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Testing a Sequence of Observations 


DOUGLAS M. HAWKINS* 


A possible alternative to the hypothesis that the sequence XI,  Xz, 
..., X, are i id N(5, u2) random variables is that at  some unknown 
instant the expectation 5 shifts. The likelihood ratio test for the 
alternative of a location shift is studied and its distribution under 
the null hypothesis found. Tables of standard fractiles are given, 
along with asymptotic results. 

KEY WORDS: Segmentation; Location shift; Testing for change-
point. 

1. INTRODUCTION 

Suppose that xl,'X2, . . ., X n  is a sequence of obser- 
vations ordered in time. I t  may be reasonable to model 
the X t  by 

X ,  = {(t) + et , t = 1, . . ., n  , 
where 

E(t) = €1 , t I e i  , 
= i 2 ,  e l < t i e 2 ,  

The Bi are parameters representing the epochs at which 
shifts in the location parameters ,tioccur, and the et are 
independent errors. I t  is assumed that the Bi and ti are 
unknown and tha t  r is possibly also unknown. There are 
two important inferential problems arisiqg from this 
model : inference.on the values of the Bi and ti, and testing 
hypotheses about r, the number of segments present in 
the data. 

Most papers on these problems have assumed that the 
error terms et are normal with mean 0 and variance u2 
(this will be abbreviated et - N(0, 2 ) ) .  This model will 
also be assumed in this paper, and attention confined 

' 

to literature on this model. -

Chernoff and Zacks [2] study the problem of estimat- 
ing the most recent mean Er. The model is a Bayesian one 
in which a normal prior distribution is assigned to Erl 
and it is shown that the Bayes estimator is, in general, 
nonlinear. A tentative estimator for 81 in the case r = 2 
is also given. This Bayesian approach is taken further 
by Gardner [7]. . 

A classical approach to the estimation of 01 for the 
case r = 2 is given in Hinkley [8]. The distribution of 
t,he maximum likelihood estimator of el is derived and 
used for setting up confidence intervals. This paper is 
closely related to Hinkley's, in that we shall be concerned 

* Douglas M. Hawkins is Professor of Statistics, University of the Witwatersrand, 
Johannesburg, 2001 South Africa. The author is grateful to the editors and referee 
for suggesting a number of improvements. 

for a Shift .in Location 


with the testing problem which mirrors his estimation 
problem. 

A test for whether a change has occurred is given in 
Page [lo]. The test statistic is a cusum of (Xi - E) 
where E is the supposed mean, and its is assumed that 
u is known. This test is not dependent on the actual 
number of segments being specified, but is not efficient 
if it is known that the number of segments has one of two 
prespecified values. Chernoff and Zacks [2], under the 
Bayesian model mentioned earlier, show that an ap-
proximate test for the presence of two segments is based 
on Xi ( i  - 1) (Xi - El) if El is known, and xi (i - 1) 

(Xi - 8)if El is unknown, a being the mean of all n 
observations. Their assumption that the sign of E2 - E l  

is known is relaxed by Gardner [7], who obtains a 
quadratic test statistic. 

This paper is concerned with the classical test of the 
null hypothesis that a single segment is present against 
the alternative hypothesis that two segments are present. 
The likelihood ratio test will be given and its distribution 
under the null hypothesis derived. 

Bayesian models will not be considered further in this 
paper, except to note that Sen and Srivastava [13, 141, 
in comparing the relative powers of the Bayesian pro- 
cedure and the classical likelihood ratio test, showed the 
latter to have superior power when the two segments are 
of disparate lengths. 

2. THE LIKELIHOOD RATIO TEST STATISTICS 

L~~ 
B n 

= C X j / k ,  Xkf = C Xj/(n- k) , 15k < n  , 
j= 1 j- k+ 1 

k n 

S, = C (Xj  - ad2+ c ( x j  - - Z k f > 2  , 
j= 1 j = k + l  

and write for an,S for Xn. 
we ,,,,ider the hypotheses 

H o :  Xi  - N(E1,a2) , i = 1, ..., n  , 
H I :  Xih .  N(E1,u2) , i = 1, ..., e l  ,- N(E2,u2), i = 8 1 + 1 ,  . . . , n  , 

with 61, and t 2  unknown (El # t2). 
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Testing for a Change-Point 

Two cases may be -distinguished: a known and u 
unknown. If a is known, then the only unknown param- 
eter under Ho  is 11, and its maximum likelihood estimator 
(MLE) is 8.Under H I  there are three unknown param- 
eters. If el is fixed at k, then the MLE'S are 

{l = 8 k  1 

{, = 8,' . 
The likelihood function is monotonically decreasing in 
Sk,and so the MLE of 01 is that k* such that S k *  is a 
minimum, over k = 1, . . ., n - 1. 

Analysis of variance shows that S = S k  + E k  where 

Ek = k(8k - 8 ) 2+ (n - k)(8kr - x ) 2 , 
k = 1, . , . , n -  1 , 

so the criterion of minimum Skis equivalent to maxi- 
mum Ek. 

I t  is then easy to show that 

-2a2 log (likelihood ratio) = S - S k *  , 
= Ek*= u2 , s a y ,  (2.1) 

so that E k *  defines the likelihood ratio test statistic. 
If a is unknown, then simple algebra shows that the 

likelihood ratio test is based on 

S / s k *  = 1 + E k * / S k *  = 1 + W2 1 say 1 

and so is equivalent to 

W2 = E k * / S k *  = Ek*/ ( 8  - Ek*) . (2.2) 

Under Ho, for arbitrary k, Ek/a2 follows a x2distribution 
with one degree of freedom. The distribution of Ek*will 
obviously be stochastically larger than a2X12 because of 
the maximization over k. 

3. THE DISTRIBUTION OF U 

The first problem we will consider is the distribution 
of U .  Since a is assumed to be known we can set it equal 
to 1 without loss of generality. 

An alternative expression for Ek is 

k 

Ek = n ( C  (X, - 8 ) } 2 / ( k ( n- k)} . 
i=l 

Now k* yields the maximum of Ek, or equivalently of 
4 E k .  Thus 

U = d E k *  = max I Tk I (3.1) 
l s k s n - 1  

where Tk = (n/[k (n - (Xi -k)] } + c%= 8).A simple 
calculation shows that for k = 1, . .., n - 1, and m < k, 
the correlation between Tm and Tk is 

pntk  = n / d ( k ( n  - k)m(n - m ) }  
m k 

.E[C (Xi A S ) C (Xi - 8 ) ]  (3.2) 
i=l j= 1 

which simplifies [8] to [m(n - k) / (k(n  - m)}];. 
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The distribution of U is that of the maximum absolute 
value attained by a Gaussian process in discrete time 
having zero mean, unit variance, and autocorrelation pmk. 

Lemma 1: The process ( TI, T2, . . .,TnW1}is Markovian. 
Proof: I t  suffices to show that if j < m < k, then the 

partial covariance ~ i k . ~zero.is But this covariance is 
simply 

This property of the Tk process simplifies the distribu- 
tional problems connected with U considerably, as is 
indicated in Theorem 1. Define 

+(x, a, b) = l / (b(2n)}+exp- +(x - a)2/b2, 
gl(xls) = 1 , X , S >  0 , 
gk(x,s) =P[ IT , I  < s , i = l  , . . . , k - l I T k = x ] ,  

x , s > o  
Theorem 1: The pdf of U is 

where H(x) = gk (5, x)gn-k (2, x). 
Proof: Since,ti = maxk 1 Tk 1, it follows that 

n-1 

fv(x)dx = C P[I Tk 1 E (2, X + dx)
k=l 

and ITil < / T k /  forall j f k ]  

To simplify the expressions that follow, we introduce the 
following notation for various events : 

Then the summand is P[A r) B nC]. Now 

since Tk - N(0, 1)) and 

since the events / Tk / < / Tk I and 1 Ti I < x are equiva- 
lent to order O(dx) given A. Thus 

Next, the series Tk is Markovian, which implies that 
given Tk the sets (-TI, Tz, . .., Tk-1) and (Tk+l, . . ., Tn} 
are independent. 

Finally, we note that the series obtained by taking the 
Xi in reverse order is a probabilistic replica of the given 
series (TI, . .., Tn-l}. This implies that P[C 1 A ]  
= gn-k (x, x) + O(dx). Combining these results yields the 
statement of the theorem. 

Before Theorem 1 can be used, an expression for the 
gk (x, x) is required. This is given in the following theorem. 
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Theorem 2: The functions gk(x, s) satisfy the recursion 

where p = and T = 1/(1 - p2). 
Proof: By definition 

The Markovian nature of the Tk process implies that the 
first of these probabilities is P[I Tjl < s, j = 1, ..., 
k - 21 TkP1= y]. Then since the distribution of each 
Ti is symmetric about zero, this simplifies to P[I Ti / < s, 
j = 1, ...,k - 21 ITk-ll = yI]whichisjustgk-l(Iy/,s). 

Next we note that by this same symmetry it may be 
assumed that Tk = x, and hence that the conditional 
density of Tk-1 is N(px, 7). Thus, 

Finally, gathering these results yields 

Tables of gk(x, s), H(x), and the cumulative distri-
bution function of Tk* have been computed using 
Theorems 1and 2 and a number of representative fractiles 
are listed in part a of Table 1. 

1. Fractiles and Their Bonferroni Approximates a 

a. Fractiles of U 

4 2.06(2.13) 2.35(2.39) 
5 2.15(2.24) 2.43(2.50) 
10 2.38(2.54) 2.65(2.77) 
15 2.49(2.69) 2.75(2.91) 
20 2.55(2.79) 2.82(3.01) 
30 2.64(2.92) 2.90(3.13) 
50 2.73(3.09) 2.98(3.28) 

b. Fractiles of W 

4 4.03(5.34) 5.62(7.65) 
5 3.44(4.18) 4.49(5.39) 
10 2.88(3.28) 3.38(3.76) 
15 2.82(3.19) 3.22(3.55) 
20 2.81(3.20) 3.17(3.49) 
30 2.82(3.20) 3.14(3.47) 
50 2.85(3.26) 3.14(3.50) 

Conservative tests of Ho may also be made using 
Bonferroni's inequalities since 

P[ max 1 TkI > C] 5 (n - l)P[I T1I > c] 
l < k < n - 1  

= 2(n - I)@(-c) , 
where @ is the standard normal distribution function. 
Thus a conservative level a test of Ho  may be based on 
the upper a/(2n - 2) fractile of the standard normal 
distribution. These approximations are listed in Table 
1 next to the exact values. As one would expect, the 
approximation is best when n and a are small, but even 
in the worst case the error is moderate. 

The form of the extreme fractiles may be deduced 
from Theorems 1 and 2 by noting that given Tk = X, 

T, - N(pmkx,1 - pmk2)for m < k .  Thus 

and so P[IT,I < xlTk = x] -+ l  as x - + m .  From this 
fact, it is a short step to show that as x -+ .o, gk (x, x) -+ 1, 
and so H(x) -+ (n - 1). 
This means that as x -+ co, 

which is the bound given by the first Bonferroni in-
equality, and suggests that the significance of large U 
values may be assessed accurately from the Bonferroni 
inequality. 

The distribution of k* can also be obtained from 
Theorem 1. 

Theorem 3: For k = 1, . . ., n - 1, 

Proof: From Theorem 1, 

The distribution of k* for n = 50 is listed in Table 2, 
which also lists for comparison the distribution of the 
location of the maximum of a random walk with in-
dependently and identically distributed increments [6]. 

2. Distribution of k* for n = 50 

Probability of k 
k*  

Equation 3.5 Random walk 

a The Bonferroni approximates are in parentheses. 
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The latter random variable tends to an arc sine dis- 
tribution, and it is of interest to note that k* has a more 
extreme concentration near the endpoints of its range. 

4. THE DISTRIBUTION OF W 

Let us now turn to the situation in which u is unknown. 
The likelihood ratio test statistic is Ek*/Sk*. Let us write 

which may be inverted to give 

Tk = Zk(S/(n- 2 + Zk2))+. 
Now 

Ek* = (max I Tk , SO Ek*/Sk* = (n - 2)Zk*2. 
k 

Since Zk is monotonic in Tk, the likelihood ratio 
statistic 'is equivalent to W = max I Zk 1, whose dis-
tributions we now find. 

Theorem 4: The pdf of W is 

where v = n - 2, fv(t) is a Student's-t density with 
v degrees of freedom, hv(s) is the density of the square 
root of a X2 variate with v + 1 degrees of freedom, and H 
is defined by (3.3). 

Proof: Under Ho  the statistics a and S constitute 
complete sufficient statistics for E and u2. Now Zk is a 
function of the studentized residuals (X, - a ) / d S  and 
so is distributed independently of X and S. 

Suppose initially that S is fixed at s2. Then 

Considering the second probability we have given s and 
Zk = t that Tk = t s / d ( n  - 2 + t2). But by the mono- 
tonicity between Z and T, ] Zj 1 < 1 Zk 1 if and only if 

1 Ti 1 < I Tk I SO that, say, 

Next, we note that Zk is independent of S and follows a 
t distribution with v degrees' of freedom. Thus , 

and so 
n-1 

P[W E (t, t + dt) Is] = 2fv(t) C GL(s, t)dt . 
k = l  

Now mixing this distribution over that of S and using 

the definition of H ( x ) leads to 

A number of fractiles of this distribution have been 
computed, and are listed in part b of Table 1. As in the 
case when a is known, a conservative test of Ho  may be 
found via Bonferroni's inequality applied to the t dis- 
tribution with n - 2 degrees of freedom. These approxi- 
mates are also listed in Table l b  for comparison. 

Table 1 b shows, that the Bonferroni approximation is 
adequate for small n and a, although a study of the 
Type 1 error probabilities shows that the approximation 
is considerably worse than it is for u known. I t  seems 
that the fractiles for large values of n are approaching 
those of Table la .  

When Ho  is rejected in favor of HI, the problem of 
estimating el, &, E2, and u2 arises. The estimation of 
these parameters is discussed by Hinkley [8] who shows, 
inter alia, that k* = el + 0(1), and that the estimators 
a h *  and Xk*' have a bias of order n-l as n +m. 

Analysis of variance considerations suggest the esti- 
mator 82'= Sk*/(n - 2) for c2.Since So,/(n - 2) is an 
unbiased estimator, and S k *  < So1, this estimator is 
clearly biased downwards. 

From the analysis of variance decompositions 

we see that the bias in a2is -&[(Ek*- Eo,)/(n - 2)], 
where & denotes expectation. In this noncentral case, 
&(Ek*- Eol) cannot exceed the corresponding expecta- 
tion for the central case, since for any k ~ ,  

and by the consistency of k*/n the range of k* values 
is narrower in the noncentral case than the central one. 
Thus &(Ep - Eel I Ho)/ (n - 2) provides an upper bound 
for the bias in a2. This expectation could be computed 
directly from the pdf of U. However, it is indicated next 
that U is plausibly (2 log log n)+ + 0(1), and hence the 
bias in 62 is asymptotically negligible. 

5. ASYMPTOTIC RESULTS 

In this section, the behavior of the distribution of U 
as n -t a, is discussed. 

Since U2 is defined as -2 log (likelihood ratio) one 
might anticipate that asymptotically, U2 would approach 
a xz2 distribution. The standard asymptotic theory, 
however, assumes that the likelihood function is twice 
continuously differentiable in its parameters [9] while 
in this case, it is a discontinuous function of el, and so 
the standard theory cannot be invoked. Quandt [12], 
studying a rather similar problem in piecewise regression, 
concluded from a simultation study that the explained 
variation, analogous to U2, was stochastically larger than 
its imputed X2 distribution. 
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In an attempt to understand the asymptotic behavior 
of U, we consider a continuous process whose distribu- 
tional and autocorrelation structure match those of the 
Tk process. The appropriate process1 is a Gaussian process 
x(t), 0 < t < 1, having mean 0, variance 1, and auto- 
correlation pat = d [ s ( l  - t ) /  (t(1 - s) ] ]  for s < t. 

Following the general procedure of Doob [5], which 
has been validated by Donsker [4], we define a Brownian 
motion ((t) = tkx(t/(l + t) ) ,  0 < t < m, and note that 
the event I x(t) / < X for all t E (0, 1) is equivalent to 
I((t) I < Xdt  for all t E (0, 00). 

Now Khintchine's law of the iterated logarithm (e.g., 
[15, p. 6221) states that with probability 1 for any e < 0 
a Brownian motion exceeds (1 + E )  (2t log 1 log t 1 ] i a t  
least once in every neighborhood of 0 and m. Now 
log [log t 1 is unbounded at  0 and m , and so with proba- 
bility 1, for any A, however large, I x(t) I will exceed X a t  
least once in every neighborhood of 0 and 1. 

Thus as n --t m ,  U -+m with probability 1. In this 
sense, U does not have an asymptotic distribution, 
though it may have an extreme value distribution which 
depends on n. 

The discussion relating x(t) to  a Brownian motion 
suggests (and this will be verified) that as n -+m ,  the 
location of the maximum k*/n tends to either 0 or 1. 
This leads to the following approach for studying the 
dependence of the distributions of U and k* on n. 

Let the stochastic process x(t) be observed at  M - 1 
instants ti = i / M  , ( i  = 1, 2, . . ., M - l ) ,  where it is 
assumed that M is large. Augment this partial realization 
by Y11, YIZ, . . ., Y1M which are values of x(t)  a t  spacings 
halfway between the original ti. Thus Ylj corresponds to 
a time ( 2 j  - 1)/(2M). Then halve this mesh again, 
and let the x(t) values at  the new mesh points be Yzl, 
Y22, . .., Y2,,,. Repeat this halving process in total L 
times, finally observing Yzl, Y L ~ ,. . ., YzJ where 
J = 2L-1M. 

From the construction of the Yij it can be seen that  
Yij is observed at  time t = 2-;(2j - 1) /M and so the 
aggregate of the M - lx(t) values and the M (2L - 1) Yij 
makes up a realization of M2L - 1points sampled from 
the x(t) process at  a spacing of (2LM)-1. In view of this 
equal spacing, this aggregate may be regarded as the set 
of Tk resulting from a series of length n = 2LM. Thus the 
statistic U is distributed like the maximum of the 
M' - 1 1 x(ti) / and n - MI Yij 1, and k*/n is distributed 
like the location t at  which this maximum occurs. 

Since Yij corresponds to a time t = 2-i(2 j - l ) /M,  it 
follows that Yij and Ykl are N(0, 1) with a correlation 
equal to the smaller of 

and its inverse. This shows that pairs of diagonal sub- 

* The referee has pointed out that this statement, while surely correct, does not 
seem to be proved in the literature. It should thus be regarded as an heuristic. The 
major result derived from it, that U tends to infinity with probability one, is 
verified directly in the following paragraphs. 

sequences which are located symmetrically about t = 4, 
such as Yll, Y21, . . ., YLI and YI,M, YZ,ZM, . . . , YL,J, 
apart from having the same joint distribution of their 
elements, are app~oximately independent provided M is 
large. This identity of distribution and approximate 
independence will be utilized later. 

Define Yj = max ( IYl j / ,  (Yzj / ,  . . ., J Y L ~ I ) .NOW the 
sequence over which this maximum is taken is of N(0, 1) 
variates with the correlation between Yij and Y i + ~ , j  
being given by 

If M is large relative to j ,  this means that the sequence 
is approximately stationary with autocorrelation p-v a t  
lag N given by 2-hN. Since p~ log N - -0 as N --t m, it 
follows from Berman [l] tha.t Yj is asymptotically dis- 
tributed like the largest of L independent normal vari- 
ables. That is, if U L  =d ( 2  loge L ) ,  then 

a Type I11 extreme value distribution. 
In particular, since U is greater than the larger of Y1 

and the- maximum of its mirror image sequence, i t  
follows that a stochastic lower bound for the asymptotic . 
distribution of U is that of the largest of 2L independent 
N(0, 1) variables. The centering constant for this dis- 
tribution is 

U Z L  = d ( 2  log, 2L) 

= V'[2 loge (2  (log2 n - log2 M) ) ] , (5.2) 

since n = 2LM. Since a 2 ~  as n increases, this lower --tm 

bound implies that asymptotically the M - 1 terms %(ti) 
do not contribute to the maximum, and so may be ignored. 

Considering now the Ykl with 1 # 1. which correspond 
to t < 3, we see that all lie either near Yij for some i 
or near x(tj) for some j. In the former case, the correlation 
with Yil is a t  least 2-2 = 34,  and in the latter, a t  least 
.75. If the correlation between Ykl and Yil is p, then it is 
easily shown that 

Since in the area of interest y is at  least of order 
d ( 2  log, (2L)) ,  and so is large, it follows that this 
probability is small, and hence that the contribution of 
these Ykl to the distribution of Tk* is small, and possibly 
negligible. 

As regards the distribution of k*/n, since the Y,1 
sequence is approximately stationary, all its terms have 
the same probability of yielding the maximum YI. Thus 
the median location of the maximum is at  the L/2 term 
corresponding to t = 2-+L/M = (nM)-+. Taking into ac- 
count the symmetry about t = 4, we then conclude that 
the lower fractiles of k*/n will vary as n-i. 

In an attempt to assess the adequacy of this model, a 
simulation was carried out. Sequences of independent 
N(0, 1) variates of various lengths n were generated, and 
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for each sequence U and k*/n were computed. The mean, 
standard deviation, skewness d b l ,  and kurtosis b2 of U 
are shown in Table 3 together with the lower quartile 
of k*/n. 

3. Statistics of U and k*ln Obtained from Simulation 

Series Number Standard Quartile 
length simulated Mean deviation Skewness Kurtosis of k*ln 

The table shows that A(.), the Type I11 extreme value 
distribution, which has skewness 1.3 and kurtosis 5.4 
[3] is a bad fit to the data for all the n values studied. 
This does not preclude A(.) as a limiting distribution of 
U. It is known that the approach of normal distribution 
extreme values to the limiting distribution is very slow. 
This fact was illustrated by a simulation of the largest of 
320 independent N(0, 1) variates which yielded a skew- 
pess of .69 and kurtosis 3.91. 

Since A(.) is inadequate as a model for n as high as 
5000, questions of its asymptotic goodness-of-fit are 
clearly academic, and the problem remains of adequate 
approximations to its distribution, and especially its 
fractiles, for n values in excess of 50. The moments of U 
shown in Table 3, andcan inspection of stem and leaf plots 
of the actual values obtained in the simulations, suggest 
that to a good degree of approximation, the distribution 
may be taken as depending on n only through a centering 
constant. 

In view of the observation that asymptotically U is 
centered at d [ 2  log, (2L)l with L = log2 n - log2M, a 
curve of the form 1/[2 log, ( a  log2 n + b ) ]  was fitted to 
the mean of U by least squares. This yielded a = 1.966, 
b = -4.015, and a correlation of .997. The value 2 for a 
suggested by the theory lay well within one standard 
error, as did the simpler value -4 for b. These values 
yield a centering constant of d [ 2  log, ( 2  log2 ( 4 4 )  I]. 

Applying this centering correction and using the 90 
percent fractile of U for n = 50 yielded the approximate 
fractiles listed in Table 4. Also shown is the proportion 
of the simulated U exceeding these values. All are seen 
to be close to the nominal -1, which suggests that the 
model is of acceptable accuracy for practical application 
to series of length up to 5000. 

4. Simulation Check on Approximate Fractiles of U 

Approximate Proportion of 
n fractile exceedances 

The lower quartile of k*/n listed in Table 3 agrees 
fairly well with the model that it vary as n-4. 

A final question relates to the asymptotic behavior of 
W, the studentized equivalent of U. In this connection, 
note that S is the sum of n - 1 independently and 
identically distributed x12variates. By the strong law of 
large numbers (n - 1)-lS -t 1 with probability 1. On 
the other hand, due to the positive intercorrelations 
between the Tk, U is stochastically smaller than the 
largest of n independent normal variates, and this latter 
quantity, Vn say, satisfies 

P[lim sup a,(Vn - an)/log log n = $1 = 1 
n -m 

where a n  = d ( 2  log, n )  [ll]. So Uis of order O(dlog, n) 
with probability 1. Hence, in the formula 

as n +m, the term in braces tends to 1 with probability 
1. Thus the asymptotic distribution of W is the same as 
that of U. 

6. EXAMPLE 

A model of the Stock Exchange which is widely believed 
(and whose merits we will not argue here) is that a share 
price P, at time t is 

where Yt - N (Et, (r2) and Y1, Yz, . . . are independent. 
A bull market is one in which it > 0, and a bear market 
one in which it < 0. We are concerned to know whether 
the market has changed posture during an interval, and 
set up the  hypotheses 

Ho:Et  = 4 , fora l l t  , 
H1: E =  4 1 ,  t s e ,  

= E 2 ,  t > e .  

A series of 50 week to week differences in the Eurosyndicat 
index (an index of the major stock markets on the 
European Continent) was computed for the weeks follow- 
ing August 3, 1971. This series yielded a Zk* of 4.88 which 
is highly significant. The basic statistics of the two 
segments are Xk*= -1.77, &*' = 1.01, Sk*= 162.59, 
and k* = 15. 

The boundary between the segments occurs a t  Novem- 
ber 9, 1971. This point marked the end of a long period 
of lack of confidence on the European stock markets, and 
was followed shortly by a devaluation of the dollar 
against the major European currencies. 

The full series avhilable started in January 1966 and 
contained 486 terms. An estimate of the variance was 
computed from the mean squared successive difference 
of the weekly changes and yielded the value 4.36. Under 
the model's assumptions of independent homoscedastic 
increments with possible occasional abrupt shifts in 
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location, this estimate is preferable to the sample vari- 
ance as it is hardly affected by a small number of changes 
in (. 

[Received May 1974. Revised J u n e  1976.1 
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