.54 4.11 4.23 4.51

Notes: See notes to Tables 1 and 2 for model and test definitions. Tests denoted with and without
an ‘*’ use critical values corresponding to the conditional and unconditional procedures, respectively.
k¢ denotes the break fraction, while dl and db denote the magnitudes of the breaks in level and trend,
respectively.
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possible test statistic, a tendency exists for ~n�i to underreject the null hypothesis.
In combination with the size results of Table 4, it is clear that niðk̂Þ� has
substantial advantages over the other instant break tests.

Returning now to Table 4, we can also evaluate the size behaviour of the
smooth transition tests. The unconditional si test is subject to size distortions
which generally worsen with the magnitude of the break; these distortions
persist for all cases except where no break occurs, in which case the test is
correctly sized by construction. [As might be expected, the pattern of oversize
and undersize is very similar to that for the related niðk̂Þ test.] The results
strongly suggest that the critical values used for the si test (derived so as to be
consistent with an implicitly assumed shift assumption) are inappropriate
when breaks of interesting magnitude are present. However, the conditional
test s�i has much better size performance, achieving approximate correct size
in most cases. The test exhibits a little distortion for small breaks, but is
only strongly undersized in the no break case.8 Considering the additional

TABLE 5

Means and variances of estimated break fractions using estimation criteria (7) and (8) when a
structural break occurs under the null

k¢ ¼ 0.25 k¢ ¼ 0.50

db dl T (7) (8) (7) (8)

(A) Model 1
— 2.5 100 0.2514 (4.37·10)4) 0.2503 (6.62·10)5) 0.5000 (2.92·10)4) 0.5000 (6.64·10)5)

200 0.2503 (1.68·10)4) 0.2500 (1.58·10)5) 0.5001 (1.18·10)4) 0.5000 (1.54·10)5)
400 0.2495 (6.54·10)5) 0.2500 (3.85·10)6) 0.4999 (5.18·10)5) 0.5000 (3.73·10)6)

(B) Model 2a
— 2.5 100 0.2508 (9.94·10)4) 0.2506 (2.84·10)4) 0.4998 (7.44·10)4) 0.4999 (1.08·10)4)

200 0.2496 (8.81·10)5) 0.2499 (1.74·10)5) 0.5001 (1.52·10)4) 0.5000 (1.54·10)5)
400 0.2496 (3.68·10)5) 0.2499 (3.99·10)6) 0.5000 (6.29·10)5) 0.5000 (3.72·10)6)

(C) Model 2b
1 — 100 0.2502 (5.58·10)5) 0.2501 (2.92·10)5) 0.5000 (2.97·10)5) 0.5000 (2.08·10)5)

200 0.2500 (6.96·10)6) 0.2500 (3.09·10)6) 0.5000 (3.46·10)6) 0.5000 (1.96·10)6)
400 0.2500 (8.04·10)7) 0.2500 (2.00·10)7) 0.5000 (2.12·10)7) 0.5000 (7.13·10)8)

(D) Model 2
1 2.5 100 0.2374 (6.54·10)4) 0.2470 (1.21·10)4) 0.4771 (7.40·10)4) 0.4964 (1.42·10)4)

200 0.2300 (2.16·10)4) 0.2484 (3.31·10)5) 0.4846 (2.34·10)4) 0.4983 (3.28·10)5)
400 0.2381 (5.16·10)5) 0.2492 (7.99·10)6) 0.4911 (7.00·10)5) 0.4992 (7.56·10)6)

Notes: Main cell entries are means; estimated variances are given in parentheses. See notes to
Tables 1 and 4 for model and parameter definitions. Criteria (7) and (8) estimate the break date
according to minimization of the stationarity test statistic, and the significance of break dummy
variable coefficients, respectively.

8When no structural change occurs, the conditional test would only remain valid if ĉ ! 1 and k̂
converged to the endpoints in the limit, since it is only under these circumstances that the test reduces
to the standard no-break KPSS test. Unreported simulations show that although ĉ diverges, the
estimated midpoint does not converge to the endpoints, making the test invalid in the case of no
break/transition.
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generality which this smooth transition test admits, the reliable size
performance of s�i in the presence of instant breaks is encouraging and
signals potential value for applications.

Power when an instantaneous break occurs

Table 6 presents, for model 1, estimated powers of the tests when an instant
break occurs under the alternative hypothesis;9 these results are also
representative of models 2a, 2b and 2. Consider first results for the four
instant break tests. When r2g ¼ 1, there is little difference in power among the
tests; however, for smaller values of r2g, clearer rankings can be observed. The
tests that generally have highest power are the unconditional procedures, with

TABLE 6

Estimated powers of nominal 5% level model 1 stationarity tests when a structural break occurs
under the alternative: T ¼ 100, dl ¼ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2g þ 2Þ=2

q
r2g h k¢ ~n1 ~n�1 n1ðk̂Þ n1ðk̂Þ� s1 s�1

0.01 0.0 — 29.96 6.74 18.90 16.04 12.42 9.86
2.5 0.25 63.74 29.70 54.04 45.43 37.07 31.89

0.50 47.99 19.46 34.39 40.85 21.64 30.38
5.0 0.25 61.67 24.33 54.77 46.21 50.67 43.88

0.50 45.31 18.60 35.94 42.29 30.06 39.53
10.0 0.25 54.75 15.30 54.81 46.28 51.95 45.10

0.50 38.41 14.40 36.05 42.40 31.94 41.38
0.10 0.0 — 87.67 59.76 73.51 70.25 44.02 44.67

2.5 0.25 93.65 71.33 85.59 81.07 57.38 57.75
0.50 92.29 71.29 82.81 83.49 53.62 59.56

5.0 0.25 94.33 73.12 91.25 86.83 73.64 73.20
0.50 92.51 75.71 88.69 90.96 71.19 78.97

10.0 0.25 91.65 62.26 91.51 87.15 89.52 86.60
0.50 87.96 65.96 89.12 91.44 86.10 90.58

1.00 0.0 — 99.55 92.73 97.10 95.90 78.29 82.97
2.5 0.25 99.50 92.86 97.37 96.04 79.12 83.97

0.50 99.57 93.29 97.44 96.48 78.47 84.06
5.0 0.25 99.71 93.35 98.17 96.92 81.58 86.56

0.50 99.55 94.64 97.96 97.39 80.11 86.44
10.0 0.25 99.58 90.79 99.24 98.47 87.90 91.30

0.50 99.43 94.46 99.00 99.13 85.70 92.25

Notes: See notes to Tables 1, 2 and 4 for model, test and parameter definitions. r2g denotes the
variance of the unit root component disturbances [see equations (1)–(4)].

9The same break sizes are considered as with the size simulations, although the magnitudes are
scaled so as to represent 2.5, 5 and 10 times the standard deviation of the process each time.
Moreover, the scaling is normalized so that if r2g ¼ 0, the breaks would be identical to those used in

the previous size experiments, i.e. dl ¼ h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2g þ 2Þ=2

q
with h ¼ 2.5, 5, 10.
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~n1 outperforming n1ðk̂Þ when the break magnitude is moderate or zero,
although this advantage disappears for larger break sizes. The problem with
these procedures is that the high power comes at a price of size distortions
when breaks occur under the null. Of the two conditional tests, n1ðk̂Þ� has
uniformly greater power than ~n�1, with the differences being quite dramatic.
This is perhaps not surprising given the undersizing that ~n�1 exhibits when
breaks occur under the null. Comparing n1ðk̂Þ� with the unconditional tests, it
is reassuring to see that the power losses associated with this test relative to ~n1
and n1ðk̂Þ are not too severe. These losses become less marked the larger the
break magnitude, and are less severe when a break occurs in the middle of the
series; indeed, when k¢ ¼ 0.5, n1ðk̂Þ� outperforms n1ðk̂Þ for all non-zero
breaks, and ~n1 for large breaks. Thus the cost in terms of power of employing
a test with reliable size is relatively small in most circumstances, adding to the
case for using niðk̂Þ� in practice.

With regard to the smooth transition tests, there is little to separate s1 and
s�1: neither test has uniformly greater power when r2g ¼ 0:01; 0:1, although s�1
does have some power advantage when r2g ¼ 1. Given the size problems
associated with s1 when a break occurs under the null, these results confirm
the value of the conditional s�1 version of the test when a break is actually
present. Both tests generally have lower power than the instant break tests and
the differences are more marked for small break magnitudes than for large.
Some power loss is expected due to the additional generality that the smooth
transition tests provide, but given the potential advantages of this testing
approach, the power losses are not too severe, particularly when compared to
the reliably sized n1ðk̂Þ� test.

Size and power when a smooth transition occurs

Finally, Table 7 reports results for sizes of the tests when a smooth
transition occurs under the null hypothesis, for the representative case of
model 2a. The instant break tests are in general subject to very substantial
size distortions. Moreover, further simulations involving larger sample sizes
and the more general model 2 showed a general picture of severe
oversizing. The only times the instant break tests reliably achieve close to
correct size are when niðk̂Þ� is applied to series which have medium to fast
transitions of small magnitude.

As expected, the smooth transition tests are better sized. The conditional s�i
test exhibits reasonable size behaviour for medium to fast transitions – being
just a little undersized – although for slower transitions, this feature of
undersizing can become quite severe. The unconditional si test is less reliable
again, featuring moderate undersize or oversize in almost every case. These
broad features persist with larger samples and also for model 2.
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When the smooth transition tests are applied to stationary series with
instantaneous breaks, unreported simulations indicate that ĉ diverges (as
expected) and k̂ superconsistently estimates the break fraction (evidence of
convergence at rate T), leading to the correctly sized conditional s�i test
observed in Table 4. However, when the data-generating process (DGP)
contains a smooth transition, as in Table 7, the transition parameter estimates
are still consistent, but simulation indicates convergence only at rate

ffiffiffiffi
T

p
. This

slower convergence explains the fact that size distortions for the conditional
test s�i remain even in very large samples when a transition is present: for
speeds of c¢ ¼ 15 and c¢ ¼ 30, the test remains a little undersized, while for
slower speeds, more severe distortions are observed, predominantly those of
undersize. The undersize results from errors in the estimation of k, often
leading to the removal of any appearance of a unit root. Compared with the
other tests, however, it is apparent that s�i is the only test that has, irrespective

TABLE 7

Empirical sizes of nominal 5% level model 2a stationarity tests when a smooth transition
occurs under the null: T ¼ 100

dl c¢ k¢ ~n2a ~n�2a n2aðk̂Þ n2aðk̂Þ� s2a s�2a

2.5 1.5 0.25 8.90 0.11 5.39 1.70 3.51 0.54
0.50 7.07 0.03 6.10 2.16 5.10 0.89

3.0 0.25 36.73 4.16 16.15 8.80 2.15 0.61
0.50 23.55 0.38 16.02 5.93 8.53 2.53

15.0 0.25 37.80 5.21 13.99 8.24 4.19 1.37
0.50 32.61 0.77 19.93 6.17 11.34 2.35

30.0 0.25 28.15 2.92 9.51 5.36 6.30 2.24
0.50 27.68 0.63 17.32 5.10 14.65 3.20

5.0 1.5 0.25 31.74 2.77 13.31 6.44 3.15 1.05
0.50 14.09 0.19 10.63 4.12 7.93 1.76

3.0 0.25 97.07 74.37 85.62 77.23 0.82 0.37
0.50 71.90 5.14 46.84 20.09 6.39 3.44

15.0 0.25 79.31 30.07 48.86 35.84 5.43 2.23
0.50 66.01 2.10 38.05 12.87 12.34 2.28

30.0 0.25 47.60 8.21 18.91 11.30 8.18 3.29
0.50 38.62 0.71 22.53 6.83 16.61 3.52

10.0 1.5 0.25 95.61 65.10 80.31 68.94 1.47 0.74
0.50 44.89 1.50 27.93 11.99 15.94 7.30

3.0 0.25 100.00 100.00 100.00 100.00 0.20 0.10
0.50 99.97 79.49 98.83 86.26 1.00 0.23

15.0 0.25 99.93 94.88 98.32 95.69 4.93 2.44
0.50 99.60 27.06 89.87 46.16 11.94 2.18

30.0 0.25 86.51 34.54 54.92 40.54 8.51 3.65
0.50 75.77 1.51 41.44 11.22 16.69 3.54

Notes: See notes to Tables 1, 2 and 4 for model and test definitions, and Table 3 for parameter
definitions. dl denotes the magnitude of the smooth transition in level.
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of the sample size and magnitude of structural change, reasonable properties
for models with moderate to fast transitions. However, none of the tests can be
considered satisfactory for models involving slower transitions.

Regarding power comparisons when a smooth transition occurs under
the alternative hypothesis, the instant break tests will always have a
tendency to outperform the smooth transition tests. This follows in part
from the former being oversized when smooth transitions occur under the
null, but also from the way the stationarity tests are conducted. The tests
are based on testing for stationarity in the residuals from a fitted
deterministic model; thus, if the true process is unit root with a smooth
transition, the residuals from an instant break model will generally appear
less stationary than those from a smooth transition model, and so the
instant break tests will tend to reject more often. The main concern with
stationarity testing when smooth transitions in linear trend are present is
one of size behaviour, as analysed above. However, unreported simulations
confirm that the smooth transition tests si and s�i are consistent under the
alternative hypothesis.

V. Empirical applications

To illustrate the application of these tests, we investigate the trend behaviour of
four economic time series. These are the end-year value of the S&P 500 stock
market index for the period 1870–2000, annual UK gross domestic product
from 1855–1999, the annual British index of industrial production from 1700–
1913, and end-month observations on the dollar–sterling exchange rate from
January 1988 to December 2001. The logarithms of the first three series are
analysed, but no transformation is made on the exchange rate.

The stationarity tests in this paper are applied to the series, with the
exception of ~n�i because of the test’s poor size and power performance when
structural change is present. In order to account for potential residual
autocorrelation when conducting the tests, the KPSS nonparametric modi-
fication was employed, i.e. r̂2 in the test statistics was replaced with s2(l)
where

s2ðlÞ ¼ T�1
XT
t¼1

e2t þ 2T�1
Xl

j¼1

wðj; lÞ
XT
t¼jþ1

etet�j: ð15Þ

Following KPSS, we use the Bartlett window for the weighting function:
w(j, l) ¼ 1 ) j/(l + 1), with the lag truncation parameter chosen by l ¼
[4(T/100)1/4] where [Æ] denotes the integer part (see, e.g. Schwert, 1989).
Critical values can be taken from Tables 1–3 for the niðk̂Þ, si and s�i tests, and
from Harvey and Mills (2002) and Busetti and Harvey (2001) for the ~ni and

881Tests for stationarity in series with endogenously determined structural change

� Blackwell Publishing Ltd 2004



TABLE 8

Empirical applications of stationarity tests

~ni niðk̂Þ niðk̂Þ� si s�i

(A) S&P 500 index

Model 1 0.534*** 0.607*** 0.607*** 0.069 0.069

ðŝ ¼ 1948Þ ðŝ ¼ 1954Þ ðk̂ ¼ 6:200; ĉ ¼ 0:771Þ
Model 2a 0.228*** 0.265*** 0.265*** 0.068 0.068

ðŝ ¼ 1966Þ ðŝ ¼ 1912Þ ðk̂ ¼ 7:545; ĉ ¼ 0:748Þ
Model 2b 0.057 0.059 0.059

ðŝ ¼ 1945Þ ðŝ ¼ 1943Þ
Model 2 0.056*** 0.059* 0.059* 0.063* 0.063*

ðŝ ¼ 1935Þ ðŝ ¼ 1939Þ ðk̂ ¼ 0:617; ĉ ¼ 44:61Þ

(B) UK GDP

Model 1 0.779*** 0.852*** 0.852*** 0.217* 0.217***

ðŝ ¼ 1928Þ ðŝ ¼ 1939Þ ðk̂ ¼ 28:48; ĉ ¼ 0:147Þ
Model 2a 0.137*** 0.282*** 0.282*** 0.293*** 0.293***

ðŝ ¼ 1912Þ ðŝ ¼ 1918Þ ðk̂ ¼ 0:448; ĉ ¼ 76:25Þ
Model 2b 0.147*** 0.157*** 0.157***

ðŝ ¼ 1958Þ ðŝ ¼ 1950Þ
Model 2 0.036 0.036 0.036 0.031 0.031

ðŝ ¼ 1919Þ ðŝ ¼ 1919Þ ðk̂ ¼ 0:451; ĉ ¼ 83:06Þ

(C) British industrial production

Model 1 0.990*** 1.155*** 1.155*** 0.160 0.160*

ðŝ ¼ 1820Þ ðŝ ¼ 1832Þ ðk̂ ¼ 0:679; ĉ ¼ 1:934Þ
Model 2a 0.434*** 0.473*** 0.473*** 0.089** 0.089**

ðŝ ¼ 1752Þ ðŝ ¼ 1744Þ ðk̂ ¼ 0:678; ĉ ¼ 2:563Þ
Model 2b 0.195*** 0.210*** 0.210***

ðŝ ¼ 1787Þ ðŝ ¼ 1791Þ
Model 2 0.190*** 0.215*** 0.215*** 0.039 0.039

ðŝ ¼ 1780Þ ðŝ ¼ 1791Þ ðk̂ ¼ 0:591; ĉ ¼ 3:841Þ

(D) Dollar–sterling exchange rate

Model 1 0.137** 0.179 0.179* 0.184 0.184*

ðŝ ¼ 1993 :5Þ ðŝ ¼ 1992 :9Þ ðk̂ ¼ 0:345; ĉ ¼ 1195:1Þ
Model 2a 0.088*** 0.182*** 0.182*** 0.100** 0.100*

ðŝ ¼ 1996 :5Þ ðŝ ¼ 1992 :10Þ ðk̂ ¼ 0:625; ĉ ¼ 15:02Þ
Model 2b 0.122*** 0.123*** 0.123***

ðŝ ¼ 1993 :8Þ ðŝ ¼ 1994 :2Þ
Model 2 0.081*** 0.167*** 0.167*** 0.082** 0.082**

ðŝ ¼ 1996 :11Þ ðŝ ¼ 1992 :9Þ ðk̂ ¼ 0:680; ĉ ¼ 6:926Þ

Notes: See notes to Tables 1, 2 and 4 for model and test definitions. *, ** and *** denote

rejection at the 10%, 5% and 1% levels, respectively.
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niðk̂Þ� tests, respectively. In order to achieve a little more accuracy, we
actually generated critical values by simulation for the exact sample sizes of
the four series, using the KPSS correction in the tests, and for finer grids in the
case of the conditional procedures.

The S&P 500 series is an update of that used by Perron (1989) in his
seminal study of testing for stationarity in the presence of trend breaks, in
which he was able to reject the null of a unit root in favour of stationary
deviations about a trend function with breaks in both level and slope at 1929.
The results of applying the various tests to the four possible trend break
models are shown in panel A of Table 8. For models 1 and 2a, there is a
clear rejection of stationarity (model 1) or trend stationarity (model 2a)
around an instantaneous break in level, but no rejection when a smooth
transition in level is assumed. A glance at the first and second rows of
Figure 1, which superimposes each of the fitted trends in turn onto the
observed series, easily explains these results. The simple instant-level break
models are clearly inappropriate trend specifications, so that the deviations
from such trends are obviously nonstationary. The smooth transition models,
however, provide much better fits to the series, and do not allow a rejection
of the stationary null. However, the parameter estimates imply extremely
slow transitions with a midpoint estimated to be well outside the sample
period. In these circumstances, the tests are substantially undersized, and
what is being fit is basically equivalent to a low order polynomial in time.
The piecewise trend model 2b also does not allow rejection of the null, with
the tests being almost identical in selecting the break point to be in the mid-
1940s (see the third row of Figure 1). Allowing both trend and level shifts
also provides little evidence against the null, with only a rejection at the 10%
level using the preferred n2ðk̂Þ; n2ðk̂Þ� tests allowing for an instant trend and
level break, and a similar result when a smooth transition in level and trend
is assumed. The strong rejection implied by ~n2 is most likely due to the
substantial oversizing that the test displays for breaks of this magnitude, as
observed in the simulations. We would thus conclude that, if we are to
model the S&P 500 index as stationary deviations about a deterministic
trend, then a formulation allowing an evolving trend is necessary, as found
by Perron (1989) for a sample period ending in 1970. Our examination of a
longer sample places the break date rather later than the 1929 assumed by
Perron.

The tests for UK output are reported in panel B, and show clear rejections
for all models except model 2, indicating that the series can be modelled as
stationary about a change in level and trend. Some interesting features emerge
from these models. Allowing shifts in both level and trend fits the break at
1919, with the corresponding smooth transition having a rapid transition with
a midpoint also during 1919. The underlying models estimate the pre- and
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post-break trend growth rates to be 1.9% and 2.2% per annum, respectively,
and these are consistent with a precursor model presented in Mills (1994).
Model 2a restricts the pre- and post-break trend growths to be identical,
allowing only level shifts in output. It is clear from the second row of Figure 2
that break date estimation using criterion (8) provides a much more plausible
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Figure 1. S&P 500 index and fitted trend functions
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trend function than that suggested by criterion (7), illustrating the general
superiority of equation (8) over (7). The imposition of the pre- and post-break
trend growth restriction, which is difficult to detect visually in Figure 2 but is
statistically rejected in model 2, is responsible for the rejection of stationarity
in model 2a. This underlines the sensitivity of the tests to the correct trend
specification.

Panel C reports the results for the index of industrial production, whose
trend evolution has been analysed in the context of the industrial revolution by
Mills and Crafts (1996) and Crafts and Mills (1997). In the latter, a model
2-type smooth transition was fitted after a rejection of the unit root null
hypothesis had been found using the Leybourne et al. (1998) testing
procedure. The s2 and s�2 tests are in agreement with this view that devia-
tions in industrial production from a smooth transition in linear trend are
stationary (although the reliability of the tests for the estimated transition
speed is somewhat questionable), while all the instantaneous break tests reject
stationarity; these models have obviously inferior fits, as can be seen in
Figure 3.

Finally, panel D reports the test statistics for the dollar–sterling exchange
rate. The sample period was chosen to start after a period of adjustment
following the Louvre Accord in March 1987. Here the test statistics follow a
rather different pattern to those of the previous examples. Clear rejections are
found for all statistics except the preferred instant break and smooth
transition versions for model 1. The reasons for this are again made clear in
Figure 4. All models containing trends clearly lead to unrealistic trend
functions and nonstationary residuals. In addition, model 1 where the break
date is estimated using equation (7) also results in an unrealistic trend
function, placing the break somewhat later than that implied by equation (8)
and the smooth transition model, again confirming the relative advantage of
equation (8) over (7). The acceptable statistics are thus for those models that
embody just an instantaneous level shift, or equivalently, an extremely fast
smooth transition in mean. The break point is identified to be at September
1992, when the UK abruptly left the European Exchange Rate Mechanism
(ERM). It would thus seem that the dollar–sterling exchange rate might be
characterized as stationary deviations about a constant mean that underwent
an abrupt downward shift in response to a regime change. However,
investigation of the stochastic properties of the deviations in the two regimes
offers further insight into the behaviour of this exchange rate. During the
ERM regime, the deviations are characterized by a second order auto-
regressive process with complex roots of 0.62 ± 0.10i, thus producing the
‘long swings’ around a constant mean of 1.76 observed in the data.
Although the ERM did not set a band for the dollar–sterling exchange rate, it
seems to have constrained the fluctuations that this rate could take. The
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process for the post-ERM period is best represented by a first order
autoregression with a root of 0.92: in other words, it is close to the driftless
random walk that is usually found to characterize freely floating exchange
rate regimes, perhaps giving rise to the rejections at the 10% level obser-
ved for n1ðk̂Þ� and s�1.
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Figure 2. UK GDP and fitted trend functions
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VI. Conclusion

We have examined several tests of the null hypothesis of stationarity against a
unit root alternative where the series concerned admits structural change at
an unknown point in time. Four tests are considered which permit an
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Figure 3. British industrial production and fitted trend functions
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instantaneous break in level and/or trend, and two which allow a more general
deterministic structure where the series undergoes a smooth transition between
two different level and/or trend regimes.

The instant break tests rely, at least implicitly, on some method for
estimating the unknown break date. The simulation results show clearly that
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break date estimation based on the significance of relevant dummy variable
coefficients (or, equivalently, minimum sum of squared residuals or SBC)
consistently outperforms Zivot-Andrews-type approaches where the break
date is selected to give most weight to the null of (trend) stationarity about a
break. Tests based on the latter approach are inferior to the former in terms of
size distortions when a break occurs under the null. Of the two procedures that
employ the preferred break date estimator, the conditional test, using critical
values derived from tests with a known break fraction, outperforms the
unconditional test based on the shift assumption. The results highlight the
inadequacy of the shift assumption for breaks of interesting magnitude, and
the reliable size of the conditional test. We therefore recommend using the
conditional approach where dummy variable coefficient significance is used to
determine the break date; this procedure coincides with that proposed by
Kurozumi (2002), Busetti and Harvey (2002) and Lee (1999). The preferred
test has less power than alternative procedures in some circumstances, but
generally the cost in terms of foregone power from using such a reliably sized
test is small.

A possible caveat to this recommendation exists when no break is actually
present in the series, since the preferred test suffers from substantial
undersizing and low power in these circumstances. Busetti and Harvey (2002)
argue that if uncertainty exists concerning the presence of a break, their
unconditional Zivot-Andrews-type test should instead be used. On the basis
of our results, we would modify this recommendation to suggest use of the
newly proposed variant of this test, maintaining the shift assumption for
determining the critical values, but using the dummy variable coefficient
break date estimator. This follows because, if a small break does occur in the
series, the size distortions are less severe when using the superior estimator of
the break timing. Our recommendation is therefore always to use tests where
the break date is selected on the basis of dummy variable coefficient
significance, but modifying the critical values depending on the degree of
confidence in the existence of a break. This approach is also appealing in the
sense that break date selection is then always consistent with the preferred
method in the parallel context of testing the unit root null against a stationary
alternative.

The new smooth transition tests provide additional generality to the
stationarity testing procedure. The preferred version of the test, which is
conditional on the estimated transition parameters and uses critical values
associated with tests where the transition midpoint and speed are known, has
good size properties and reasonable power when an instant break occurs under
the null, and has greatly superior size performance compared with the instant
break tests if the null is of stationarity around a moderate to fast smooth
transition. The limitations of the procedure are when the transition speed
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is slow, or when no break or transition occurs. In the latter case, the
unconditional smooth transition test has correct size by construction, thus an
argument (equivalent to that above for instantaneous break procedures) could
be made for using the unconditional approach if uncertainty exists regarding
the presence of a transition.

Given that structural change in economic time series often occurs
gradually rather than instantaneously, these smooth transition tests have
potential value in practical applications and provide a useful stationarity
testing counterpart to the unit root tests proposed by Leybourne et al. (1998).
The choice of when to employ an instantaneous break or smooth transition
test must be guided by the application. If instantaneous structural change is
likely, both sets of tests are applicable, while if a transition of moderate to fast
speed is more apparent, only the smooth transition tests should be considered.
If a slow smooth transition is detected, the question is raised as to the
reliability of the tests, and, as highlighted in the empirical applications, this
may suggest that a trend or polynomial trend specification may be more
appropriate.

Final Manuscript Received: May 2004
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Appendix

Proof of equation (9): In order to prove that the asymptotic distribution of ni(k̂)
ði ¼ 1; 2; 2a; 2bÞ is as given in equation (9), it is sufficient to show that the
limiting distributions of td̂l for models 1 and 2a, td̂b for model 2b, and Fd̂;b̂ for
model 2, are given by Zi(k) (i ¼ 1, 2a, 2b, 2) respectively. The result then follows
from application of the continuous mapping theorem and the established
asymptotic results of Busetti and Harvey (2001) and Harvey and Mills (2002)
for the stationarity test statistic with a given break fraction.
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Consider first model 1 (proofs for models 2a and 2b follow with
appropriate modifications and are omitted). Under the null of stationarity
ðr2g ¼ 0Þ about a break in level of magnitude dl at time s¢, the genera-
ting process can be written as follows, assuming l0 ¼ 0 without loss of
generality:

yt ¼ dlw0
t þ et:

The appropriate regression for this model with an assumed break date s is then

yt ¼ lþ dlwt þ et

with the ordinary least squares (OLS) estimator of dl given by

d̂l ¼ ðT � sÞ�1
XT
t¼sþ1

yt � s�1
Xs

t¼1

yt:

Substituting in for yt and scaling appropriately yields

T 1=2d̂l¼T 1=2dl
1�k0

1�k
�I

k�k0

kð1�kÞ

� �
þT�1=2ð1�kÞ�1

XT
t¼sþ1

et�T�1=2k�1
Xs

t¼1

et

where I ¼ 1(s > s¢) and 1(Æ) is the indicator function. Now the shift
assumption can be represented as dl¼ kT�ðjþ1

2Þ where j > 0. Use of this
representation, combined with Lemma 2 of Busetti and Harvey (2001), leads
to the asymptotic distribution of d̂l:

r�1T 1=2d̂l)ð1�kÞ�1½W ð1Þ�W ðkÞ��k�1W ðkÞ:
The estimated variance of d̂l is given by

r̂2
d̂l
¼ r̂2s�1ðT�sÞ�1T :

Scaling, and noting that r̂2!p r2, gives the limiting behaviour of this
estimator:

T r̂2
d̂l
!p r2k�1ð1� kÞ�1:

The asymptotic distribution of td̂l ¼ d̂l=r̂d̂l then follows:

td̂l )
ffiffiffiffiffiffiffiffiffiffiffi
k

1� k

r
W ð1Þ � 1

k
W ðkÞ

� �
:

Consider now model 2. The generating process under the null can be
expressed as follows, assuming l0 ¼ 0 and b ¼ 0 without loss of
generality:

yt ¼ dlw0
t þ dbðw0

ttÞ þ et:

892 Bulletin

� Blackwell Publishing Ltd 2004



The appropriate regression with an assumed break date s is now

yt ¼ lþ bt þ dlwt þ dbðwttÞ þ et

with the (scaled) OLS estimators of the regression parameters given by

T 1=2l̂

T 3=2b̂

T 1=2d̂l

T 3=2d̂b

2
666664

3
777775�

1 1
2 1�k 1

2ð1�k2Þ
1
2

1
3

1
2ð1�k2Þ 1

3ð1�k3Þ

1�k 1
2ð1�k2Þ 1�k 1

2ð1�k2Þ
1
2ð1�k2Þ 1

3ð1�k3Þ 1
2ð1�k2Þ 1

3ð1�k3Þ

2
666664

3
777775

�1
T�1=2

PT
t¼1yt

T�3=2
PT

t¼1 tyt

T�1=2
PT

t¼sþ1yt

T�3=2
PT

t¼sþ1 tyt

2
666664

3
777775

in large samples. Lemma 2 of Harvey and Busetti (2001) and the
shift assumption, which here implies dl¼ k1T�ðj1þ1

2Þ and db¼ k2T�ðj2þ3
2Þ,

where j1, j2 > 0, allows derivation of the limits of the final right hand side
terms:

T�1=2
XT
t¼1

yt ) rW ð1Þ

T�3=2
XT
t¼1

tyt ) r
Z 1

0
r dW ðrÞ

T�1=2
XT
t¼sþ1

yt ) r½W ð1Þ�W ðkÞ�

T�3=2
XT
t¼sþ1

tyt ) r
Z 1

k
r dW ðrÞ:

The asymptotic distributions of the relevant parameter estimates then
follow:

T 1=2d̂l ) 2rk�2ð1�kÞ�3H1

T 3=2d̂b ) 6rk�3ð1� kÞ�3H2

where H1 and H2 are as defined below equation (9). Now

Fd̂;b̂ ¼
ðRbÞ0½RðX 0X Þ�1R0��1ðRbÞ

2r̂2

where b is the vector of OLS parameter estimates, X is the matrix of
regressors, and
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R ¼ 0 0 1 0
0 0 0 1

� �
:

This allows us to write

Fd̂;b̂ � T 1=2d̂l T 3=2d̂b
� � 4ð1�2kþ4k2Þ

kð1�kÞ3
�6ð1�3kþ4k2Þ

k2ð1�kÞ3
�6ð1�3kþ4k2Þ

k2ð1�kÞ3
12ð1�3kþ3k2Þ

k3ð1�kÞ3

2
4

3
5
�1

T 1=2d̂l
T 3=2d̂b

" #
=2r̂2:

Given r̂2 !p r2, the asymptotic distribution of Fd̂;b̂ can then be obtained:

Fd̂;b̂ ) 2
k3ð1�kÞ5 ½ð1�3kþ3k2ÞH2

1 þ3ð1�3kþ4k2Þ2H1H2þ3ð1�2kþ4k2ÞH2
2 �:
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